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Outline

Motivation

Gravity in three dimensions

Gravity in two dimensions
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Black holes hide key secrets to Nature
Seeing is believing...
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Motivation
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Some open issues in gravity

» IR (classical gravity)
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Some open issues in gravity

» IR (classical gravity)
» asymptotic symmetries
» soft physics
» near horizon symmetries

Take-away slogan )

J

Equivalence principle needs modification
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Some open issues in gravity

» IR (classical gravity)
» asymptotic symmetries
» soft physics
P near horizon symmetries
» UV (quantum gravity)
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Some open issues in gravity

» IR (classical gravity)
» asymptotic symmetries
» soft physics
» near horizon symmetries
» UV (quantum gravity)
» numerous conceptual issues
» black hole evaporation and unitarity
> black hole microstates

Take-away homework }

Find ‘hydrogen-atom’ of quantum gravity
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Some open issues in gravity

» IR (classical gravity)
» asymptotic symmetries
» soft physics
» near horizon symmetries
» UV (quantum gravity)
» numerous conceptual issues
» black hole evaporation and unitarity
> black hole microstates

» UV/IR (holography)

See book by Erdmenger or lecture notes 1807.09872
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https://arxiv.org/abs/1807.09872

Some open issues in gravity

» IR (classical gravity)
» asymptotic symmetries
» soft physics
» near horizon symmetries
» UV (quantum gravity)
» numerous conceptual issues
» black hole evaporation and unitarity
> black hole microstates
» UV/IR (holography)
» AdS/CFT and applications (see Erdmenger, Meyer and collaborators)
» precision holography
» generality of holography

Take-away question(s) ]

(When) is quantum gravity in D + 1 dimensions equivalent
to (which) quantum field theory in D dimensions?
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Some open issues in gravity

» IR (classical gravity)
» asymptotic symmetries
» soft physics
P near horizon symmetries
» UV (quantum gravity)
» numerous conceptual issues
» black hole evaporation and unitarity
> black hole microstates
» UV/IR (holography)
» AdS/CFT and applications (see Erdmenger, Meyer and collaborators)
P> precision holography
» generality of holography

» all issues above can be addressed in lower dimensions
» |ower dimensions technically simpler

» hope to resolve conceptual problems
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Gravity in various dimensions

: D2(D2-1
Riemann-tensor %

> 11D: 1210 (1144 Weyl and 66 Ricci)
» 10D: 825 (770 Weyl and 55 Ricci)
» 5D: 50 (35 Weyl and 15 Ricci)

» 4D: 20 (10 Weyl and 10 Ricci)

Caveat: just counting tensor components can be misleading as measure of complexity

Example: large D limit actually simple for some problems (Emparan et al.)

components in D dimensions:
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Gravity in various dimensions

. D2(D2—1) . . . .
Riemann-tensor ——{3—— components in D dimensions:

> 11D: 1210 (1144 Weyl and 66 Ricci)

10D: 825 (770 Weyl and 55 Ricci)

5D: 50 (35 Weyl and 15 Ricci)

4D: 20 (10 Weyl and 10 Ricci)

3D: 6 (Ricci)

2D: 1 (Ricci scalar)

1D: 0 (space or time but not both = no lightcones)

( y YVVVYYVY

Apply as mantra the slogan “as simple as possible, but not simpler” ]
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Gravity in various dimensions

. D2(D2—1) . . . .
Riemann-tensor ——{3—— components in D dimensions:

> 11D: 1210 (1144 Weyl and 66 Ricci)
» 10D: 825 (770 Weyl and 55 Ricci)
» 5D: 50 (35 Weyl and 15 Ricci)
» 4D: 20 (10 Weyl and 10 Ricci)
» 3D: 6 (Ricci)

» 2D: 1 (Ricci scalar)

» 2D: lowest dimension exhibiting black holes (BHs)
» Simplest gravitational theories with BHs in 2D
> No Einstein gravity
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Gravity in various dimensions

. D2(D2—1) . . . .
Riemann-tensor ——{3—— components in D dimensions:

> 11D: 1210 (1144 Weyl and 66 Ricci)
» 10D: 825 (770 Weyl and 55 Ricci)
» 5D: 50 (35 Weyl and 15 Ricci)

» 4D: 20 (10 Weyl and 10 Ricci)

» 3D: 6 (Ricci)

» 2D: 1 (Ricci scalar)

» 2D: lowest dimension exhibiting black holes (BHs)
» Simplest gravitational theories with BHs in 2D
> No Einstein gravity

» 3D: lowest dimension exhibiting BHs and gravitons
» Simplest gravitational theories with BHs and gravitons in 3D

» Lowest dimension for Einstein gravity (BHs but no gravitons)
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Outline

Gravity in three dimensions
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Spectrum of BTZ black holes and related physical states
Could this black hole be the ‘hydrogen atom’ for quantum gravity?
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Choice of theory

» Choice of bulk action
Pick Einstein—Hilbert action with negative cc (A = —1/¢2)

1 ; 2
167G /Md A <R+£2>

Usually choose also topology of M, e.g. cylinder

IEH[Q] = -
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Choice of theory

» Choice of bulk action
Pick Einstein—Hilbert action with negative cc (A = —1/¢2)

167rG / v/ <R+ e?)

Usually choose also topology of M, e.g. cylinder

Main features:
» no local physical degrees of freedom

Ten [g] =
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Choice of theory

» Choice of bulk action
Pick Einstein—Hilbert action with negative cc (A = —1/¢2)

1 ; 2
167G /Md A <R+£2)

Usually choose also topology of M, e.g. cylinder
Main features:

» no local physical degrees of freedom

» all solutions locally and asymptotically AdS3

IEH[g] = -
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Choice of theory

>
Pick Einstein—Hilbert action with negative cc (A = —1/¢2)
Main features:
» no local physical degrees of freedom
> all solutions locally and asymptotically AdSs
> rotating (BTZ) black hole solutions analogous to Kerr

2 ,2N\(02 _ .2 2,2 1,.2 2

(r r;g(g =) g . g; dr 41 (dap—m_r_ dt)
r (r2—r3)(r? —r2) 0r?

t: time, ¢ ~ ¢ + 27 angular coordinate, r: radial coordinate

r — 00: asymptotic region

r — r4 > r_: black hole horizon

r — r_ > 0: inner horizon

r4 — r— > 0: extremal BTZ

r_ — 0: non-rotating BTZ

ds? = —

Daniel Grumiller — Gravity in Flatland Gravity in three dimensions 10/25



Choice of theory

» Choice of bulk action
Pick Einstein—Hilbert action with negative cc (A = —1/¢2)
Main features:
» no local physical degrees of freedom
> all solutions locally and asymptotically AdSs
> rotating (BTZ) black hole solutions analogous to Kerr

2 2Y(p2 _ 2 2,2 4,2
s (P =r)(r?—=1r2) Credr 2 TyT_ 2
ds” =~ (272 di +(r2 —r2)(r2 —r?) o (dap— Or? dt)

> conserved mass M = (r3 +r2)/¢* and angular mom. J = 2r r_ /¢
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Choice of theory

4
Pick Einstein—Hilbert action with negative cc (A = —1/¢2)

Main features:
» no local physical degrees of freedom
> all solutions locally and asymptotically AdSs
> rotating (BTZ) black hole solutions analogous to Kerr

2 2Y(p2 _ 2 2,2 4,2
s (P =r)(r?—=1r2) Credr 2 TyT_ 2
ds? = — o S ey (ap- e at)

> conserved mass M = (r3 +r2)/¢* and angular mom. J = 2r r_ /¢
» Bekenstein—Hawking entropy

A _ e
4G 2G
Hawking-Unruh temperature: T = (r2 — r2)/(2mr(?)

SBH =
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Choice of theory

» Choice of bulk action
Pick Einstein—Hilbert action with negative cc (A = —1/¢2)
» Choice of boundary conditions
Crucial to define theory — yields spectrum of ‘edge states’
Pick whatever suits best to describe relevant physics

Daniel Grumiller — Gravity in Flatland Gravity in three dimensions

10/25



Choice of theory

» Choice of bulk action
Pick Einstein—Hilbert action with negative cc (A = —1/¢2)
» Choice of boundary conditions
Crucial to define theory — yields spectrum of ‘edge states’
Pick whatever suits best to describe relevant physics

» Goal: understand holography beyond AdS/CFT

» Explain first in general how edge states emerge
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Physics with boundaries
Science is a differential equation. Religion is a boundary condition. — Alan Turing

> Many QFT applications employ “natural boundary conditions”:
fields and fluctuations tend to zero asymptotically
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Physics with boundaries
Science is a differential equation. Religion is a boundary condition. — Alan Turing

> Many QFT applications employ “natural boundary conditions”:
fields and fluctuations tend to zero asymptotically

P> Notable exceptions exist in gauge theories with boundaries:
e.g. in Quantum Hall effect
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Physics with boundaries
Science is a differential equation. Religion is a boundary condition. — Alan Turing

> Many QFT applications employ “natural boundary conditions”:
fields and fluctuations tend to zero asymptotically

P> Notable exceptions exist in gauge theories with boundaries:
e.g. in Quantum Hall effect

» Natural boundary conditions not applicable in gravity:
metric must not vanish asymptotically
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Physics with boundaries
Science is a differential equation. Religion is a boundary condition. — Alan Turing

> Many QFT applications employ “natural boundary conditions”:
fields and fluctuations tend to zero asymptotically

P> Notable exceptions exist in gauge theories with boundaries:
e.g. in Quantum Hall effect

» Natural boundary conditions not applicable in gravity:
metric must not vanish asymptotically

» Gauge or gravity theories in presence of (asymptotic) boundaries:

asymptotic symmetries

Definition of asymptotic symmetries}

All boundary condition preserving gauge transformations
(bcpgt's) modulo trivial gauge transformations
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Physics with boundaries
Science is a differential equation. Religion is a boundary condition. — Alan Turing

> Many QFT applications employ “natural boundary conditions”:
fields and fluctuations tend to zero asymptotically

P> Notable exceptions exist in gauge theories with boundaries:
e.g. in Quantum Hall effect

» Natural boundary conditions not applicable in gravity:
metric must not vanish asymptotically

» Gauge or gravity theories in presence of (asymptotic) boundaries:
asymptotic symmetries

» Choice of boundary conditions determines asymptotic symmetries

Definition of asymptotic symmetries}

All boundary condition preserving gauge transformations
(bcpgt's) modulo trivial gauge transformations
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Asymptotic symmetries in gravity

» Impose some bc's at (asymptotic or actual) boundary:

TILI% g;w(T: 1'1) = guu(rln xz) + 5guu(rb, 551)
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Asymptotic symmetries in gravity

» Impose some bc's at (asymptotic or actual) boundary:

hm gull(ra xz) = g;w("”bv xz) + 59;11/(""67 l'z)
r—Tp

r: some convenient (“radial”) coordinate
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Asymptotic symmetries in gravity
» Impose some bc's at (asymptotic or actual) boundary:

lim g, (7, z') = G (7, z') + 89 (13, z)

=T

r: some convenient (“radial”) coordinate
rp: value of r at boundary (could be )
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Asymptotic symmetries in gravity
» Impose some bc's at (asymptotic or actual) boundary:

Th_g}b Gy (T, T]) = Gy (70, T]) + g (1, ")

r: some convenient (“radial”) coordinate
. value of r at boundary (could be o)

x": remaining coordinates (“boundary” coordinates)
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Asymptotic symmetries in gravity
» Impose some bc's at (asymptotic or actual) boundary:

lim g;w(T: T]) = g,uu(rba J:Z) =+ 5guu(rb7 :L‘Z)

T—Tp

r: some convenient (“radial”) coordinate
. value of r at boundary (could be o)
x': remaining coordinates

guv: metric compatible with bc's
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Asymptotic symmetries in gravity
» Impose some bc's at (asymptotic or actual) boundary:

rh—>nrlb gul/(rv IEZ) = guu(rb: T]) + 5guu(rb7 :L‘Z)

r: some convenient (“radial”) coordinate
. value of r at boundary (could be o)
z': remaining coordinates

9wt metric compatible with bc's
G (asymptotic) background metric
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Asymptotic symmetries in gravity
» Impose some bc's at (asymptotic or actual) boundary:

rh—>nrlb g,ul/(rv IEZ) = g,LLI/(rbv l‘l) + 59;11/(77» T[)

r: some convenient (“radial”) coordinate
. value of r at boundary (could be o)
z': remaining coordinates

9wt metric compatible with bc's
Guv: (asymptotic) background metric
0gu: fluctuations permitted by bc's
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Asymptotic symmetries in gravity
» Impose some bc's at (asymptotic or actual) boundary:

lim g;w(ﬁ 737) = guu(rbv ml) + 69;11/(711)~ Tl)

T—Tp

r: some convenient (“radial”) coordinate
. value of r at boundary (could be o)
z': remaining coordinates
guv: metric compatible with bc's
Guv: (asymptotic) background metric
dguv: fluctuations permitted by bc's

P> bcpgt's generated by asymptotic Killing vectors ¢:

N ! -
Lig;w = O(()g/,,,)
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Asymptotic symmetries in gravity — modification of equivalence principle

» Impose some bc's at (asymptotic or actual) boundary:

lim g;w(ﬁ 5137) = guu(rba ml) + 59;“/(77>~ -T/i)

T—Tp

r: some convenient (“radial”) coordinate
. value of r at boundary (could be o)
z': remaining coordinates
guv: metric compatible with bc's
Guv: (asymptotic) background metric
dguv: fluctuations permitted by bc's

P> bcpgt's generated by asymptotic Killing vectors ¢:

- ! -
LeGuy = O(Og/”,)
> typically, Killing vectors can be expanded radially
EH(ry, ') = Qé:])(z'/,. +') + subleading terms
5?;))(\/7,. x'): generates asymptotic symmetries/changes physical state

subleading terms: generate trivial diffeos
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Asymptotic symmetries in gravity — modification of equivalence principle

» Impose some bc's at (asymptotic or actual) boundary:

lim g;w(ﬁ :137> = guu(rbv ml) + 69;11/(77» T[)

T—Tp

guv: metric compatible with bc's

Guv: (asymptotic) background metric

dguv: fluctuations permitted by bc's
P> bcpgt's generated by asymptotic Killing vectors &:

! -
ﬁéguu = O(Og/w)

> typically, Killing vectors can be expanded radially

H(ry, ') = {{:])(r/,, 2') + trivial diffeos

Definition of asymptotic symmetry algebra

Lie bracket quotient algebra of asymptotic
Killing vectors modulo trivial diffeos
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Canonical boundary charges
God made the bulk; surfaces were invented by the devil — Wolfgang Pauli

» changing boundary conditions can change physical spectrum
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Canonical boundary charges
God made the bulk; surfaces were invented by the devil — Wolfgang Pauli

» changing boundary conditions can change physical spectrum

simple example: quantum mechanics of free particle on half-line x > 0
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Canonical boundary charges
God made the bulk; surfaces were invented by the devil — Wolfgang Pauli

» changing boundary conditions can change physical spectrum

simple example: quantum mechanics of free particle on half-line x > 0
time-independent Schrodinger equation:

2
@) = By()

look for (normalizable) bound state solutions, £ < 0
» Dirichlet bc's: no bound states
» Neumann bc’s: no bound states
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Canonical boundary charges
God made the bulk; surfaces were invented by the devil — Wolfgang Pauli

» changing boundary conditions can change physical spectrum

simple example: quantum mechanics of free particle on half-line x > 0
time-independent Schrodinger equation:

2
@) = By()

look for (normalizable) bound state solutions, £ < 0
» Dirichlet bc's: no bound states

» Neumann bc’s: no bound states
» Robin bc's
(b+ay)], . =0 aecRF

lead to one bound state

2
CIENERG

with energy E = —1/a?, localized exponentially near x = 0
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Canonical boundary charges
God made the bulk; surfaces were invented by the devil — Wolfgang Pauli

» changing boundary conditions can change physical spectrum

P to distinguish asymptotic symmetries from trivial gauge trafos: either
use Noether's second theorem and covariant phase space analysis or
perform Hamiltonian analysis in presence of boundaries

Some references:
» covariant phase space: Lee, Wald '90, lyer, Wald '94 and Barnich,
Brandt '02
P> review: see Compere, Fiorucci '18 and refs. therein
» canonical analysis: Arnowitt, Deser, Misner '59, Regge, Teitelboim '74
and Brown, Henneaux '86
P review: see Bafiados, Reyes '16 and refs. therein
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https://arxiv.org/abs/gr-qc/9403028
https://arxiv.org/abs/hep-th/0111246
https://arxiv.org/abs/hep-th/0111246
https://arxiv.org/abs/1801.07064
https://arxiv.org/abs/gr-qc/0405109
https://www.sciencedirect.com/science/article/pii/0003491674904047?via%3Dihub
https://projecteuclid.org/euclid.cmp/1104114999
https://arxiv.org/abs/1601.03616

Canonical boundary charges
God made the bulk; surfaces were invented by the devil — Wolfgang Pauli

» changing boundary conditions can change physical spectrum

P to distinguish asymptotic symmetries from trivial gauge trafos:
perform Hamiltonian analysis in presence of boundaries

» in Hamiltonian language: gauge generator G|[e| varies as

0G[e] = /E(bulk term) e 0P — /(92 (boundary term) e 0P

not functionally differentiable in general (3: constant time slice)

®: shorthand for phase space variables
€: smearing function/parameter of gauge trafos
d: arbitrary field variation
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Canonical boundary charges
God made the bulk; surfaces were invented by the devil — Wolfgang Pauli

» changing boundary conditions can change physical spectrum

P to distinguish asymptotic symmetries from trivial gauge trafos:
perform Hamiltonian analysis in presence of boundaries

» in Hamiltonian language: gauge generator G|[e| varies as

0G[e] = /E(bulk term) e 0P — /(92 (boundary term) e 0P

not functionally differentiable in general (3: constant time slice)
» add boundary term to restore functional differentiability

ST[e] = 6Ge] + 6Q[e] = /2 (bulk term) e 5
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Canonical boundary charges
God made the bulk; surfaces were invented by the devil — Wolfgang Pauli

>
4

changing boundary conditions can change physical spectrum
to distinguish asymptotic symmetries from trivial gauge trafos:
perform Hamiltonian analysis in presence of boundaries

in Hamiltonian language: gauge generator G|e| varies as

0G[e] = /E(bulk term) e 0P — /(92 (boundary term) e 0P

not functionally differentiable in general (3: constant time slice)
add boundary term to restore functional differentiability

ST[e] = 6Ge] + 6Q[e] = /2 (bulk term) e 5

yields (variation of) canonical boundary charges

Qle] = [)Z(boundary term) € 6P
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Canonical boundary charges
God made the bulk; surfaces were invented by the devil — Wolfgang Pauli

P to distinguish asymptotic symmetries from trivial gauge trafos:
perform Hamiltonian analysis in presence of boundaries
» in Hamiltonian language: gauge generator G[e| varies as

dGle] = /E(bulk term) e 0P — /(92 (boundary term) e §®

not functionally differentiable in general (2: constant time slice)
» add boundary term to restore functional differentiability
!
0'[e] = 6G[e] + 0Q[e] = / (bulk term) e 6@
s
» yields (variation of) canonical boundary charges

Qle] = /(‘)Z(boundary term) € 6P

[ Trivial gauge transformations generated by some € with Q[e] =0
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Soap bubble metaphor for AdS3

time

anti-de Sitter space

™

conformal
boundary
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Gravity in three dimensions
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Brown—Henneaux example of asymptotically AdSs

» Given some bc’s it is easy to determine asymptotic Killing vectors
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Brown—Henneaux example of asymptotically AdSs

» Given some bc’s it is easy to determine asymptotic Killing vectors
» Brown—Henneaux imposed following bc's

ds? = dr? + e/ dat de™ + O(1)dzt 2+ O(1)dz™ 2 + ...
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Brown—Henneaux example of asymptotically AdSs

» Given some bc’s it is easy to determine asymptotic Killing vectors
» Brown—Henneaux imposed following bc's
ds?> = dr’ + 2/t dzt da™ + O(1)dzt 2+ O(1)dz % + ...
P> Metrics above preserved by asymptotic Killing vectors
E=et ()0 +e (27)0- + ...
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Brown—Henneaux example of asymptotically AdSs
» Given some bc’s it is easy to determine asymptotic Killing vectors
» Brown—Henneaux imposed following bc's
ds?> = dr’ + 2/t dzt da™ + O(1)dzt 2+ O(1)dz % + ...
P> Metrics above preserved by asymptotic Killing vectors
E=et ()0 +e (27)0- + ...
» Introducing (Fourier) modes I:F ~ £(s* = ei”“i) yields ASA

L, e = (n—m) IE,,,

Daniel Grumiller — Gravity in Flatland Gravity in three dimensions 15/25



Brown—Henneaux example of asymptotically AdSs

» Given some bc’s it is easy to determine asymptotic Killing vectors
» Brown—Henneaux imposed following bc's

ds? = dr? + e/ dat de™ + O(1)dzt 2+ O(1)dz™ 2 + ...
P> Metrics above preserved by asymptotic Killing vectors
E=et ()0 +e (27)0- + ...
» Introducing (Fourier) modes I:F ~ £(s* = ei”“i) yields ASA
[lf, li]me =(n—m) lrirm

» Introduce also Fourier modes for charges L = Q[I]
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Brown—Henneaux example of asymptotically AdSs

» Given some bc’s it is easy to determine asymptotic Killing vectors
» Brown—Henneaux imposed following bc's
ds? = dr? + e/ dat de™ + O(1)dzt 2+ O(1)dz™ 2 + ...
P> Metrics above preserved by asymptotic Killing vectors
E=et ()0 +e (27)0- + ...
» Introducing (Fourier) modes I:F ~ £(s* = ei”“i) yields ASA
[, 1

no m]Lie = (n—m) li

n+m
» Introduce also Fourier modes for charges L = Q[I]
» Canonical realization of asymptotic symmetries
. c
{LE LE} = (n—m) Lirm + % (n® — 1) 6ptm. 0
with central charge 3¢

CBH:ﬁ
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Brown—Henneaux example of asymptotically AdSs

» Given some bc’s it is easy to determine asymptotic Killing vectors

» Brown—Henneaux imposed following bc's

ds? = dr? + e/ dat de™ + O(1)dzt 2+ O(1)dz™ 2 + ...

P> Metrics above preserved by asymptotic Killing vectors
E=et ()0 +e (27)0- + ...

» Introducing (Fourier) modes I:F ~ £(s* = ei”“i) yields ASA
[, 1

no m]Lie = (n—m) li

n+m
» Introduce also Fourier modes for charges L = Q[I]
» Canonical realization of asymptotic symmetries
. c
{LE LE} = (n—m) Lirm + % (n® — 1) 6ptm. 0
with central charge 3¢

Cpy = 52255
» Dual field theory, if it exists, must be CFTs!

Daniel Grumiller — Gravity in Flatland Gravity in three dimensions
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Some checks of AdS3/CFTo

[ Every AdS3 gravity observable must correspond to some CF Ty observable ]

ok, fine, so what about...
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Some checks of AdS3/CFTo

[ Every AdS3 gravity observable must correspond to some CF Ty observable ]

ok, fine, so what about...

» ...correlation functions?
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Some checks of AdS3/CFTo

[ Every AdS3 gravity observable must correspond to some CF T observable ]

ok, fine, so what about...
» ...correlation functions?
> e.g. b-point stress-tensor correlator in CFTo Bagchi, DG, Merbis '15

4
CFTys  {Thy ()T ()T ()i () s () = 120
1<i<h <)
v = 212234/ (213%24), ( = 225234/ (235224), 2ij = 2 — zj and
2 2
g3y, )= IS AT ) e(c—1) 1] <)

S 2(y=¢) Yy —1)X(C-D(v—0)
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Some checks of AdS3/CFTo

[ Every AdS3 gravity observable must correspond to some CF T observable ]

ok, fine, so what about...
» ...correlation functions?

> e.g. b-point stress-tensor correlator in CFTo Bagchi, DG, Merbis '15

4C.g5 Vs C)
CFTy : (T4t (20) T4 (22) T4 (23) T4 (24) T4 1. (25)) = #

H1§i§5 Zij
v = 212234/ (213%24), ( = 225234/ (235224), 2ij = 2 — zj and

2 2
g5(1, ) = 1 Tets

(-0 oD - - g DOV I

> on gravity side given by 5th functional variation of action w.r.t. metric
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Some checks of AdS3/CFTo

[ Every AdS3 gravity observable must correspond to some CF T observable ]

ok, fine, so what about...
» ...correlation functions?

> e.g. b-point stress-tensor correlator in CFTo Bagchi, DG, Merbis '15

4egs(7, €)
CFTy : (Thq (21) T4 (22) T4 (23) Tt (24) o4 (25)) = =~
H1§i§5 Zij

v = 212234/ (213%24), ( = 225234/ (235224), 2ij = 2 — zj and

2 2
g5(1, ) = 1 i LS

(-0 oD - - g DOV I

P on gravity side given by 5th functional variation of action w.r.t. metric
P result on gravity side

55]EH[9;W] _ 4095(% O
691t (21)0g1 T (22)091 T (23)091 T (24)09% (25)  [li<ics 2ij
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Some checks of AdS3/CFTo

[ Every AdS3 gravity observable must correspond to some CF Ty observable ]

ok, fine, so what about...
» ...correlation functions?

> ...entropy?
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Some checks of AdS3/CFTo

[ Every AdS3 gravity observable must correspond to some CF T observable ]

ok, fine, so what about...

» ...correlation functions?
> ...entropy?

P> asymptotic density of states in CFTo given by Cardy formula

C C
SCFTQZSCardy:27T 6(M+J)+27T E(M_J)
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Some checks of AdS3/CFTo

[ Every AdS3 gravity observable must correspond to some CF T observable ]

ok, fine, so what about...

» ...correlation functions?
> ...entropy?

P> asymptotic density of states in CFTo given by Cardy formula

C C
SCFTQZSCardy:27T 6(M+J)+27T E(M_J)

» on gravity side entropy given by Bekenstein—Hawking formula

A Ty L 14
SBH—E— 5C —27T\/4G(M+J)+27T\/4G(M J)
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Some checks of AdS3/CFTo

[ Every AdS3 gravity observable must correspond to some CF T observable ]

ok, fine, so what about...
» ...correlation functions?
> ...entropy?

P> asymptotic density of states in CFTo given by Cardy formula

C C
SCFTQZSCardy:27T 6(M+J)+27T E(M_J)

» on gravity side entropy given by Bekenstein—Hawking formula

A T l l
o = 3G = 2q ~ T\ ag MDA gg (M=)
» entropy formulas coincide for ,
3
T 2G
matches precisely Brown—Henneaux result ¢ = cpy
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Some checks of AdS3/CFTo

[ Every AdS3 gravity observable must correspond to some CF Ty observable ]

ok, fine, so what about...
» ...correlation functions?
> ...entropy?

» ...entanglement entropy?
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Some checks of AdS3/CFTo

[ Every AdS3 gravity observable must correspond to some CF T observable ]

ok, fine, so what about...

> ...correlation functions?

> ...entropy?

» ...entanglement entropy?

> EE in CFT; for entangling region of length L Cardy, Calabrese '04
L

C
SEE:glne
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Some checks of AdS3/CFTo

[ Every AdS3 gravity observable must correspond to some CF T observable ]

ok, fine, so what about...
» ...correlation functions?
> ...entropy?
» ...entanglement entropy?

> EE in CFT; for entangling region of length L Cardy, Calabrese '04
L

C
SEE:glne

» Ryu—Takayanagi prescription: EE = length of geodesic anchored at
boundary entangling region

N

'
v
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Some checks of AdS3/CFTo

[ Every AdS3 gravity observable must correspond to some CF Ty observable ]

ok, fine, so what about...
> ...correlation functions?
> ...entropy?
» ...entanglement entropy?
>

...boundary conditions different from Brown—Henneaux?
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Some checks of AdS3/CFTo

[ Every AdS3 gravity observable must correspond to some CF Ty observable ]

ok, fine, so what about...
> ...correlation functions?
> ...entropy?
» ...entanglement entropy?
>

...boundary conditions different from Brown—Henneaux?

Different boundary conditions may lead to other symmetries,
hence no AdS3/CFT,!
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Brief history of boundary conditions in AdS3 (and their ASAs)

» Brown—Henneaux '86

C
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Brief history of boundary conditions in AdS3 (and their ASAs)

» Brown—-Henneaux '86 CFT
» Compere-Song—Strominger '13
c
[Ln, Lm] = (n — m) Ln+m + % (TL3
[Ln, Jm] = —m Jn+m
k

[Jru Jm] = 5 n6n+m,0

- ’I’L) 5n+m, 0
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Brief history of boundary conditions in AdS3 (and their ASAs)

» Brown—-Henneaux '86 CFT
» Compere-Song—Strominger '13 warped CFT
» Troessaert '13

(L, L] = (n = m) L + T3 (0% = 1) 60

n+m

k
[']r:Lta Ji] = 5 n5n+m,0
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Brief history of boundary conditions in AdS3 (and their ASAs)

» Brown—-Henneaux '86 CFT

» Compere-Song—Strominger '13 warped CFT
» Troessaert '13 CFT with u(1) currents

» Avery—Poojary—-Suryanarayana '13

c
[Ln, L] = (n —m) Lpjm + % (n®

- ’I’L) 5n+m, 0
(L, J8) = —m T3,
(T3, Jb] = (a—b) JSED — kn ey Onam,0

a,b=-1,0,1
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Brief history of boundary conditions in AdS3 (and their ASAs)

» Brown—-Henneaux '86 CFT
» Compere-Song—Strominger '13 warped CFT
» Troessaert '13 CFT with u(1) currents
» Avery—Poojary—Suryanarayana '13 non-abelian warped CFT (sl(2))
» Donnay-Giribet—Gonzalez—Pino '15
[Ly, L] = (n—m) Lyt
[Lm Jm] = —mJntm
[Jny Jm] =0
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Brief history of boundary conditions in AdS3 (and their ASAs)

» Brown—-Henneaux '86 CFT
» Compere-Song—Strominger '13 warped CFT
» Troessaert '13 CFT with u(1) currents
» Avery—Poojary—Suryanarayana '13 non-abelian warped CFT (sl(2))
» Donnay—Giribet—Gonzalez—Pino '15 centerless warped CFT
» Afshar-Detournay-DG-Oblak '15
c
[Ln, Lin] = (0 —m) Lytm + % (n® —n) Ontm,0
(Lo, Ji) = = Jnm — it (0% — 1) Gpvm 0

[Jns Im]) =0
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Brief history of boundary conditions in AdS3 (and their ASAs)

Brown—Henneaux '86 CFT

Compere—-Song—Strominger '13 warped CFT

Troessaert '13 CFT with u(1) currents
Avery—Poojary—Suryanarayana '13 non-abelian warped CFT (sl(2))
Donnay—Giribet—Gonzalez—Pino '15 centerless warped CFT
Afshar—-Detournay—-DG-Oblak '15 twisted warped CFT
Afshar—Detournay—DG—Merbis—Perez—Tempo—Troncoso '16

VVyVVYVYYVYY

k
[J;bty Jnj;] = §n5n+m,0
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Brief history of boundary conditions in AdS3 (and their ASAs)

Brown—Henneaux '86 CFT

Compere=Song—Strominger '13 warped CFT

Troessaert '13 CFT with u(1) currents
Avery—Poojary—Suryanarayana '13 non-abelian warped CFT (sl(2))
Donnay—Giribet—Gonzalez—Pino '15 centerless warped CFT
Afshar—Detournay-DG—0Oblak '15 twisted warped CFT
Afshar—Detournay-DG—-Merbis—Perez—Tempo—Troncoso '16 u(1)'s

VVvyVvyVyYVYYVYY

Is there some set of bc's encompassing all of the above?
Is there a loosest set of bc's?
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Brief history of boundary conditions in AdS3 (and their ASAs)

Brown—Henneaux '86 CFT

Compere=Song—Strominger '13 warped CFT

Troessaert '13 CFT with u(1) currents
Avery—Poojary—=Suryanarayana '13 non-abelian warped CFT (sl(2))
Donnay—Giribet-Gonzalez—Pino '15 centerless warped CFT
Afshar—Detournay-DG—-0Oblak '15 twisted warped CFT
Afshar-Detournay—-DG-Merbis—Perez—Tempo—Troncoso '16 u(1)'s

VVVVYYVYYVYY

Is there some set of bc's encompassing all of the above?
Is there a loosest set of bc's?

» DG—Riegler '16: yes and yes

[J;:iv ‘]&i] = (a - b) JofhE kn Kap 5n+m,0

n+m
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Brief history of boundary conditions in AdS3 (and their ASAs)

vVvyVvyVYyVYYVYY

Brown—Henneaux '86 CFT

Compere-Song—Strominger '13 warped CFT

Troessaert '13 CFT with u(1) currents
Avery—Poojary—Suryanarayana '13 non-abelian warped CFT (sl(2))
Donnay—Giribet—Gonzalez—Pino '15 centerless warped CFT
Afshar—Detournay-DG—0Oblak '15 twisted warped CFT
Afshar—Detournay—-DG—Merbis—Perez—Tempo—Troncoso '16 u(1)'s

Is there some set of bc’'s encompassing all of the above?
Is there a loosest set of bc's?

DG-Riegler '16: yes and yes ASA: sl(2) currents

[ (How) does this work in higher dimensions? Don’t know (yet)! ]
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What about non-AdS holography?

Key question

(When) is quantum gravity in D + 1 dimensions equivalent
to (which) quantum field theory in D dimensions?
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What about flat space holography?

Key question

(When) is quantum gravity in D + 1 dimensions equivalent
to (which) quantum field theory in D dimensions?

Let us be modest and refine this question:

More modest question }

(How) does holography work in flat space?
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What about flat space holography?

Key question

(When) is quantum gravity in D + 1 dimensions equivalent
to (which) quantum field theory in D dimensions?

Let us be modest and refine this question:

More modest question }

(How) does holography work in flat space?

See work by Bagchi et al.
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What about flat space holography?

Key question

(When) is quantum gravity in D + 1 dimensions equivalent
to (which) quantum field theory in D dimensions?

Let us be modest and refine this question:

More modest question )

J
(How) does holography work in flat space? ]

See work by Bagchi et al.

[ Would like concrete model for flat space holography ]
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Outline

Gravity in two dimensions
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Selected list of models
Black holes in (A)dS2, asymptotically flat or arbitrary spaces (Wheeler property)

| Model I U(X) \ V(X)
1. Schwarzschild (1916) —5x %
2. Jackiw-Teitelboim (1984) 0 AX
3. Witten Black Hole (1991) -+ —20°X
4. CGHS (1992) 0 —2A
5. (A)dS> ground state (1994) —% BX
6. Rindler ground state (1996) -% BX“
7. Black Hole attractor (2003) 0 BXx™!
8. Spherically reduced gravity (N > 3) _(NN—_Q?X N2 X (N=0)/(N=2)
9. All above: ab-family (1997) —2 BX*tt
10. Liouville gravity a be™™
11. Reissner-Nordstrom (1916) -5 -2\ 4 %2
12. Schwarzschild-(A)dS — 5% -2 —iX
13. Katanaev-Volovich (1986) a BX?—A
14. BTZ/Achucarro-Ortiz (1993) 0 &L _ L AX
15. KK reduced CS (2003) 0 1X(c—X?)
16. KK red. conf. flat (2006) —1 tanh (X/2) Asinh X
17. 2D type OA string Black Hole —% —20°X + %
18. exact string Black Hole (2005) lengthy lengthy
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Choice of theory (review: see hep-th/0204253)

» Choice of bulk action
Einstein—Hilbert action not useful
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Choice of theory (review: see hep-th/0204253)

» Choice of bulk action
Einstein—Hilbert action not useful

Dilaton gravity in two dimensions (X = dilaton):

1
I[X, = d? XR—-U(X)(VX)?—-2V(X
X, 0] = T [, v/l [XR-UO(VX ~2V(X)
> kinetic potential U(X) and dilaton potential V(X)
» constant dilaton and linear dilaton solutions
» all solutions known in closed form globally for all choices of potentials
>

simple choice (Jackiw—Teitelboim):
UX)=0 V(X)=AX
for negative A = —1/¢? leads to AdSs solutions

v
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Choice of theory (review: see hep-th/0204253)

» Choice of bulk action

JT model:
1
I [X = d? XR—-2AX
wlX. 00l = g [ @Vl |
Leads to (A)dS2 solutions
R=2A
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Choice of theory (review: see hep-th/0204253)

» Choice of bulk action
JT model:

1
167

Il 0] = g [ Povlal (XA =24

Leads to (A)dS2 solutions
R =2A

» Flat space choice of bulk action
CGHS model

1
Teons[X. 0] = g [ Povlal XA —24]

Leads to flat solutions
R=0

Flat space holography proposal: Afshar, Gonzdlez, DG, Vassilevich '19
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Interlude: SYK in one slide (Kitaev '15; Maldacena, Stanford '16)

Sachdev—-Ye—Kitaev model = strongly interacting quantum system
solvable at large N (NN is number of Majorana fermions %)
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Interlude: SYK in one slide (Kitaev '15; Maldacena, Stanford '16)

Sachdev—-Ye—Kitaev model = strongly interacting quantum system
solvable at large N (NN is number of Majorana fermions %)

» Hamiltonian Hsyi = japeat®P00? with a,b,c,d =1... N
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Interlude: SYK in one slide (Kitaev '15; Maldacena, Stanford '16)

Sachdev—-Ye—Kitaev model = strongly interacting quantum system
solvable at large N (NN is number of Majorana fermions %)

» Hamiltonian Hsyi = japeat®P00? with a,b,c,d =1... N
> Gaussian random interaction (j%, ;) = J?/N?
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Interlude: SYK in one slide (Kitaev '15; Maldacena, Stanford '16)

Sachdev—-Ye—Kitaev model = strongly interacting quantum system
solvable at large N (NN is number of Majorana fermions %)

» Hamiltonian Hsyi = japeat®P00? with a,b,c,d =1... N
> Gaussian random interaction (j%, ;) = J?/N?
» 2-point function G(7) = (Y*(1)*(0))
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Interlude: SYK in one slide (Kitaev '15; Maldacena, Stanford '16)

Sachdev—-Ye—Kitaev model = strongly interacting quantum system
solvable at large N (NN is number of Majorana fermions %)

» Hamiltonian Hsyi = japeat®P00? with a,b,c,d =1... N

> Gaussian random interaction (j%, ;) = J?/N?

» 2-point function G(7) = (Y*(1)*(0))

» sum melonic diagrams G(w) = 1/(—iw — X(w)) with X(7) = J2G3(7)

Daniel Grumiller — Gravity in Flatland Gravity in two dimensions 22/25



Interlude: SYK in one slide (Kitaev '15; Maldacena, Stanford '16)

Sachdev—-Ye—Kitaev model = strongly interacting quantum system
solvable at large N (NN is number of Majorana fermions %)

» Hamiltonian Hsyi = japeat®P00? with a,b,c,d =1... N

> Gaussian random interaction (j%, ;) = J?/N?

» 2-point function G(7) = (Y*(1)*(0))

» sum melonic diagrams G(w) = 1/(—iw — X(w)) with X(7) = J2G3(7)
» in IR limit 7J > 1 exactly soluble, e.g. on circle (7 ~ 7 + 3)

G(7) ~ sign(r)/sin'/?(x7 /)
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Interlude: SYK in one slide (Kitaev '15; Maldacena, Stanford '16)

Sachdev—-Ye—Kitaev model = strongly interacting quantum system
solvable at large N (NN is number of Majorana fermions %)

Hamiltonian Hevk = japeq??®Py® with a,b,¢,d =1... N
Gaussian random interaction (j%,_,) = J?/N3
2-point function G(1) = (¢*(7)y*(0))
sum melonic diagrams G(w) = 1/(—iw — X(w)) with X(7) = J2G3(7)
in IR limit 7J > 1 exactly soluble, e.g. on circle (7 ~ 7+ )

G(7) ~ sign(t)/sin’> (77/p) conformal weight A = 1/4

SL(2, R) covariant z — (ax + b)/(cx + d) with z = tan(77/f)

vVvVvyvyYVyyYy

v
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Interlude: SYK in one slide (Kitaev '15; Maldacena, Stanford '16)

Sachdev—-Ye—Kitaev model = strongly interacting quantum system
solvable at large N (NN is number of Majorana fermions %)

Hamiltonian Hevk = japeq??®Py® with a,b,¢,d =1... N
Gaussian random interaction (j%,_,) = J?/N3
2-point function G(1) = (¢*(7)y*(0))
sum melonic diagrams G(w) = 1/(—iw — X(w)) with X(7) = J2G3(7)
in IR limit 7J > 1 exactly soluble, e.g. on circle (1 ~ 7 + f3)

G(7) ~ sign(r)/sin'/?(w7/B)

SL(2, R) covariant z — (ax + b)/(cx + d) with z = tan(77/f)
effective action at large IV and large J: Schwarzian action

vVvVvyvyYVyyYy

vy

D“‘b“

i~ N ot e n] =t 20
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Interlude: SYK in one slide (Kitaev '15; Maldacena, Stanford '16)

Sachdev—-Ye—Kitaev model = strongly interacting quantum system
solvable at large N (NN is number of Majorana fermions %)

vVvVvyvyYVyyYy

vy

>

Hamiltonian Hevk = japeq??®Py® with a,b,¢,d =1... N
Gaussian random interaction (j%,_,) = J?/N3
2-point function G(1) = (¢*(7)y*(0))
sum melonic diagrams G(w) = 1/(—iw — X(w)) with X(7) = J2G3(7)
in IR limit 7J > 1 exactly soluble, e.g. on circle (1 ~ 7 + f3)

G(7) ~ sign(r)/sin'/?(w7/B)

SL(2, R) covariant z — (ax + b)/(cx + d) with z = tan(77/f)
effective action at large IV and large J: Schwarzian action

D“‘b“

i~ N ot e n] =t 20

Schwarzian action also follows from JT gravity
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Flat space holography and complex SYK 1911.05739

Q&A's:
> Q1: What is the flat space analogue of JT?
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Flat space holography and complex SYK 1911.05739

Q&A's:
> Q1: What is the flat space analogue of JT?
> Al: Essentially the CGHS model
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Flat space holography and complex SYK 1911.05739

Q&A's:
> Q1: What is the flat space analogue of JT7?
> Al: Essentially the CGHS model
> Q2: What is the flat space analogue of the Schwarzian action?
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Flat space holography and complex SYK 1911.05739

Q&A's:
> Q1: What is the flat space analogue of JT7?
> Al: Essentially the CGHS model
> Q2: What is the flat space analogue of the Schwarzian action?
» A2: The twisted warped action

B

(A, g]:n/dT (h2—g<26mh+z> +g)
0
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Flat space holography and complex SYK 1911.05739

Q&A's:
> Q1: What is the flat space analogue of JT7?
> Al: Essentially the CGHS model
> Q2: What is the flat space analogue of the Schwarzian action?
» A2: The twisted warped action

B .
271 h

Lh, gl =& dr(h2—9<h+ >+g)
0/ B h

» Q3: What is the twisted warped analogue of the Virasoro and sl(2)
symmetries governing the Schwarzian?
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Flat space holography and complex SYK 1911.05739
Q&A's:

| 2

vyvyy

Q1: What is the flat space analogue of JT?

Al: Essentially the CGHS model

Q2: What is the flat space analogue of the Schwarzian action?
A2: The twisted warped action

B
2mi h
Clh, g =k dT<h2—9<h+ >+g>
0/ B h

Q3: What is the twisted warped analogue of the Virasoro and sl(2)
symmetries governing the Schwarzian?
A3: The twisted warped symmetries

[Ln7 Lm] = (TL — m) Ln+m
[Lny Jin) = = Jnim — ik (0% = 1) Opm. 0
[Jn, Jm] =0

and the two-dimensional Maxwell symmetries (L1, Lo, J_1, Jo)
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Flat space holography and complex SYK 1911.05739
Q&A's:

>

vYyy

Q1: What is the flat space analogue of JT7?

Al: Essentially the CGHS model

Q2: What is the flat space analogue of the Schwarzian action?
A2: The twisted warped action

B .
271 h

Lh, gl =& dT(h2—g<h+ >+g)
0/ B h

Q3: What is the twisted warped analogue of the Virasoro and sl(2)
symmetries governing the Schwarzian?

A3: The twisted warped and two-dimensional Maxwell symmetries
Q4: What is the flat space analogue of SYK?
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Flat space holography and complex SYK 1911.05739
Q&A's:

>

vYyy

v

Q1: What is the flat space analogue of JT7?

Al: Essentially the CGHS model

Q2: What is the flat space analogue of the Schwarzian action?
A2: The twisted warped action

B .
271 h

Lh, gl =& dT(h2—g<h+ >+g)
0/ B h

Q3: What is the twisted warped analogue of the Virasoro and sl(2)
symmetries governing the Schwarzian?

A3: The twisted warped and two-dimensional Maxwell symmetries
Q4: What is the flat space analogue of SYK?

A4: Complex SYK for large specific heat and zero compressibility
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Flat space holography and complex SYK 1911.05739
Q&A's:

>

vYyy

v

Q1: What is the flat space analogue of JT7?

Al: Essentially the CGHS model

Q2: What is the flat space analogue of the Schwarzian action?
A2: The twisted warped action

B .
271 h

Lh, gl =& dr(h2—9<h+ >+g)
0/ B h

Q3: What is the twisted warped analogue of the Virasoro and sl(2)
symmetries governing the Schwarzian?

A3: The twisted warped and two-dimensional Maxwell symmetries
Q4: What is the flat space analogue of SYK?

A4: Complex SYK for large specific heat and zero compressibility

[ Concrete model for flat space holography ]
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Summary

» General lessons
» Boundary conditions crucial
» Asymptotic symmetries give clues about dual QFT
> Physical states in form of edge states can exist
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» Asymptotic symmetries give clues about dual QFT
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» Specific recent topics
» most general boundary conditions in AdSs
» near horizon soft hair (not mentioned in colloquium)
> flat space holography and complex SYK

Daniel Grumiller — Gravity in Flatland Gravity in two dimensions 24/25



Summary

» General lessons
» Boundary conditions crucial
» Asymptotic symmetries give clues about dual QFT
> Physical states in form of edge states can exist
» Specific recent topics
» most general boundary conditions in AdSs
» near horizon soft hair (not mentioned in colloquium)
> flat space holography and complex SYK
» Selected challenges for the future
» Good model for dS holography?
» Complete model of evaporating black hole?
» How general is holography?
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Summary

» General lessons
» Boundary conditions crucial
» Asymptotic symmetries give clues about dual QFT
> Physical states in form of edge states can exist
» Specific recent topics
» most general boundary conditions in AdSs
» near horizon soft hair (not mentioned in colloquium)
> flat space holography and complex SYK
» Selected challenges for the future
» Good model for dS holography?
» Complete model of evaporating black hole?
» How general is holography?

» Numerous open questions in gravity and holography
» Many can be addressed in lower dimensions
» |f you are stuck in higher D try D =3 or D =2
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Thank you for your attention!
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Simple example: abelian Chern—-Simons

» abelian Chern—Simons action (on cylinder)
k

I[A] B E RxX

ANdA

Note: topological QFT with no local physical degrees of freedom
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Simple example: abelian Chern—-Simons

» abelian Chern—Simons action (on cylinder)

k
I[A] = — ANdA
AT Jrxs
> gauge trafos 6. A = de
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Simple example: abelian Chern—-Simons

» abelian Chern—Simons action (on cylinder)
k

I[A] B E RxX

ANdA

> gauge trafos 6. A = de
» canonical analysis yields boundary charges (background independent)

k
IQle] = by éEE(SA
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Simple example: abelian Chern—-Simons

» abelian Chern—Simons action (on cylinder)
k

I[A] B E RxX

ANdA

> gauge trafos 6. A = de
» canonical analysis yields boundary charges (background independent)

Qld = =

= — A
2 626

» choice of bc's

lim A= 7(p) dp+ pdt 0T =0(1) du=0

r—00

preserved by € = 7)(o)+ subleading
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Simple example: abelian Chern—-Simons

» abelian Chern—Simons action (on cylinder)
k

I[A] B E RxX

ANdA
> gauge trafos 6. A = de
» canonical analysis yields boundary charges (background independent)

k
IQle] = by éEE(SA

» choice of bc's

lim A= 7(p) dp+ pdt 0T =0(1) du=0

r—00
preserved by € = 7)(o)+ subleading
P asymptotic symmetry algebra has non-trivial central term

k

{Q['/JL Q[//z]} = 5/;‘Q[’/z] = o jg 12 ///| dp
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Simple example: abelian Chern—-Simons

» abelian Chern—Simons action (on cylinder)
k

I[A] B E RxX

ANdA
> gauge trafos 6. A = de
» canonical analysis yields boundary charges (background independent)

k
IQle] = by éEE(SA

» choice of bc's

lim A= 7(p) dp+ pdt 0T =0(1) du=0

r—00
preserved by € = 7)(o)+ subleading
P asymptotic symmetry algebra has non-trivial central term
k

{Q['/JL Q[//z]} = 5/;‘Q[’/z] = o jg 12 ///| dp

> Fourier modes J,, ~ ¢ J¢""* yield u(1)x current algebra, i{./,., Ji.} = &N 6nsm,o0
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Edge states
see e.g. Halperin '82, Witten '89, or Balachandran, Chandar, Momen '94

» changing boundary charges changes physical state
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Edge states
see e.g. Halperin '82, Witten '89, or Balachandran, Chandar, Momen '94

» changing boundary charges changes physical state
» boundary charges (if non-trivial) thus generate edge states
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Edge states
see e.g. Halperin '82, Witten '89, or Balachandran, Chandar, Momen '94

» changing boundary charges changes physical state

» boundary charges (if non-trivial) thus generate edge states
» back to abelian Chern—-Simons example:
> asymptotic symmetry algebra (with i{,} — [,])

_k
7 ) 5
[Jza Jm] 2 n5n+m 0
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Edge states
see e.g. Halperin '82, Witten '89, or Balachandran, Chandar, Momen '94

P changing boundary charges changes physical state
» boundary charges (if non-trivial) thus generate edge states
» back to abelian Chern—Simons example:
P> asymptotic symmetry algebra
[']'11,7 J’m] = gn(anrm,O
> define (highest weight) vacuum

J0y=0  ¥n>0
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Edge states
see e.g. Halperin '82, Witten '89, or Balachandran, Chandar, Momen '94

» changing boundary charges changes physical state
» boundary charges (if non-trivial) thus generate edge states
» back to abelian Chern—-Simons example:
P asymptotic symmetry algebra
[Jna Jm] = %n(anrm,O
» define vacuum
J,10) =0 Vn >0
» descendants of vacuum are examples of edge states
ledge({n;i})) H J_0,10
{”1>0}

eg.
|edge({1a 1742})> = ']31‘1*42|0>
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Edge states
see e.g. Halperin '82, Witten '89, or Balachandran, Chandar, Momen '94

» changing boundary charges changes physical state
» boundary charges (if non-trivial) thus generate edge states
» back to abelian Chern—-Simons example:
P asymptotic symmetry algebra
[Jna Jm] = gn(anrm,O

» define vacuum
‘]II,‘O>:O VTLZO

» descendants of vacuum are examples of edge states

ledge({n;i})) H J_0,10

{”1 >0}

eg.
|edge({1a 1, 42})> = ']El‘]*“12|0>

» theories with no local physical degrees of freedom can have edge
states! = perhaps cleanest example of holography
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