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Abstract
We review the construction of the universal Hamilton–Jacobi counterterm for
dilaton gravity in two dimensions, derive the corresponding result in the Cartan
formulation and elaborate further upon black hole thermodynamics and semi-
classical corrections. Applications include spherically symmetric black holes
in arbitrary dimensions with Minkowski- or AdS-asymptotics, the BTZ black
hole and black holes in two-dimensional string theory.

PACS numbers: 04.70.Bw, 04.70.−s, 04.60.Kz, 02.60.Lj

1. Introduction

There are numerous applications in physics where an action

Ibulk[φ] =
∫
M

dnx Lbulk(φ,∇φ) (1)

has to be supplemented by boundary terms

Itot[φ] = Ibulk[φ] +
∫

∂M
dn−1x Lboundary(φ,∇⊥φ,∇‖φ). (2)

Here ∇⊥ and ∇‖ denote the normal and parallel components of the derivative with respect
to the boundary ∂M. The simplest example is quantum mechanics, where

Ibulk[q, p] =
∫ t1

t0

dt[−qṗ − H(q, p)] (3)

has to be supplemented by a boundary term

Itot[q, p] = Ibulk[q, p] + qp|t1t0 (4)
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if Dirichlet boundary conditions are imposed on the coordinate, δq|ti = 0. In addition to this
‘Gibbons–Hawking–York’ boundary term one can add another boundary term

�[q, p] = Itot[q, p] − F(t, q)|t1t0 , (5)

which depends only on quantities held fixed at the boundary. This seems to be a superfluous
addition, as it does neither change the equations of motion nor the variational principle (as
opposed to the ‘Gibbons–Hawking–York’ boundary term), but in some applications such a
term is crucial and determined almost uniquely from consistency requirements: symmetries
and accessibility of the classical approximation. One such application is the Euclidean path
integral for black holes (BHs), which provides a convenient shortcut to BH thermodynamics.

2. Hamilton–Jacobi counterterm in two-dimensional gravity

The essential features and difficulties arise already in low dimensions. For transparency we
focus on two-dimensional (2D) models. The bulk action for 2D dilaton gravity [1],

Ibulk[g,X] = − 1

16πG2

∫
M

d2x
√

g[XR − U(X) (∇X)2 − 2V (X)] (6)

has to be supplemented by a Gibbons–Hawking–York boundary term

Itot[g,X] = Ibulk[g,X] − 1

8πG2

∫
∂M

dx
√

γXK, (7)

if Dirichlet boundary conditions are imposed on the dilaton field X and the induced metric at
the boundary γ . The meaning of all symbols is standard and our notation is consistent with
[2]. In addition one could add another boundary term

�[g,X] = Itot[g,X] − 1

8πG2

∫
∂M

dx
√

γF(X,∇‖X, γ,∇‖γ )︸ ︷︷ ︸
ICT[γ,X]

. (8)

We demonstrate now why such a term is needed and show that it is determined essentially
uniquely from consistency requirements: symmetries and accessibility of the classical
approximation.

2.1. Symmetries

Diffeomorphism covariance along the boundary requires that F in (8) transforms as a scalar.
Since there are no scalar invariants constructed from γ in one dimension, F can be reduced
to F = F(X,∇‖X). Another simplification arises if we restrict ourselves to isosurfaces of
the dilaton field, which is sufficient for our purposes. Then X is constant along the boundary,
∇‖X = 0, so that we are left with a function

F = F(X). (9)

Symmetry requirements have reduced the dependence on four variables in (8) to a dependence
on only one variable, X.

2.2. Accessibility of the classical approximation

While symmetries help to reduce the ambiguities in F they do not explain why such a term is
needed in the first place. To this end we consider the Euclidean path integral

Z =
∫

DgDX exp

(
−1

h̄
I [g,X]

)
. (10)

2
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The path integral is evaluated by imposing boundary conditions on the fields and then
performing the weighted sum over all relevant spacetimes (M, g) and dilaton configurations
X. In the classical limit it is dominated by contributions from stationary points of the action.
This can be verified by expanding it around a classical solution

I [gcl + δg,Xcl + δX] = I [gcl, Xcl] + δI [gcl, Xcl; δg, δX] + 1
2δ2I [gcl, Xcl; δg, δX] + · · · ,

(11)

where δI and δ2I are the linear and quadratic terms in the Taylor expansion. The saddle point
approximation of the path integral

Z ∼ exp

(
−1

h̄
I [gcl, Xcl]

) ∫
DδgDδX exp

(
− 1

2h̄
δ2I [gcl, Xcl; δg, δX]

)
(12)

is defined if:

(i) The on-shell action is bounded from below, I [gcl, Xcl] > −∞.
(ii) The first variation vanishes on-shell, δI [gcl, Xcl; δg, δX] = 0 for all variations δg and δX

preserving the boundary conditions.
(iii) The second variation has the correct sign for convergence of the Gaussian in (12).

The last condition actually means consistency of the semi-classical approximation, and we
shall not discuss it here. Instead, we focus on the first two conditions. Both are violated for
typical BH solutions of (7) if the boundary is located in the asymptotic region X → ∞:

(i) The on-shell action behaves as Itot[gcl, Xcl → ∞] = 2M/T − S − w(Xcl → ∞)/T , and
limX→∞ w(X) → ∞ for most models of interest5.

(ii) The first variation of the action receives a boundary contribution

δItot|on-shell ∼
∫

∂M
dx

√
γ [πabδγab + πXδX] �= 0 (13)

because the product πabδγab is non-vanishing: the variation of the induced metric γab

does not fall off sufficiently fast to compensate for the divergence of the momenta πab.

We emphasize that an ad hoc subtraction Iren[gcl, Xcl → ∞] := Itot[gcl, Xcl → ∞]+w(Xcl →
∞)/T is inconsistent: while it leads to a finite on-shell action it does not address the second
problem. Both can be solved by choosing F(X) adequately. Since the on-shell action solves
the Hamilton–Jacobi equation one can expect cancellations if also F is a solution to the
Hamilton–Jacobi equation. Thus, our guiding principle is to demand that F be a solution of
the Hamilton–Jacobi equation (see the following section for details). This method was applied
first to the Witten BH and to type 0A string theory [3] and later generalized to generic 2D
dilaton gravity [2]. The result is

F(X) = −
√

(w(X) + c) e−Q(X), (14)

where c is an integration constant. It can be absorbed into a redefinition of w (cf the appendix)
and reflects the freedom to choose the ground state of the system. Thus, without loss of
generality we can set it to zero and finally obtain a consistent action [2]

�[g,X] = − 1

16πG2

∫
M

d2x
√

g[XR − U(X) (∇X)2 − 2V (X)]

− 1

8πG2

∫
∂M

dx
√

γXK +
1

8πG2

∫
∂M

dx
√

γ
√

w(X)e−Q(X). (15)

5 T is the Hawking temperature and S the Bekenstein–Hawking entropy. Both are determined from the mass M and
the functions Q(X) and w(X) defined in the appendix.
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The classical approximation is now well defined because

(i) �[gcl, Xcl → ∞] = M/T − S is finite.
(ii) δ�[gcl, Xcl; δg, δX] = 0 for all δg and δX preserving the boundary conditions.

Moreover, as opposed to (7) the action (15) is consistent with the first law of thermodynamics.
Perhaps the most remarkable property of the counterterm in (15) is its universality: while
usually different subtraction methods are employed depending on whether spacetime is
asymptotically flat, AdS or neither or both, our result is not sensitive to the asymptotics.
This universality does not appear to exist in higher dimensions or even in 2D if ‘standard’
subtraction methods are used [4].

3. Cartan formulation

In many applications a first-order formulation in terms of Cartan variables is advantageous
[1]. Therefore we now derive the Hamilton–Jacobi counterterm in this formulation. The
corresponding action (we set 8πG2 = 1)

I FO
tot [X, Y a, ea, ω] = −

∫
M

[
Y aDea + X dω + ε

(
1

2
U(X)Y aYa + V (X)

)]

+
∫

∂M

[
Xω‖ +

i

2
Xd ln

e‖
ē‖

]
, (16)

contains the Cartan variables ω and ea , as well as the scalar fields X and Y a (we use a
complexified dyad, ē = e∗; cf [5] for the details of our notation). As (16) is classically
equivalent to (7) (cf the appendix of [5]) it will suffer from the same problems as described in
section 2.2. We follow the same strategy as in the second-order formulation [2, 3] to find the
corresponding Hamilton–Jacobi counterterm I FO

CT , which, using the arguments in section 2.1,
can be reduced to

�FO[X, Y a, ea, ω] = I FO
tot [X, Y a, ea, ω] −

∫
∂M

dx‖√2e‖ē‖F(X)︸ ︷︷ ︸
I FO

CT [X,e‖ ē‖]

. (17)

The variation of the action produces the equations of motion plus the boundary term6∫
∂M

dx‖[Yδē‖ + Ȳ δē‖ − δXω‖]. (18)

To cancel it we assign Dirichlet boundary conditions to X, e‖ and ē‖. As in [2, 3] it is possible
to write the momenta which are not fixed at the boundary,

ω‖ = − δI FO
tot

δX

∣∣∣∣
on-shell

, Y = δI FO
tot

δē‖

∣∣∣∣
on-shell

, Ȳ = δI FO
tot

δe‖

∣∣∣∣
on-shell

, (19)

as variations of the on-shell action. The Hamilton constraint,

−ω‖
Y ē‖ + Ȳ e‖

2e‖ē‖
+ U(X)Y Ȳ + V (X) = 0, (20)

follows from a standard constraint analysis of the first-order action (16). By construction
the Hamilton–Jacobi counterterm must be a solution of this constraint. Replacing in (19) the

6 Contributions emerging from the logarithm in the boundary term are dropped as we assume that the boundary is
an isosurface of the dilaton and that there is no boundary of the boundary. The coordinate along the boundary, x‖,
can be thought of as Euclidean time τ .
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on-shell action I FO
tot by the counterterm I FO

CT , plugging this into the Hamilton constraint (20)
and exploiting that I FO

CT depends solely on the combination e‖ē‖ establishes

δI FO
CT

δX

δI FO
CT

δ(e‖ē‖)
+ U(X)e‖ē‖

(
δI FO

CT

δ(e‖ē‖)

)2

+ V (X) = 0. (21)

This functional differential equation for the counterterm by virtue of the ansatz (17) simplifies
to

d

dX
F2(X) + U(X)F2(X) + 2V (X) = 0. (22)

The solution of this first-order ordinary differential equation is given by7

F(X) = −
√

(w(X) + c) e−Q(X). (23)

This coincides with (14) and thus we conclude that the Hamilton–Jacobi counterterms in
second- and first-order formalisms are identical, as might have been anticipated on general
grounds. Setting again c = 0, the consistent first-order action is

�FO[X, Y a, ea, ω] = −
∫
M

[
Y aDea + Xdω + ε

(
1

2
U(X)Y aYa + V (X)

)]

+
∫

∂M

[
Xω‖ +

i

2
Xd ln

e‖
ē‖

]
+

∫
∂M

dx‖√2e‖ē‖
√

w(X)e−Q(X). (24)

4. Black hole thermodynamics and further applications

An immediate consequence of our result (15) is the Helmholtz free energy [2]

Fc(Tc,Xc) = 1

8πG2

√
w(Xc)e−Q(Xc)

(
1 −

√
1 − 2M

w(Xc)

)
− Xh

4G2
Tc, (25)

which is related to the on-shell action in the usual way, Fc = Tc�c. Here Xc denotes the value
of the dilaton field at the location of a cavity wall in contact with a thermal reservoir, while Xh

denotes the value of the dilaton at the BH horizon. The local temperature Tc is related to the
Hawking temperature T by the standard Tolman factor, Tc = T/

√
ξ(X). All other quantities

are defined in the appendix. The entropy,

S = − ∂Fc

∂Tc

∣∣∣∣
Xc

= Xh

4G2
= Ah

4Geff
, (26)

is in agreement with the Bekenstein–Hawking result. Here Ah = 1 because we are in 2D, and
Geff = G2/Xh. For dimensionally reduced models (26) can be interpreted also from a higher-
dimensional perspective: Ah ∝ Xh and Geff ∝ G2, with the same proportionality constants.
The result (26) is well known and was obtained by various methods [6]. However, the free
energy (25) contains a lot of additional information and allows a quasi-local treatment of BH
thermodynamics (where applicable in agreement with [7]), including stability considerations.
For an extensive study of thermodynamical properties and more references we refer to [2].

The class of BHs described by the action (15) or (24) is surprisingly rich (cf, e.g., table 1
in [8]), and includes spherically symmetric BHs (like Schwarzschild or Schwarzschild–AdS)
in any dimension, spinning BHs in three dimensions [9] and string BHs in two dimensions

7 There is a sign ambiguity since (22) yields only F2(X). The sign choice in (23) gives an action with a consistent
classical limit.

5
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[10, 11]. As an example we consider now the exact string BH [11], and review some of its
properties. Its target-space action [12] is given by (15) with 8πG2 = 1 and the potentials

U(X) = − ρ

ρ2 + 2(1 +
√

1 + ρ2)
, V (X) = −2b2ρ. (27)

Here the canonical dilaton X is related to a new field ρ by

X = ρ + arcsinh ρ, (28)

and the parameter b is related to the level k and α′ by α′b2 = 1/(k − 2). In order for the
background following from (15), (27) and (28) to be a solution of string theory it must satisfy
the condition D − 26 + 6α′b2 = 0. Because the target space here is two dimensional, D = 2,
requiring the correct central charge fixes the level at the critical value kcrit = 9/4. Following
[13], we vary k by allowing for additional matter fields that contribute to the total central
charge, so that k ∈ [2,∞) is possible. The Witten BH arises in the limit k → ∞. Since it
is not possible to place an abrupt cut-off on the spacetime fields in string theory we have to
consider the limit Xc → ∞ in the Helmholtz free energy (25),

FESBH = −b

√
1 − 2

k
arcsinh

√
k(k − 2) (29)

and its thermodynamical descendants. It is straightforward to show that (29) leads to a positive
specific heat for any k ∈ (2,∞), and that it vanishes in the limit k → 2 in accordance with
the third law. We comment now briefly on the inclusion of semi-classical corrections from
fluctuations of massless matter fields on a given BH background. We therefore add to the
classical action (6) the Polyakov action,

I semi
bulk = Ibulk + c

∫
M

d2x
√

g

[
ψR +

1

2
(∇ψ)2

]
, (30)

where we have introduced an auxiliary field ψ which fulfills the on-shell relation �ψ = R,
and the constant c depends on the number and type of massless matter fields. Obviously, the
addition of (30) requires a reconsideration of boundary issues. One possibility is to demand
that ψ is a function of X [14]. Then the action (30) reduces to a standard dilaton gravity action
(we set 8πG2 = 1)

I semi
bulk = −1

2

∫
M

d2x
√

g[X̂R − (U(X) + c(ψ ′(X))2)(∇X)2 − 2V (X)], (31)

upon introducing a redefined dilaton X̂ = X − 2cψ(X). Therefore, as long as the assumption
ψ = ψ(X) is meaningful, the discussion of boundary terms in section 2 is still valid. We note
in this context that the large X expansion of the exact string BH (27), (28) can be interpreted as
a semi-classical correction to the Witten BH, with ρ playing the role of the unperturbed dilaton
X and −ln(2ρ)/(2c) playing the role of the auxiliary field ψ . This is consistent with the fact
that the conformal factor ψ scales logarithmically with the dilaton and concurs with semi-
classical corrections [15] to the specific heat of the Witten BH, which also show qualitative
agreement with the specific heat of the exact string BH. Another, more general, possibility is
to treat ψ as an independent field. In that case boundary issues have to be reconsidered. We
expect them to be relevant whenever the boundary term∫

∂M
dx

√
γψnµ∂µψ (32)

does not fall off sufficiently fast at the asymptotic boundary (nµ is the outward pointing unit
normal). Since ψ typically scales logarithmically with X this happens for all models where
w(X) grows linearly or faster than X. Interestingly, the Witten BH is precisely the limiting case

6
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where this issue is of relevance. More recently, semi-classical corrections were considered in
the context of large AdS BHs [16]. There the issue is complicated because the matter fields
couple non-minimally to the dilaton. Since the results of [16] agree with ours in the large
X limit only8, it would be interesting to analyze the counterterms using the Hamilton–Jacobi
method, possibly by adapting the strategy described and applied in [17]. This would also allow
to reconsider the path integral quantization of 2D dilaton gravity with matter in the presence
of boundaries [18] and to clarify the role of the Hamilton–Jacobi counterterm for observables
beyond thermodynamical ones. For further applications and an outlook to future research we
refer to the discussion in section 7 of [2].
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Appendix. Definitions of w and Q

The classical solutions of the equations of motion

X = X(r), ds2 = ξ(r) dτ 2 +
1

ξ(r)
dr2, (A.1)

with

∂rX = e−Q(X), ξ(X) = w(X)eQ(X)

(
1 − 2M

w(X)

)
, (A.2)

are expressed in terms of two model-dependent functions

Q(X) := Q0 +
∫ X

dX̃ U(X̃), w(X) := w0 − 2
∫ X

dX̃ V (X̃)eQ(X̃). (A.3)

Here Q0 and w0 are constants, and the integrals are evaluated at X. Note that w0 and the
integration constant M contribute to ξ(X) in the same manner. Together, they represent a single
parameter that has been partially incorporated into the definition of w(X). By definition they
transform as w0 → e�Q0w0 and M → e�Q0M under the shift Q0 → Q0 +�Q0. This ensures
that the functions (A.2) transform homogeneously, allowing Q0 to be absorbed into a rescaling
of the coordinates. Therefore, the solution is parameterized by a single constant of integration.
With an appropriate choice of w0 we can restrict M to take values in the range M � 0 for
physical solutions. The function w is invariant under dilaton dependent Weyl rescalings of
the metric, whereas Q transforms inhomogeneously. All classical solutions (A.1) exhibit a

8 The counterterm, (4.5) in [16], for finite values of r differs from (14), which yields F(r2) ∼ r
√

1 + r2/�2 =
1/�(r2 + �2/2 + · · ·).

7
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Killing vector ∂τ . With Lorentzian signature each solution Xh of ξ(X) = 0 therefore leads to
a Killing horizon. The Hawking temperature is given by the inverse periodicity in Euclidean
time, T = w′(Xh)/(4π).
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