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Black holes hide key secrets to Nature
Seeing is believing...
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Some open issues in gravity

I IR (classical gravity)

I asymptotic symmetries
I soft physics
I near horizon symmetries

I UV (quantum gravity)

I numerous conceptual issues
I black hole evaporation and unitarity
I black hole microstates

I UV/IR (holography)

I AdS/CFT and applications (see Erdmenger, Meyer and collaborators)
I precision holography
I generality of holography

I all issues above can be addressed in lower dimensions

I lower dimensions technically simpler

I hope to resolve conceptual problems
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(When) is quantum gravity in D + 1 dimensions equivalent
to (which) quantum field theory in D dimensions?

Take-away question(s)
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Gravity in various dimensions

Riemann-tensor D2(D2−1)
12 components in D dimensions:

I 11D: 1210 (1144 Weyl and 66 Ricci)
I 10D: 825 (770 Weyl and 55 Ricci)
I 5D: 50 (35 Weyl and 15 Ricci)
I 4D: 20 (10 Weyl and 10 Ricci)

I 3D: 6 (Ricci)
I 2D: 1 (Ricci scalar)
I 1D: 0 (space or time but not both ⇒ no lightcones)

Caveat: just counting tensor components can be misleading as measure of complexity

Example: large D limit actually simple for some problems (Emparan et al.)

I 2D: lowest dimension exhibiting black holes (BHs)

I Simplest gravitational theories with BHs in 2D

I No Einstein gravity

I 3D: lowest dimension exhibiting BHs and gravitons

I Simplest gravitational theories with BHs and gravitons in 3D

I Lowest dimension for Einstein gravity (BHs but no gravitons)

Daniel Grumiller — Gravity in Flatland Motivation 7/25



Gravity in various dimensions

Riemann-tensor D2(D2−1)
12 components in D dimensions:

I 11D: 1210 (1144 Weyl and 66 Ricci)
I 10D: 825 (770 Weyl and 55 Ricci)
I 5D: 50 (35 Weyl and 15 Ricci)
I 4D: 20 (10 Weyl and 10 Ricci)
I 3D: 6 (Ricci)
I 2D: 1 (Ricci scalar)
I 1D: 0 (space or time but not both ⇒ no lightcones)

Apply as mantra the slogan “as simple as possible, but not simpler”

I 2D: lowest dimension exhibiting black holes (BHs)

I Simplest gravitational theories with BHs in 2D

I No Einstein gravity

I 3D: lowest dimension exhibiting BHs and gravitons

I Simplest gravitational theories with BHs and gravitons in 3D

I Lowest dimension for Einstein gravity (BHs but no gravitons)

Daniel Grumiller — Gravity in Flatland Motivation 7/25



Gravity in various dimensions

Riemann-tensor D2(D2−1)
12 components in D dimensions:

I 11D: 1210 (1144 Weyl and 66 Ricci)
I 10D: 825 (770 Weyl and 55 Ricci)
I 5D: 50 (35 Weyl and 15 Ricci)
I 4D: 20 (10 Weyl and 10 Ricci)
I 3D: 6 (Ricci)
I 2D: 1 (Ricci scalar)

I 1D: 0 (space or time but not both ⇒ no lightcones)

I 2D: lowest dimension exhibiting black holes (BHs)

I Simplest gravitational theories with BHs in 2D

I No Einstein gravity

I 3D: lowest dimension exhibiting BHs and gravitons

I Simplest gravitational theories with BHs and gravitons in 3D

I Lowest dimension for Einstein gravity (BHs but no gravitons)

Daniel Grumiller — Gravity in Flatland Motivation 7/25



Gravity in various dimensions

Riemann-tensor D2(D2−1)
12 components in D dimensions:

I 11D: 1210 (1144 Weyl and 66 Ricci)
I 10D: 825 (770 Weyl and 55 Ricci)
I 5D: 50 (35 Weyl and 15 Ricci)
I 4D: 20 (10 Weyl and 10 Ricci)
I 3D: 6 (Ricci)
I 2D: 1 (Ricci scalar)

I 1D: 0 (space or time but not both ⇒ no lightcones)

I 2D: lowest dimension exhibiting black holes (BHs)

I Simplest gravitational theories with BHs in 2D

I No Einstein gravity

I 3D: lowest dimension exhibiting BHs and gravitons

I Simplest gravitational theories with BHs and gravitons in 3D

I Lowest dimension for Einstein gravity (BHs but no gravitons)

Daniel Grumiller — Gravity in Flatland Motivation 7/25



Outline

Motivation

Gravity in three dimensions

Gravity in two dimensions

Daniel Grumiller — Gravity in Flatland Gravity in three dimensions 8/25



Spectrum of BTZ black holes and related physical states
Could this black hole be the ‘hydrogen atom’ for quantum gravity?
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Choice of theory

I Choice of bulk action
Pick Einstein–Hilbert action with negative cc (Λ = −1/`2)

IEH[g] = − 1

16πG

∫
M

d3x
√
−g
(
R+

2

`2

)
Usually choose also topology of M, e.g. cylinder

I Choice of boundary conditions
Crucial to define theory — yields spectrum of ‘edge states’
Pick whatever suits best to describe relevant physics

I Goal: understand holography beyond AdS/CFT

I Explain first in general how edge states emerge
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Physics with boundaries
Science is a differential equation. Religion is a boundary condition. — Alan Turing

I Many QFT applications employ “natural boundary conditions”:
fields and fluctuations tend to zero asymptotically

I Notable exceptions exist in gauge theories with boundaries:
e.g. in Quantum Hall effect

I Natural boundary conditions not applicable in gravity:
metric must not vanish asymptotically

I Gauge or gravity theories in presence of (asymptotic) boundaries:
asymptotic symmetries

I Choice of boundary conditions determines asymptotic symmetries

All boundary condition preserving gauge transformations
(bcpgt’s) modulo trivial gauge transformations

Definition of asymptotic symmetries
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Asymptotic symmetries in gravity

I Impose some bc’s at (asymptotic or actual) boundary:

lim
r→rb

gµν(r, xi) = ḡµν(rb, x
i) + δgµν(rb, x

i)

I bcpgt’s generated by asymptotic Killing vectors ξ:

Lξgµν
!

= O(δgµν)

I typically, Killing vectors can be expanded radially

ξµ(rb, x
i) = ξµ(0)(rb, x

i)+

Lie bracket quotient algebra of asymptotic
Killing vectors modulo trivial diffeos

Definition of asymptotic symmetry algebra
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i) + δgµν(rb, x

i)

r: some convenient (“radial”) coordinate
rb: value of r at boundary (could be ∞)

I bcpgt’s generated by asymptotic Killing vectors ξ:

Lξgµν
!

= O(δgµν)

I typically, Killing vectors can be expanded radially

ξµ(rb, x
i) = ξµ(0)(rb, x

i)+

Lie bracket quotient algebra of asymptotic
Killing vectors modulo trivial diffeos

Definition of asymptotic symmetry algebra

Daniel Grumiller — Gravity in Flatland Gravity in three dimensions 12/25



Asymptotic symmetries in gravity

I Impose some bc’s at (asymptotic or actual) boundary:

lim
r→rb

gµν(r, xi) = ḡµν(rb, x
i) + δgµν(rb, x

i)

r: some convenient (“radial”) coordinate
rb: value of r at boundary (could be ∞)
xi: remaining coordinates (“boundary” coordinates)

I bcpgt’s generated by asymptotic Killing vectors ξ:

Lξgµν
!

= O(δgµν)

I typically, Killing vectors can be expanded radially

ξµ(rb, x
i) = ξµ(0)(rb, x

i)+

Lie bracket quotient algebra of asymptotic
Killing vectors modulo trivial diffeos

Definition of asymptotic symmetry algebra

Daniel Grumiller — Gravity in Flatland Gravity in three dimensions 12/25



Asymptotic symmetries in gravity

I Impose some bc’s at (asymptotic or actual) boundary:

lim
r→rb

gµν(r, xi) = ḡµν(rb, x
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Asymptotic symmetries in gravity — modification of equivalence principle

I Impose some bc’s at (asymptotic or actual) boundary:

lim
r→rb

gµν(r, xi) = ḡµν(rb, x
i) + δgµν(rb, x

i)

r: some convenient (“radial”) coordinate
rb: value of r at boundary (could be ∞)
xi: remaining coordinates
gµν : metric compatible with bc’s
ḡµν : (asymptotic) background metric
δgµν : fluctuations permitted by bc’s

I bcpgt’s generated by asymptotic Killing vectors ξ:

Lξgµν
!

= O(δgµν)

I typically, Killing vectors can be expanded radially

ξµ(rb, x
i) = ξµ(0)(rb, x

i) + subleading terms

ξµ(0)(rb, x
i): generates asymptotic symmetries/changes physical state

subleading terms: generate trivial diffeos

Lie bracket quotient algebra of asymptotic
Killing vectors modulo trivial diffeos

Definition of asymptotic symmetry algebra
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Canonical boundary charges
God made the bulk; surfaces were invented by the devil — Wolfgang Pauli

I changing boundary conditions can change physical spectrum

I to distinguish asymptotic symmetries from trivial gauge trafos:
perform Hamiltonian analysis in presence of boundaries

I in Hamiltonian language: gauge generator G[ε] varies as

δG[ε] =

∫
Σ

(bulk term) ε δΦ−
∫
∂Σ

(boundary term) ε δΦ

not functionally differentiable in general (Σ: constant time slice)
I add boundary term to restore functional differentiability

δΓ[ε] = δG[ε] + δQ[ε]
!

=

∫
Σ

(bulk term) ε δΦ

I yields (variation of) canonical boundary charges

δQ[ε] =

∫
∂Σ

(boundary term) ε δΦ

Trivial gauge transformations generated by some ε with Q[ε] = 0
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− d2

dx2
ψ(x) = Eψ(x)

look for (normalizable) bound state solutions, E < 0
I Dirichlet bc’s: no bound states
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)∣∣
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∣∣
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√
2

α
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Soap bubble metaphor for AdS3
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Brown–Henneaux example of asymptotically AdS3

I Given some bc’s it is easy to determine asymptotic Killing vectors

I Brown–Henneaux imposed following bc’s

ds2 = dr2 + e2r/` dx+ dx− +O(1) dx+ 2 +O(1) dx− 2 + . . .

I Metrics above preserved by asymptotic Killing vectors

ξ = ε+(x+)∂+ + ε−(x−)∂− + . . .

I Introducing (Fourier) modes l±n ∼ ξ(ε± = einx
±

) yields ASA

[l±n , l
±
m]Lie = (n−m) l±n+m

I Introduce also Fourier modes for charges L±n = Q[l±n ]
I Canonical realization of asymptotic symmetries

i{L±n , L±m} = (n−m)L±n+m +
cBH

12
(n3 − n) δn+m, 0

with central charge
cBH =

3`

2G
I Dual field theory, if it exists, must be CFT2!
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Some checks of AdS3/CFT2

Every AdS3 gravity observable must correspond to some CFT2 observable

ok, fine, so what about...

I ...correlation functions?

I ...entropy?

I ...entanglement entropy?

I ...boundary conditions different from Brown–Henneaux?

Different boundary conditions may lead to other symmetries,
hence no AdS3/CFT2!
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Some checks of AdS3/CFT2

Every AdS3 gravity observable must correspond to some CFT2 observable

ok, fine, so what about...
I ...correlation functions?
I e.g. 5-point stress-tensor correlator in CFT2 Bagchi, DG, Merbis ’15

CFT2 : 〈T++(z1)T++(z2)T++(z3)T++(z4)T++(z5)〉 =
4c g5(γ, ζ)∏

1≤i≤5 zij

γ = z12z34/(z13z24), ζ = z25z34/(z35z24), zij = zi − zj and

g5(γ, ζ) =
γ + ζ

2(γ − ζ)
− γ2 − γζ + ζ2

γ(γ − 1)ζ(ζ − 1)(γ − ζ)

(
[γ(γ−1)+1][ζ(ζ−1)+1]−γζ

)

I on gravity side given by 5th functional variation of action w.r.t. metric
I result on gravity side

δ5IEH[gµν ]

δg++(z1)δg++(z2)δg++(z3)δg++(z4)δg++(z5)
=

4c g5(γ, ζ)∏
1≤i≤5 zij

I ...entropy?
I ...entanglement entropy?
I ...boundary conditions different from Brown–Henneaux?

Different boundary conditions may lead to other symmetries,
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Some checks of AdS3/CFT2

Every AdS3 gravity observable must correspond to some CFT2 observable

ok, fine, so what about...
I ...correlation functions?
I ...entropy?
I asymptotic density of states in CFT2 given by Cardy formula

SCFT2 = SCardy = 2π

√
c

6
(M + J) + 2π

√
c

6
(M − J)

I on gravity side entropy given by Bekenstein–Hawking formula

SBH =
A

4G
=
πr+

2G
= 2π

√
`

4G
(M + J) + 2π

√
`

4G
(M − J)

I entropy formulas coincide for

c =
3`

2G
matches precisely Brown–Henneaux result c = cBH

I ...entanglement entropy?
I ...boundary conditions different from Brown–Henneaux?

Different boundary conditions may lead to other symmetries,
hence no AdS3/CFT2!
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Some checks of AdS3/CFT2

Every AdS3 gravity observable must correspond to some CFT2 observable

ok, fine, so what about...
I ...correlation functions?
I ...entropy?
I ...entanglement entropy?
I EE in CFT2 for entangling region of length L Cardy, Calabrese ’04

SEE =
c

3
ln
L

ε

I Ryu–Takayanagi prescription: EE = length of geodesic anchored at
boundary entangling region

I ...boundary conditions different from Brown–Henneaux?

Different boundary conditions may lead to other symmetries,
hence no AdS3/CFT2!
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Brief history of boundary conditions in AdS3 (and their ASAs)

I Brown–Henneaux ’86

[L±n , L
±
m] = (n−m)L±n+m +

cBH

12
(n3 − n) δn+m, 0

I Compère–Song–Strominger ’13
I Troessaert ’13
I Avery–Poojary–Suryanarayana ’13
I Donnay–Giribet–González–Pino ’15
I Afshar–Detournay–DG–Oblak ’15
I Afshar–Detournay–DG–Merbis–Perez–Tempo–Troncoso ’16

Is there some set of bc’s encompassing all of the above?
Is there a loosest set of bc’s?

I DG–Riegler ’16: yes and yes

(How) does this work in higher dimensions? Don’t know (yet)!
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Brief history of boundary conditions in AdS3 (and their ASAs)
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I Avery–Poojary–Suryanarayana ’13

[Ln, Lm] = (n−m)Ln+m +
cBH

12
(n3 − n) δn+m, 0

[Ln, J
a
n] = −mJan+m

[Jan, J
b
m] = (a− b) Ja+b

n+m − k nκab δn+m, 0

a, b = −1, 0, 1

I Donnay–Giribet–González–Pino ’15
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Brief history of boundary conditions in AdS3 (and their ASAs)

I Brown–Henneaux ’86 CFT
I Compère–Song–Strominger ’13 warped CFT
I Troessaert ’13 CFT with u(1) currents
I Avery–Poojary–Suryanarayana ’13 non-abelian warped CFT (sl(2))
I Donnay–Giribet–González–Pino ’15 centerless warped CFT
I Afshar–Detournay–DG–Oblak ’15 twisted warped CFT
I Afshar–Detournay–DG–Merbis–Perez–Tempo–Troncoso ’16 u(1)’s

Is there some set of bc’s encompassing all of the above?
Is there a loosest set of bc’s?

I DG–Riegler ’16: yes and yes

[Ja±n , Jb±m ] = (a− b) Ja+b±
n+m − k nκab δn+m, 0

(How) does this work in higher dimensions? Don’t know (yet)!

Daniel Grumiller — Gravity in Flatland Gravity in three dimensions 17/25



Brief history of boundary conditions in AdS3 (and their ASAs)

I Brown–Henneaux ’86 CFT
I Compère–Song–Strominger ’13 warped CFT
I Troessaert ’13 CFT with u(1) currents
I Avery–Poojary–Suryanarayana ’13 non-abelian warped CFT (sl(2))
I Donnay–Giribet–González–Pino ’15 centerless warped CFT
I Afshar–Detournay–DG–Oblak ’15 twisted warped CFT
I Afshar–Detournay–DG–Merbis–Perez–Tempo–Troncoso ’16 u(1)’s

Is there some set of bc’s encompassing all of the above?
Is there a loosest set of bc’s?

I DG–Riegler ’16: yes and yes ASA: sl(2) currents

(How) does this work in higher dimensions? Don’t know (yet)!
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What about non-AdS holography?

(When) is quantum gravity in D + 1 dimensions equivalent
to (which) quantum field theory in D dimensions?

Key question

Let us be modest and refine this question:

(How) does holography work in flat space?

More modest question

See work by Bagchi et al.

Would like concrete model for flat space holography
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(When) is quantum gravity in D + 1 dimensions equivalent
to (which) quantum field theory in D dimensions?

Key question
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Outline

Motivation

Gravity in three dimensions

Gravity in two dimensions
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Selected list of models
Black holes in (A)dS2, asymptotically flat or arbitrary spaces (Wheeler property)

Model U(X) V (X)

1. Schwarzschild (1916) − 1
2X

−λ2

2. Jackiw-Teitelboim (1984) 0 ΛX
3. Witten Black Hole (1991) − 1

X
−2b2X

4. CGHS (1992) 0 −2Λ
5. (A)dS2 ground state (1994) − a

X
BX

6. Rindler ground state (1996) − a
X

BXa

7. Black Hole attractor (2003) 0 BX−1

8. Spherically reduced gravity (N > 3) − N−3
(N−2)X

−λ2X(N−4)/(N−2)

9. All above: ab-family (1997) − a
X

BXa+b

10. Liouville gravity a beαX

11. Reissner-Nordström (1916) − 1
2X

−λ2 + Q2

X

12. Schwarzschild-(A)dS − 1
2X

−λ2 − `X
13. Katanaev-Volovich (1986) α βX2 − Λ

14. BTZ/Achucarro-Ortiz (1993) 0 Q2

X
− J

4X3 − ΛX
15. KK reduced CS (2003) 0 1

2
X(c−X2)

16. KK red. conf. flat (2006) − 1
2

tanh (X/2) A sinhX

17. 2D type 0A string Black Hole − 1
X

−2b2X + b2q2

8π

18. exact string Black Hole (2005) lengthy lengthy
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Choice of theory (review: see hep-th/0204253)

I Choice of bulk action
Einstein–Hilbert action not useful

I Flat space choice of bulk action
CGHS model

ICGHS[X, gµν ] =
1

16πG2

∫
M

d2x
√
|g| [XR− 2Λ]

Leads to flat solutions
R = 0

Flat space holography proposal: Afshar, González, DG, Vassilevich ’19
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Choice of theory (review: see hep-th/0204253)

I Choice of bulk action
Einstein–Hilbert action not useful

Dilaton gravity in two dimensions (X = dilaton):

I[X, gµν ] =
1

16πG2

∫
M

d2x
√
|g|
[
XR− U(X)(∇X)2 − 2V (X)

]
I kinetic potential U(X) and dilaton potential V (X)
I constant dilaton and linear dilaton solutions
I all solutions known in closed form globally for all choices of potentials
I simple choice (Jackiw–Teitelboim):

U(X) = 0 V (X) = ΛX

I for negative Λ = −1/`2 leads to AdS2 solutions

I Flat space choice of bulk action
CGHS model

ICGHS[X, gµν ] =
1

16πG2

∫
M

d2x
√
|g| [XR− 2Λ]

Leads to flat solutions
R = 0

Flat space holography proposal: Afshar, González, DG, Vassilevich ’19
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Choice of theory (review: see hep-th/0204253)

I Choice of bulk action
JT model:

IJT[X, gµν ] =
1

16πG2

∫
M

d2x
√
|g| [XR− 2ΛX]

Leads to (A)dS2 solutions
R = 2Λ

I Flat space choice of bulk action
CGHS model

ICGHS[X, gµν ] =
1

16πG2

∫
M

d2x
√
|g| [XR− 2Λ]

Leads to flat solutions
R = 0

Flat space holography proposal: Afshar, González, DG, Vassilevich ’19
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Interlude: SYK in one slide (Kitaev ’15; Maldacena, Stanford ’16)

Sachdev–Ye–Kitaev model = strongly interacting quantum system
solvable at large N (N is number of Majorana fermions ψa)

I Hamiltonian HSYK = jabcdψ
aψbψcψd with a, b, c, d = 1 . . . N

I Gaussian random interaction 〈j2
abcd〉 = J2/N3

I 2-point function G(τ) = 〈ψa(τ)ψa(0)〉
I sum melonic diagrams G(ω) = 1/(−iω−Σ(ω)) with Σ(τ) = J2G3(τ)
I in IR limit τJ � 1 exactly soluble, e.g. on circle (τ ∼ τ + β)

G(τ) ∼ sign(τ)/ sin(πτ/β)

I SL(2, R) covariant x→ (ax+ b)/(cx+ d) with x = tan(πτ/β)
I effective action at large N and large J : Schwarzian action

Γ[h] ∼ −N
J

β∫
0

dτ
[
ḣ2 + 1

2 {h; τ}
]

{h; τ} =

...
h

ḣ
− 3

2

ḧ2

ḣ2

I Schwarzian action also follows from JT gravity
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G(τ) ∼ sign(τ)/ sin1/2(πτ/β)

I SL(2, R) covariant x→ (ax+ b)/(cx+ d) with x = tan(πτ/β)
I effective action at large N and large J : Schwarzian action

Γ[h] ∼ −N
J

β∫
0

dτ
[
ḣ2 + 1

2 {h; τ}
]

{h; τ} =

...
h

ḣ
− 3

2

ḧ2

ḣ2

I Schwarzian action also follows from JT gravity
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Flat space holography and complex SYK 1911.05739

Q&A’s:
I Q1: What is the flat space analogue of JT?

I A1: Essentially the CGHS model
I Q2: What is the flat space analogue of the Schwarzian action?
I A2: The twisted warped action

Γ[h, g] = κ

β∫
0

dτ

(
ḣ2 − ġ

(
2πi

β
ḣ+

ḧ

ḣ

)
+ g̈

)
I Q3: What is the twisted warped analogue of the Virasoro and sl(2)

symmetries governing the Schwarzian?
I A3: The twisted warped and two-dimensional Maxwell symmetries
I Q4: What is the flat space analogue of SYK?
I A4: Complex SYK for large specific heat and zero compressibility

Concrete model for flat space holography
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ḣ

)
+ g̈

)

I Q3: What is the twisted warped analogue of the Virasoro and sl(2)
symmetries governing the Schwarzian?

I A3: The twisted warped and two-dimensional Maxwell symmetries
I Q4: What is the flat space analogue of SYK?
I A4: Complex SYK for large specific heat and zero compressibility

Concrete model for flat space holography

Daniel Grumiller — Gravity in Flatland Gravity in two dimensions 23/25



Flat space holography and complex SYK 1911.05739

Q&A’s:
I Q1: What is the flat space analogue of JT?
I A1: Essentially the CGHS model
I Q2: What is the flat space analogue of the Schwarzian action?
I A2: The twisted warped action

Γ[h, g] = κ

β∫
0

dτ

(
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ḣ+

ḧ
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Summary

I General lessons
I Boundary conditions crucial
I Asymptotic symmetries give clues about dual QFT
I Physical states in form of edge states can exist

I Specific recent topics
I most general boundary conditions in AdS3

I near horizon soft hair (not mentioned in colloquium)
I flat space holography and complex SYK

I Selected challenges for the future
I Good model for dS holography?
I Complete model of evaporating black hole?
I How general is holography?

I Numerous open questions in gravity and holography

I Many can be addressed in lower dimensions

I If you are stuck in higher D try D = 3 or D = 2
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Thank you for your attention!

Daniel Grumiller — Gravity in Flatland Gravity in two dimensions 25/25



Simple example: abelian Chern–Simons

I abelian Chern–Simons action (on cylinder)

I[A] =
k

4π

∫
R×Σ

A ∧ dA

Note: topological QFT with no local physical degrees of freedom

I gauge trafos δεA = dε
I canonical analysis yields boundary charges (background independent)

Q[ε] =
k

2π

∮
∂Σ
εA

I choice of bc’s

lim
r→∞

A = J (ϕ) dϕ+ µ dt δJ = O(1) δµ = 0

preserved by ε = η(ϕ)+ subleading
I asymptotic symmetry algebra has non-trivial central term

{Q[η1], Q[η2]} = δη1Q[η2] =
k

2π

∮
∂Σ

η2 η
′
1 dϕ

I Fourier modes Jn ∼
∮
J einϕ yield u(1)k current algebra, i{Jn, Jm} = k

2
n δn+m, 0
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Edge states
see e.g. Halperin ’82, Witten ’89, or Balachandran, Chandar, Momen ’94

I changing boundary charges changes physical state

I boundary charges (if non-trivial) thus generate edge states
I back to abelian Chern–Simons example:

I asymptotic symmetry algebra

[Jn, Jm] = k
2 n δn+m, 0

I define vacuum
Jn|0〉 = 0 ∀n ≥ 0

I descendants of vacuum are examples of edge states

|edge({ni})〉 =
∏
{ni>0}

J−ni
|0〉

e.g.
|edge({1, 1, 42})〉 = J2

−1J−42|0〉

I theories with no local physical degrees of freedom can have edge
states! ⇒ perhaps cleanest example of holography
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