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1. Actions

EH:

S =

∫

dDx
√
−gR + surface

R: Ricci scalar

g: determinant of metric gµν

JBD/scalar-tensor theories/low energy strings:

S =
∫

dDx
√
−g

(

XR − U(X)(∇X)2 + 2V (X)
)

X: “dilaton field”

U, V : (arbitrary) potentials

“dilaton gravity in D dimensions”

Note: higher powers in curvature, e.g.

S =
1

2

∫

dDx
√
−gR2

≡ to dilaton gravity (U = 0, V = −X2/4)

Often exponential representation:

X = e−2φ
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Low energy effective actions

NLSM (target space metric: gµν, coordinates: xµ)

Sσ ∝
∫

d2ξ
√
−h

(

gµνhij∂ix
µ∂jx

ν + α′φR + tachyon
)

set B-field zero. neglect tachyon for the time

being. conformal invariance:

2πT i
i = βφR + βg

µνhij∂ix
µ∂jx

ν !
= 0

thus, β-functions must vanish. LO:

16π2

α′ βφ = −4b2 − 4(∇φ)2 + 4�φ + R

βg
µν = Rµν + 2∇µ∇νφ

conditions βφ = 0 = β
g
µν follow from

S =

∫

dDx
√
−ge−2φ

(

R + 4(∇φ)2 − 4b2
)

for D = 2: “Witten BH” and CGHS model:

2D dilaton gravity (U = −1/X, V = −2b2X)

Note: b2 = (26 − D)/(6α′)

CFT description as SL(2, R)/U(1) gauged WZW

review: K. Becker, hep-th/9404157
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Relation to SL(2, R)/U(1) gauged WZW

NLSM: complicated on generic backgrounds;
easier: background is group manifold on which
string propagates

For g ∈ SL(2, R):

SWZW =
k

8π

∫

Σ
d2ξ

√
hhijtr

(

g−1∂igg−1∂jg
)

+Γ(g)

with the Wess-Zumino term

Γ(g) =
ik

12π

∫

d−1Σ
d3ζεabctr

(

g−1∂agg−1∂bgg−1∂cg
)

Global SL(2, R)×SL(2, R) symmetry g → agb−1

Euclidean BH: gauge compact abel. subg.
Minkowskian BH: gauge non-compact a. s.
need to introduce gauge field!

conserved currents from SL(2, R) symmetry
yield current algebra (Kac-Moody algebra)
with level k

minisuperspace approach: keep only zero-
mode algebra!

[J3, J±] = ±J± , [J+, J−] = −2J3

get LL
0 , LR

0 from the group theory of SL(2, R)
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2. The exct string BH

R. Dijkgraaf, H. Verlinde, and E. Verlinde,
Nucl. Phys. B371 (1992) 269–314.

in 2D: only physical propagating degree of
freedom: tachyon!

tachyon action (V (T ) = −2T2 + O(T3)):

ST =

∫

dDx
√
−ge−2φ

(

(∇T )2 − V (T )
)

CFT: tachyon defined through zero modes
LL

0 , LR
0 of stress tensors for left and right

movers:

ST =
∫

dDx
√
−ge−2φ

(

T (LL
0 + LR

0 )T − V (T )
)

“standard result”: LL
0 + LR

0 = Laplacian:

(LL
0 + LR

0 )T = − e2φ

√−g
∂µ

(

gµνe−2φ√−g∂νT
)

strategy of DVV: determine LL
0 , LR

0 with CFT
methods (for any level k), then use identifi-
cation with Laplacian above to obtain metric
and dilaton field

Witten BH arises as limit k → ∞, while for
k → 2 AdS2 emerges (“JT model”)
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Geometry of the ESBH

2D line element (Minkowskian):

ds2 = f2(x) dτ2 − dx2 ,

with

f(x) =
tanh (bx)

√

1 − p tanh2 (bx)
.

The corresponding expression for the dila-

ton,

φ = φ0 − ln cosh (bx) − 1

4
ln (1 − p tanh2 (bx)) ,

contains an integration constant φ0.

Additionally, there are the following relations between
constants, string-coupling α′, level k and dimension D
of string target space:

α′b2 =
1

k − 2
, p :=

2

k
=

2α′b2

1 + 2α′b2
, D−26+6α′b2 = 0 .

For D = 2 one obtains p = 8/9; for p = 0 one recovers

the Witten BH; for p = 1 the JT model is obtained.

Winding/momentum mode duality (ESNS):

bx → bx + iπ/2
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Why an action?

• Needed for mass definition (“Gibbons-Hawking
term”) – clarify which, if any, of previous
mass definitions is correct

• Needed for entropy – get insight into ther-
modynamics of a non-perturbative BH so-
lution of string theory

• Supersymmetrization

• Quantization

• Get a new theory in this way which is
interesting on its own and which gen-
eralizes the CGHS model – may couple
geometric action to some matter action,
study critical collapse, etc.

Thermodynamics of ESBH: as early as Gib-
bons/Perry, hep-th/9204090, but also recently
Davis/McNees hep-th/0411121

Unsolved for 13 years: either very difficult or
not very intersting... third option: solution
simple once appropriate tools are employed!
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3. Gravity as gauge theory: 2nd → 1st

JT model: (A)dS2 (SO(1,2)): C. Teitelboim,

PL B126 (1983) 41 , R. Jackiw, NP B252 (1985) 343

[Pa, Pb] = ΛεabJ , [Pa, J] = εabP
b

1st order form: K. Isler, C. Trugenberger, PRL 63

(1989) 834 , A. Chamseddine, D. Wyler, PL B228

(1989) 75

L = XAFA = Xa(De)a + X(dω +
1

2
Λεabe

aeb)

SO(1,2) connection: A = eaPa + ωJ,
F = dA + 1

2[A, A], ea, ω: “Cartan variables”,
XA: Lagr. mult. (trafo under coadjoint rep.)

CGHS: central extended Poincaré (ISO(1,1)):
D. Cangemi, R. Jackiw, hep-th/9203056

[Pa, Pb] = εabI , [Pa, J] = εabP
b , [I, J] = 0 = [I, Pa]

again first order with L = XAFA possible
without central extension: Verlinde, MG VI

cf. also A. Achúcarro, hep-th/9207108

other important pre-cursors:

W. Kummer, D.J. Schwarz, PR D45 (1992) 3628

N. Ikeda, hep-th/9312059: (non-linear) gauge for-
mulation for U = 0 but generic V (X)
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4. First order action, relation to PSM

First order action:

P. Schaller, T. Strobl, hep-th/9405110

S(FOG) =

∫

M2

[XaT a + XR + εV(XaXa, X)]

(1)

T a = (De)a: torsion 2-form

Ra
b = εabR = εa

b dω: curvature 2-form

ε = −1
2εabe

a ∧ eb: volume 2-form

X: “dilaton” (Lagrange mult. f. curvature)

Xa: auxiliary fields ( — ” — torsion)

V: potential defining the model (as before)

Relation to second order:

dilaton: X = X

kinetic term: (∇X)2 = −XaXa

metric: gµν = ηabe
a
µeb

ν

connection: Levi-Civitá = ω−torsion part

Technical Note: Use light-cone components (η+− =

1 = η−+, η++ = 0 = η−−); define ε±± = ±1

T± = (d±ω)∧e± , ε = e+∧e− , XaXa = 2X+X−

Typically: V(X+X−, X) = X+X−U(X)+V (X)
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Equivalence to specific type of Poisson-σ model

[P. Schaller, T. Strobl, hep-th/9405110]

SgPSM =
∫

M2

dXI ∧ AI +
1

2
P IJAJ ∧ AI .

• gauge field 1-forms: AI = (ω, ea),

connection, Zweibeine

• target space coordinates: XI = (X, Xa),

dilaton, auxiliary fields

• target space: Poisson manifold

• Poisson tensor: odd dimension → kernel!

• Jacobi: P IL∂LP JK + perm (IJK) = 0

P IJ =






0 X+ −X−

−X+ 0 V
X− −V 0
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Equations of motion (first order):

dXI + P IJAJ = 0

dAI +
1

2
(∂IP

JK)AK ∧ AJ = 0

Gauge symmetries:

δXI = P IJεJ

δAI = −dεI −
(

∂IP
JK

)

εK AJ

Note 1: if P IJ linear: Lie-Algebra! Otherwise: non-

linear gauge symmetries

Note 2: on-shell equivalent to diffeomorphisms+local

Lorentz trafos for specific Poisson tensor on previous

page

Remark: Schouten-Nijenhuis bracket:

[XI , XJ]SN = P IJ

Note 1: like non-commutative geometry

Note 2: Jacobi identity for bracket equivalent to non-

linear identity for Poisson tensor on previous page

?: M. Kontsevich, q-alg/9709040, path integral ap-

proach: A. Cattaneo, G. Felder, math.qa/9902090
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5. All classical solutions (locally)

Ansatz: X+ 6= 0 in a patch → e+ = X+Z

Summary of EOM for dilaton gravity:

δω : dX + X−e+ − X+e− = 0 ,

δe∓ : (d±ω)X± ∓ Ve± = 0 ,

δX : dω + ε
∂V
∂X

= 0 ,

δX∓ : (d±ω)e± + ε
∂V

∂X∓ = 0 .

1. use δω to get e− = dX/X+ + X−Z

2. read off ε = e+ ∧ e− = Z ∧ dX

3. use δe− to get ω = −dX+/X+ + ZV
4. use δX− to get dZ = dX ∧ ZU(x)

5. define “integrating factor”:

I(X) := exp
∫ X

U(X ′) dX ′

6. obtain Z =: ẐI(X) with dẐ = 0 → Ẑ = du

7. use gµν = e+µ e−ν + e−µ e+ν

general solution for the line element:

ds2 = I(X)
(

2dudX + 2X+X−I(X) du2
)

X+X− = 0: apparent horizon!
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Conservation law:

T. Banks, M. O’Loughlin, NP B362 (1991) 649;

V. Frolov, PR D46 (1992) 5383; R. Mann, hep-th/9206044

later generalized by “Vienna group”

W. Kummer+students; for a review cf. e.g.

DG, W. Kummer, D. Vassilevich, hep-th/0204253

Derivation in absence of matter: EOMs X+δe++

X−δe− using also the EOM δω establishes

d(X+X−) + V dX = 0

for “standard” V = X+X−U(X) + V (X):

C = I(X)X+X− + w(X) , dC = 0

with

w(X) :=
∫ X

I(X ′)V (X ′) dX ′

“Generalized Birkhoff theorem” (always 1 Killing)

Inserting into line element, dr = I(X) dX:

ds2 = 2dudr + 2I(X(r)) (C − w(X(r))) du2

(2)

Eddington-Finkelstein patch!
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6. Global structure (Penrose diagrams)

Carter-Penrose (CP) diagram of EF patches:

A

B

A’

B’ B’’
A’’ A’’’

B’’’

for Schwarzschild-like solutions

Global CP: glue together EF patches:

Only point not covered by EF patches:

bifurcation point: X+ = 0 = X−

M. Walker, J. Math. Phys. 11 (1970) 2280 , T. Klösch,

T. Strobl, gr-qc/9508020, gr-qc/9511081

open regions with X+ = 0 = X−: X = const.

“Constant Dilaton Vacua” (very simple)

V (XCDV ) = 0 , R ∝ V ′(XCDV ) = const.

only Minkowski, Rindler, (A)dS
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7. Mass, temperature, entropy

Naively from surface gravity:

TH =
1

2π

∣
∣
∣
∣w

′(X)

∣
∣
∣
∣
X=Xh

. (3)

Note: independent from I(X); don’t need

action

With minimally coupled matter: same result;

e.g. from trace anomaly

S. Christensen, S. Fulling, PR D15 (1977) 2088

< Tµ
µ >∝ R , ∇µTµν = 0

Matter coupled (“non-minimally”) to dilaton:

Non-conservation equation!

W. Kummer, D. Vassilevich, gr-qc/9907041

∇µTµν = −(∂νΦ)
1√−g

δW

δΦ
, X = e−2Φ

Mass-to-temperature law: need action!

Sometimes mutually contradicting results for

“ADM mass” (e.g. 2D string theory)

clarified in appendix of DG, D. Mayerhofer, gr-qc/0404013
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BH Entropy

BH: “Bekenstein-Hawking” or “Black Hole”

Simple thermodynamic considerations:

dS =
dM

T
J. Gegenberg, G. Kunstatter, D. Louis-Martinez, gr-qc/9408015

S = 2π X|C=w(X) ≡ A

4
(4)

confirmed by more elaborate derivations (CFT

methods, near horizon conformal symmetry,

Cardy-formula)

S. Carlip gr-qc/9906126, gr-qc/0203001, hep-th/0408123,

S. Solodukhin, hep-th/9812056, M. Cadoni, S. Mignemi,

hep-th/9810251

Note: need action!

open question: counting of microstates is

fine, but what are actually the microstates

of 2D dilaton gravity?
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“Vienna School”

Brauer Fuchs

Hausner Lehmden
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8. Action for the ESBH

extensive review on 2D dilaton gravity:
DG, W. Kummer, D. Vassilevich, hep-th/0204253

nogo result DG, D. Vassilevich, hep-th/0210060

R
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8. Action for the ESBH

extensive review on 2D dilaton gravity:
DG, W. Kummer, D. Vassilevich, hep-th/0204253

nogo result DG, D. Vassilevich, hep-th/0210060

circumvent it by allowing matter – but: don’t
want propagating physical degrees of free-
dom!

suggestive: consider (abelian) gauge field
result: it works! DG, hep-th/0501208

SESBH =

∫

M2

[

XaT a + ΦR + BF

+ ε
(

X+X−U(Φ) + V (Φ)
) ]

, (14)

with Φ± = γ ± arcsinh γ and γ = X/B
+: ESBH, −: ESNS
The potentials read

V = −2b2γ , U± = − 1

γN±(γ)
, (15)

with an irrelevant scale parameter b ∈ R+ and

N±(γ) = 1 +
2

γ

(

1

γ
±
√

1 +
1

γ2

)

. (16)

Note that N+N− = 1. 19-c
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Plot of U as a function of γ

Red: ESBH, Blue: ESNS, Black: Witten BH

Asymptotic (“weak coupling”) limit (γ → ∞):

Witten BH: U = −1/Φ, V = −2b2Φ

valid for both branches (ESBH, ESNS)

Strong coupling limit (γ → 0):

ESBH branch: JT model (U = 0, V = −b2Φ)

ESNS branch: 5D Schwarzschild!

(U = −2/(3Φ), V = −2b2(6Φ)1/3)
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9. Mass and entropy of the ESBH

Constants of motion:

U(1)-charge: value of DVV dilaton at origin

mass: determined by level k! (MADM = bk)

Hawking temperature TH = b
2π

√

1 − 2b
MADM

Note: for mass knowledge of action pivotal!

the same holds for entropy!

S = 2πΦ|horizon = 2π (x + arcsinhx)

with x := 2
√

M(M − 1) and M = k/2

Limit of large mass (k → ∞)

S|M�1 = SLO+2π lnSLO + O(1)

with SLO = 4πM

Limit of small mass (k → 2)

S|M=1+ε = 8π
√

ε (1 + O(ε))
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Specific heat

Result:

C :=
dMADM

dTH
=

16π2

b
M2TH

Low temperatures (TH → 0, M → 1): like

electron gas with Sommerfeld constant γ =

16π2/b

High masses: Witten BH limit! Note: for

Witten BH: 1/C = 0; thus, corrections are

highly non-trivial!

C =
2π

b2
M2

ADM + O(MADM)

Specific heat is positive and proportional to

M2
ADM . Up to numerical coefficient the same

result has been obtained for the quantum

corrected Witten BH in DG, W. Kummer and

D. Vassilevich, hep-th/0305036!
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Why is the mass given by the level?

Technically: see hep-th/0501208

result: C(g) = −bk = −MADM

Physically: conservation law in presence of

matter:

dC(g)
︸ ︷︷ ︸

geometry

+ W (m)
︸ ︷︷ ︸

matter

= 0

addition of matter “deforms” C(g) in generic

dilaton gravity

Thus, matter has to “deform” the level k
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Why is the mass given by the level?

Technically: see hep-th/0501208

result: C(g) = −bk = −MADM

Physically: conservation law in presence of

matter:

dC(g)
︸ ︷︷ ︸

geometry

+ W (m)
︸ ︷︷ ︸

matter

= 0

addition of matter “deforms” C(g) in generic

dilaton gravity

Thus, matter has to “deform” the level k

But this is precisely what happens: the addi-

tion of matter generically changes the central

charge and hence the level k

Similar interpretation in V.A. Kazakov and

A.A. Tseytlin, hep-th/0104138 to explain Hawk-

ing temperature of the ESBH

TH =
b

2π

√

1 − 2

k
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10. Open questions

• Supplementary thermodynamical consid-

erations (free energy, entropy, alternative

mass definition)

• Microstates?

• Logarithmic corrections from thermal fluc-

tuations (negative sign!)

• Understand duality AdS2 ↔ Schwarzschild5

• Supersymmetrization

• Coupling to matter! (critical collapse,

tachyon, 2D type 0A/0B strings, quan-

tization)
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