Seminar Talk (TU Wien)

June 2005

An action for the exact string black hole

> speaker: Daniel Grumiller (DG)
affiliation: Institute for Theoretical Physics, University of Leipzig, Augustusplatz 10-11, D-04109 Leipzig, Germany
supported by an Erwin-Schrödinger fellowship, project J-2330-N08 of the Austrian Science Foundation (FWF)

Based upon: DG, hep-th/0501208

Outline

1. Actions
2. The exact string BH
3. Gravity as gauge theory: $2^{\text {nd }} \rightarrow 1^{\text {st }}$ order
4. First order action, relation to PSM
5. All classical solutions (locally)
6. Global structure (Penrose diagrams)
7. Mass, temperature, entropy
8. Action for the ESBH
9. Discussion
10. Open questions

1. Actions

EH:

$$
S=\int \mathrm{d}^{D} x \sqrt{-g} R+\text { surface }
$$

R : Ricci scalar
g : determinant of metric $g_{\mu \nu}$

JBD/scalar-tensor theories/low energy strings:
$S=\int \mathrm{d}^{D} x \sqrt{-g}\left(X R-U(X)(\nabla X)^{2}+2 V(X)\right)$
X : "dilaton field"
U, V : (arbitrary) potentials
"dilaton gravity in D dimensions"

Note: higher powers in curvature, e.g.

$$
S=\frac{1}{2} \int \mathrm{~d}^{D} x \sqrt{-g} R^{2}
$$

\equiv to dilaton gravity ($U=0, V=-X^{2} / 4$)

Often exponential representation:

$$
X=e^{-2 \phi}
$$

Low energy effective actions

NLSM (target space metric: $g_{\mu \nu}$, coordinates: x^{μ}) $S^{\sigma} \propto \int \mathrm{d}^{2} \xi \sqrt{-h}\left(g_{\mu \nu} h^{i j} \partial_{i} x^{\mu} \partial_{j} x^{\nu}+\alpha^{\prime} \phi \mathcal{R}+\right.$ tachyon $)$ set B-field zero. neglect tachyon for the time being. conformal invariance:

$$
2 \pi T_{i}^{i}=\beta^{\phi} \mathcal{R}+\beta_{\mu \nu}^{g} h^{i j} \partial_{i} x^{\mu} \partial_{j} x^{\nu} \stackrel{!}{=} 0
$$

thus, β-functions must vanish. LO:

$$
\begin{aligned}
\frac{16 \pi^{2}}{\alpha^{\prime}} \beta^{\phi} & =-4 b^{2}-4(\nabla \phi)^{2}+4 \square \phi+R \\
\beta_{\mu \nu}^{g} & =R_{\mu \nu}+2 \nabla_{\mu} \nabla_{\nu} \phi
\end{aligned}
$$

conditions $\beta^{\phi}=0=\beta_{\mu \nu}^{g}$ follow from

$$
S=\int \mathrm{d}^{D} x \sqrt{-g} e^{-2 \phi}\left(R+4(\nabla \phi)^{2}-4 b^{2}\right)
$$

for $D=2$: "Witten $B H$ " and CGHS model: $2 D$ dilaton gravity $\left(U=-1 / X, V=-2 b^{2} X\right)$ Note: $b^{2}=(26-D) /\left(6 \alpha^{\prime}\right)$

CFT description as $S L(2, \mathbb{R}) / U(1)$ gauged WZW review: K. Becker, hep-th/9404157

Relation to $S L(2, \mathbb{R}) / U(1)$ gauged WZW

NLSM: complicated on generic backgrounds; easier: background is group manifold on which string propagates

For $g \in S L(2, \mathbb{R})$:
$S_{W Z W}=\frac{k}{8 \pi} \int_{\Sigma} \mathrm{d}^{2} \xi \sqrt{h} h^{i j} \operatorname{tr}\left(g^{-1} \partial_{i} g g^{-1} \partial_{j} g\right)+\Gamma(g)$
with the Wess-Zumino term
$\Gamma(g)=\frac{i k}{12 \pi} \int_{\mathrm{d}^{-1} \Sigma} \mathrm{~d}^{3} \zeta \epsilon^{a b c} \operatorname{tr}\left(g^{-1} \partial_{a} g g^{-1} \partial_{b} g g^{-1} \partial_{c} g\right)$
Global $S L(2, \mathbb{R}) \times S L(2, \mathbb{R})$ symmetry $g \rightarrow a g b^{-1}$
Euclidean BH: gauge compact abel. subg. Minkowskian BH: gauge non-compact a. s. need to introduce gauge field!
conserved currents from $S L(2, \mathbb{R})$ symmetry yield current algebra (Kac-Moody algebra) with level k
minisuperspace approach: keep only zeromode algebra!

$$
\left[J_{3}, J_{ \pm}\right]= \pm J_{ \pm}, \quad\left[J_{+}, J_{-}\right]=-2 J_{3}
$$

get L_{0}^{L}, L_{0}^{R} from the group theory of $S L(2, \mathbb{R})$

2. The exct string $B H$

R. Dijkgraaf, H. Verlinde, and E. Verlinde, Nucl. Phys. B371 (1992) 269-314.
in $2 D$: only physical propagating degree of freedom: tachyon!
tachyon action $\left(V(T)=-2 T^{2}+\mathcal{O}\left(T^{3}\right)\right)$:

$$
S^{T}=\int \mathrm{d}^{D} x \sqrt{-g} e^{-2 \phi}\left((\nabla T)^{2}-V(T)\right)
$$

CFT: tachyon defined through zero modes L_{0}^{L}, L_{0}^{R} of stress tensors for left and right movers:

$$
S^{T}=\int \mathrm{d}^{D} x \sqrt{-g} e^{-2 \phi}\left(T\left(L_{0}^{L}+L_{0}^{R}\right) T-V(T)\right)
$$

"standard result" : $L_{0}^{L}+L_{0}^{R}=$ Laplacian:

$$
\left(L_{0}^{L}+L_{0}^{R}\right) T=-\frac{e^{2 \phi}}{\sqrt{-g}} \partial_{\mu}\left(g^{\mu \nu} e^{-2 \phi} \sqrt{-g} \partial_{\nu} T\right)
$$

strategy of DVV: determine L_{0}^{L}, L_{0}^{R} with CFT methods (for any level k), then use identification with Laplacian above to obtain metric and dilaton field

Witten BH arises as limit $k \rightarrow \infty$, while for $k \rightarrow 2 A d S_{2}$ emerges ("JT model")

Geometry of the ESBH

2D line element (Minkowskian):

$$
\mathrm{d} s^{2}=f^{2}(x) \mathrm{d} \tau^{2}-\mathrm{d} x^{2}
$$

with

$$
f(x)=\frac{\tanh (b x)}{\sqrt{1-p \tanh ^{2}(b x)}} .
$$

The corresponding expression for the dilaton,
$\phi=\phi_{0}-\ln \cosh (b x)-\frac{1}{4} \ln \left(1-p \tanh ^{2}(b x)\right)$, contains an integration constant ϕ_{0}.

Additionally, there are the following relations between constants, string-coupling α^{\prime}, level k and dimension D of string target space:
$\alpha^{\prime} b^{2}=\frac{1}{k-2}, \quad p:=\frac{2}{k}=\frac{2 \alpha^{\prime} b^{2}}{1+2 \alpha^{\prime} b^{2}}, \quad D-26+6 \alpha^{\prime} b^{2}=0$.
For $D=2$ one obtains $p=8 / 9$; for $p=0$ one recovers the Witten BH ; for $p=1$ the JT model is obtained.

Winding/momentum mode duality (ESNS):

$$
b x \rightarrow b x+i \pi / 2
$$

$\mathrm{X}=0$

i^{0}, I^{+}, I^{-}and B denote spatial infinity, future
light-like infinity, past lightlike infinity and the bifurcation point, respectively; the Killing horizon is denoted by the dashed line

Why an action?

- Needed for mass definition ("Gibbons-Hawking term") - clarify which, if any, of previous mass definitions is correct
- Needed for entropy - get insight into thermodynamics of a non-perturbative BH solution of string theory
- Supersymmetrization
- Quantization
- Get a new theory in this way which is interesting on its own and which generalizes the CGHS model - may couple geometric action to some matter action, study critical collapse, etc.

Thermodynamics of ESBH: as early as Gibbons/Perry, hep-th/9204090, but also recently Davis/McNees hep-th/0411121

Unsolved for 13 years: either very difficult or not very intersting... third option: solution simple once appropriate tools are employed!
3. Gravity as gauge theory: $2^{\text {nd }} \rightarrow 1^{\text {st }}$

JT model: (A)dS $2(S O(1,2))$: C. Teitelboim, PL B126 (1983) 41, R. Jackiw, NP B252 (1985) 343

$$
\left[P_{a}, P_{b}\right]=\wedge \epsilon_{a b} J, \quad\left[P_{a}, J\right]=\epsilon_{a b} P^{b}
$$

$1^{\text {st }}$ order form: K. Isler, C. Trugenberger, PRL 63 (1989) 834, A. Chamseddine, D. Wyler, PL B228 (1989) 75

$$
L=X_{A} F^{A}=X_{a}(D e)^{a}+X\left(\mathrm{~d} \omega+\frac{1}{2} \wedge \epsilon_{a b} e^{a} e^{b}\right)
$$

$S O(1,2)$ connection: $A=e^{a} P_{a}+\omega J$, $F=\mathrm{d} A+\frac{1}{2}[A, A], e^{a}, \omega$: "Cartan variables", X_{A} : Lagr. mult. (trafo under coadjoint rep.)

CGHS: central extended Poincaré ($\operatorname{ISO}(1,1)$):
D. Cangemi, R. Jackiw, hep-th/9203056
$\left[P_{a}, P_{b}\right]=\epsilon_{a b} I, \quad\left[P_{a}, J\right]=\epsilon_{a b} P^{b}, \quad[I, J]=0=\left[I, P_{a}\right]$
again first order with $L=X_{A} F^{A}$ possible without central extension: Verlinde, MG VI cf. also A. Achúcarro, hep-th/9207108
other important pre-cursors:
W. Kummer, D.J. Schwarz, PR D45 (1992) 3628
N. Ikeda, hep-th/9312059: (non-linear) gauge formulation for $U=0$ but generic $V(X)$

4. First order action, relation to PSM

First order action:
P. Schaller, T. Strobl, hep-th/9405110

$$
\begin{equation*}
S^{(F O G)}=\int_{\mathcal{M}_{2}}\left[X_{a} T^{a}+X R+\epsilon \mathcal{V}\left(X^{a} X_{a}, X\right)\right] \tag{1}
\end{equation*}
$$

$T^{a}=(D e)^{a}$: torsion 2-form
$R^{a}{ }_{b}=\epsilon^{a}{ }_{b} R=\epsilon^{a}{ }_{b} \mathrm{~d} \omega$: curvature 2-form
$\epsilon=-\frac{1}{2} \epsilon_{a b} e^{a} \wedge e^{b}$: volume 2-form
X : "dilaton" (Lagrange mult. f. curvature)
X^{a} : auxiliary fields (- " - torsion)
\mathcal{V} : potential defining the model (as before)
Relation to second order:
dilaton: $X=X$
kinetic term: $(\nabla X)^{2}=-X^{a} X_{a}$
metric: $g_{\mu \nu}=\eta_{a b} e_{\mu}^{a} e_{\nu}^{b}$
connection: Levi-Civitá $=\omega$-torsion part
Technical Note: Use light-cone components ($\eta_{+-}=$ $\left.1=\eta_{-+}, \eta_{++}=0=\eta_{--}\right)$; define $\epsilon^{ \pm} \pm= \pm 1$
$T^{ \pm}=(\mathrm{d} \pm \omega) \wedge e^{ \pm}, \quad \epsilon=e^{+} \wedge e^{-}, \quad X^{a} X_{a}=2 X^{+} X^{-}$
Typically: $\mathcal{V}\left(X^{+} X^{-}, X\right)=X^{+} X^{-} U(X)+V(X)$

Equivalence to specific type of Poisson- σ model [P. Schaller, T. Strobl, hep-th/9405110]

$$
\mathcal{S}_{g P S M}=\int_{\mathcal{M}_{2}} \mathrm{~d} X^{I} \wedge A_{I}+\frac{1}{2} P^{I J} A_{J} \wedge A_{I}
$$

- gauge field 1-forms: $A_{I}=\left(\omega, e_{a}\right)$, connection, Zweibeine
- target space coordinates: $X^{I}=\left(X, X^{a}\right)$, dilaton, auxiliary fields
- target space: Poisson manifold
- Poisson tensor: odd dimension \rightarrow kernel!
- Jacobi: $P^{I L} \partial_{L} P^{J K}+\operatorname{perm}(I J K)=0$

$$
P^{I J}=\left(\begin{array}{ccc}
0 & X^{+} & -X^{-} \\
-X^{+} & 0 & \mathcal{V} \\
X^{-} & -\mathcal{V} & 0
\end{array}\right)
$$

Equations of motion (first order):

$$
\begin{array}{r}
\mathrm{d} X^{I}+P^{I J} A_{J}=0 \\
\mathrm{~d} A_{I}+\frac{1}{2}\left(\partial_{I} P^{J K}\right) A_{K} \wedge A_{J}=0
\end{array}
$$

Gauge symmetries:

$$
\begin{aligned}
\delta X^{I} & =P^{I J} \varepsilon_{J} \\
\delta A_{I} & =-\mathrm{d} \varepsilon_{I}-\left(\partial_{I} P^{J K}\right) \varepsilon_{K} A_{J}
\end{aligned}
$$

Note 1: if $P^{I J}$ linear: Lie-Algebra! Otherwise: nonlinear gauge symmetries
Note 2: on-shell equivalent to diffeomorphisms+local Lorentz trafos for specific Poisson tensor on previous page

Remark: Schouten-Nijenhuis bracket:

$$
\left[X^{I}, X^{J}\right]_{S N}=P^{I J}
$$

Note 1: like non-commutative geometry
Note 2: Jacobi identity for bracket equivalent to nonlinear identity for Poisson tensor on previous page *: M. Kontsevich, q-alg/9709040, path integral approach: A. Cattaneo, G. Felder, math.qa/9902090

5. All classical solutions (locally)

Ansatz: $X^{+} \neq 0$ in a patch $\rightarrow e^{+}=X^{+} Z$ Summary of EOM for dilaton gravity:

$$
\begin{aligned}
\delta \omega: & \mathrm{d} X+X^{-} e^{+}-X^{+} e^{-}=0, \\
\delta e^{\mp}: & (\mathrm{d} \pm \omega) X^{ \pm} \mp \mathcal{V} e^{ \pm}=0, \\
\delta X: & \mathrm{d} \omega+\epsilon \frac{\partial \mathcal{V}}{\partial X}=0, \\
\delta X^{\mp}: & (\mathrm{d} \pm \omega) e^{ \pm}+\epsilon \frac{\partial \mathcal{V}}{\partial X^{\mp}}=0 .
\end{aligned}
$$

1. use $\delta \omega$ to get $e^{-}=\mathrm{d} X / X^{+}+X^{-} Z$
2. read off $\epsilon=e^{+} \wedge e^{-}=Z \wedge \mathrm{~d} X$
3. use δe^{-}to get $\omega=-\mathrm{d} X^{+} / X^{+}+Z \mathcal{V}$
4. use δX^{-}to get $\mathrm{d} Z=\mathrm{d} X \wedge Z U(x)$
5. define "integrating factor":

$$
I(X):=\exp \int^{X} U\left(X^{\prime}\right) \mathrm{d} X^{\prime}
$$

6. obtain $Z=: \hat{Z} I(X)$ with $\mathrm{d} \hat{Z}=0 \rightarrow \hat{Z}=\mathrm{d} u$ 7. use $g_{\mu \nu}=e_{\mu}^{+} e_{\nu}^{-}+e_{\mu}^{-} e_{\nu}^{+}$
general solution for the line element:

$$
\mathrm{d} s^{2}=I(X)\left(2 \mathrm{~d} u \mathrm{~d} X+2 X^{+} X^{-} I(X) \mathrm{d} u^{2}\right)
$$

$X^{+} X^{-}=0$: apparent horizon!

Conservation law:
T. Banks, M. O'Loughlin, NP B362 (1991) 649;
V. Frolov, PR D46 (1992) 5383; R. Mann, hep-th/9206044 later generalized by "Vienna group"
W. Kummer+students; for a review cf. e.g.

DG, W. Kummer, D. Vassilevich, hep-th/0204253
Derivation in absence of matter: EOMs $X^{+} \delta e^{+}+$ $X^{-} \delta e^{-}$using also the EOM $\delta \omega$ establishes

$$
\mathrm{d}\left(X^{+} X^{-}\right)+\mathcal{V} \mathrm{d} X=0
$$

for "standard" $\mathcal{V}=X^{+} X^{-} U(X)+V(X)$:

$$
\mathcal{C}=I(X) X^{+} X^{-}+w(X), \quad \mathrm{d} \mathcal{C}=0
$$

with

$$
w(X):=\int^{X} I\left(X^{\prime}\right) V\left(X^{\prime}\right) \mathrm{d} X^{\prime}
$$

"Generalized Birkhoff theorem" (always 1 Killing)

Inserting into line element, $\mathrm{d} r=I(X) \mathrm{d} X$:

$$
\begin{equation*}
\mathrm{d} s^{2}=2 \mathrm{~d} u \mathrm{~d} r+2 I(X(r))(\mathcal{C}-w(X(r))) \mathrm{d} u^{2} \tag{2}
\end{equation*}
$$

Eddington-Finkelstein patch!

6. Global structure (Penrose diagrams)

for Schwarzschild-like solutions

Global CP: glue together EF patches:

Only point not covered by EF patches:
bifurcation point: $X^{+}=0=X^{-}$
M. Walker, J. Math. Phys. 11 (1970) 2280, T. Klösch, T. Strobl, gr-qc/9508020, gr-qc/9511081
open regions with $X^{+}=0=X^{-}: X=$ const. "Constant Dilaton Vacua" (very simple)

$$
V\left(X_{C D V}\right)=0, \quad R \propto V^{\prime}\left(X_{C D V}\right)=\text { const. }
$$

only Minkowski, Rindler, (A)dS

7. Mass, temperature, entropy

Naively from surface gravity:

$$
\begin{equation*}
T_{H}=\frac{1}{2 \pi}\left|w^{\prime}(X)\right|_{X=X_{h}} \tag{3}
\end{equation*}
$$

Note: independent from $I(X)$; don't need action

With minimally coupled matter: same result; e.g. from trace anomaly
S. Christensen, S. Fulling, PR D15 (1977) 2088

$$
<T_{\mu}^{\mu}>\propto R, \quad \nabla_{\mu} T^{\mu \nu}=0
$$

Matter coupled ("non-minimally") to dilaton:
Non-conservation equation!
W. Kummer, D. Vassilevich, gr-qc/9907041

$$
\nabla^{\mu} T_{\mu \nu}=-\left(\partial_{\nu} \Phi\right) \frac{1}{\sqrt{-g}} \frac{\delta W}{\delta \Phi}, \quad X=e^{-2 \Phi}
$$

Mass-to-temperature law: need action!
Sometimes mutually contradicting results for "ADM mass" (e.g. 2D string theory)
clarified in appendix of DG, D. Mayerhofer, gr-qc/0404013

BH Entropy

BH: "Bekenstein-Hawking" or "Black Hole"

Simple thermodynamic considerations:

$$
\mathrm{d} S=\frac{\mathrm{d} M}{T}
$$

J. Gegenberg, G. Kunstatter, D. Louis-Martinez, gr-qc/9408015

$$
\begin{equation*}
S=\left.2 \pi X\right|_{\mathcal{C}=w(X)} \equiv \frac{A}{4} \tag{4}
\end{equation*}
$$

confirmed by more elaborate derivations (CFT methods, near horizon conformal symmetry, Cardy-formula)
S. Carlip gr-qc/9906126, gr-qc/0203001, hep-th/0408123, S. Solodukhin, hep-th/9812056, M. Cadoni, S. Mignemi, hep-th/9810251

Note: need action!
open question: counting of microstates is fine, but what are actually the microstates of 2D dilaton gravity?
"Vienna School"

Brauer

Fuchs

Lehmden

8. Action for the ESBH

extensive review on $2 D$ dilaton gravity:
DG, W. Kummer, D. Vassilevich, hep-th/0204253
nogo result DG, D. Vassilevich, hep-th/0210060

8. Action for the ESBH

extensive review on $2 D$ dilaton gravity:
DG, W. Kummer, D. Vassilevich, hep-th/0204253
nogo result DG, D. Vassilevich, hep-th/0210060
circumvent it by allowing matter - but: don't want propagating physical degrees of freedom!

8. Action for the ESBH

extensive review on $2 D$ dilaton gravity:
DG, W. Kummer, D. Vassilevich, hep-th/0204253
nogo result DG, D. Vassilevich, hep-th/0210060
circumvent it by allowing matter - but: don't want propagating physical degrees of freedom!
suggestive: consider (abelian) gauge field

8. Action for the ESBH

extensive review on $2 D$ dilaton gravity:
DG, W. Kummer, D. Vassilevich, hep-th/0204253
nogo result DG, D. Vassilevich, hep-th/0210060
circumvent it by allowing matter - but: don't want propagating physical degrees of freedom!
suggestive: consider (abelian) gauge field result: it works! DG, hep-th/0501208

$$
\begin{align*}
S_{E S B H}= & \int_{\mathcal{M}_{2}}\left[X_{a} T^{a}+\Phi R+B F\right. \\
& \left.+\epsilon\left(X^{+} X^{-} U(\Phi)+V(\Phi)\right)\right] \tag{14}
\end{align*}
$$

with $\Phi_{ \pm}=\gamma \pm \operatorname{arcsinh} \gamma$ and $\gamma=X / B$ + : ESBH, -: ESNS
The potentials read

$$
\begin{equation*}
V=-2 b^{2} \gamma, \quad U_{ \pm}=-\frac{1}{\gamma N_{ \pm}(\gamma)} \tag{15}
\end{equation*}
$$

with an irrelevant scale parameter $b \in \mathbb{R}^{+}$and

$$
\begin{equation*}
N_{ \pm}(\gamma)=1+\frac{2}{\gamma}\left(\frac{1}{\gamma} \pm \sqrt{1+\frac{1}{\gamma^{2}}}\right) \tag{16}
\end{equation*}
$$

Note that $N_{+} N_{-}=1$.

Plot of U as a function of γ
Red: ESBH, Blue: ESNS, Black: Witten BH

Asymptotic ("weak coupling") limit $(\gamma \rightarrow \infty)$:
Witten $\mathrm{BH}: U=-1 / \Phi, V=-2 b^{2} \Phi$ valid for both branches (ESBH, ESNS)

Strong coupling limit $(\gamma \rightarrow 0)$:
ESBH branch: JT model ($U=0, V=-b^{2} \Phi$)
ESNS branch: 5D Schwarzschild!
$\left(U=-2 /(3 \Phi), V=-2 b^{2}(6 \Phi)^{1 / 3}\right)$

9. Mass and entropy of the ESBH

Constants of motion:
$U(1)$-charge: value of DVV dilaton at origin mass: determined by level $k!\left(M_{A D M}=b k\right)$

Hawking temperature $T_{H}=\frac{b}{2 \pi} \sqrt{1-\frac{2 b}{M_{A D M}}}$
Note: for mass knowledge of action pivotal! the same holds for entropy!

$$
S=\left.2 \pi \Phi\right|_{\text {horizon }}=2 \pi(x+\operatorname{arcsinh} x)
$$

with $x:=2 \sqrt{M(M-1)}$ and $M=k / 2$ Limit of large mass ($k \rightarrow \infty$)

$$
\left.S\right|_{M \gg 1}=S_{L O}+2 \pi \ln S_{L O}+\mathcal{O}(1)
$$

with $S_{L O}=4 \pi M$

Limit of small mass ($k \rightarrow 2$)

$$
\left.S\right|_{M=1+\varepsilon}=8 \pi \sqrt{\varepsilon}(1+\mathcal{O}(\varepsilon))
$$

Specific heat

Result:

$$
C:=\frac{\mathrm{d} M_{A D M}}{\mathrm{~d} T_{H}}=\frac{16 \pi^{2}}{b} M^{2} T_{H}
$$

Low temperatures ($T_{H} \rightarrow 0, M \rightarrow 1$): like electron gas with Sommerfeld constant $\gamma=$ $16 \pi^{2} / b$

High masses: Witten BH limit! Note: for Witten $\mathrm{BH}: 1 / C=0$; thus, corrections are highly non-trivia!!

$$
C=\frac{2 \pi}{b^{2}} M_{A D M}^{2}+\mathcal{O}\left(M_{A D M}\right)
$$

Specific heat is positive and proportional to $M_{A D M}^{2}$. Up to numerical coefficient the same result has been obtained for the quantum corrected Witten BH in DG, W. Kummer and D. Vassilevich, hep-th/0305036!

Why is the mass given by the level?

Technically: see hep-th/0501208
result: $\mathcal{C}^{(g)}=-b k=-M_{A D M}$
Physically: conservation law in presence of matter:

$$
\underbrace{\mathrm{d} \mathcal{C}^{(g)}}_{\text {geometry }}+\underbrace{W^{(m)}}_{\text {matter }}=0
$$

addition of matter "deforms" $\mathcal{C}(g)$ in generic dilaton gravity

Thus, matter has to "deform" the level k

Why is the mass given by the level?

Technically: see hep-th/0501208
result: $\mathcal{C}^{(g)}=-b k=-M_{A D M}$

Physically: conservation law in presence of matter:

$$
\underbrace{\mathrm{d} \mathcal{C}^{(g)}}_{\text {geometry }}+\underbrace{W^{(m)}}_{\text {matter }}=0
$$

addition of matter "deforms" $\mathcal{C}(g)$ in generic dilaton gravity

Thus, matter has to "deform" the level k

But this is precisely what happens: the addition of matter generically changes the central charge and hence the level k

Similar interpretation in V.A. Kazakov and A.A. Tseytlin, hep-th/0104138 to explain Hawking temperature of the ESBH

$$
T_{H}=\frac{b}{2 \pi} \sqrt{1-\frac{2}{k}}
$$

10. Open questions

- Supplementary thermodynamical considerations (free energy, entropy, alternative mass definition)
- Microstates?
- Logarithmic corrections from thermal fluctuations (negative sign!)
- Understand duality $A d S_{2} \leftrightarrow$ Schwarzschild $_{5}$
- Supersymmetrization
- Coupling to matter! (critical collapse, tachyon, 2D type 0A/OB strings, quantization)

