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Motivation

» Quantum gravity

» Address conceptual issues of quantum gravity

» Black hole evaporation, information loss, black hole microstate
counting, virtual black hole production, ...

» Technically much simpler than 4D or higher D gravity
Integrable models: powerful tools in physics (Coulomb problem,
Hydrogen atom, harmonic oscialltor, ...)

» Models should be as simple as possible, but not simpler
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» Black hole evaporation, information loss, black hole microstate
counting, virtual black hole production, ...
» Technically much simpler than 4D or higher D gravity
> Integrable models: powerful tools in physics (Coulomb problem,
Hydrogen atom, harmonic oscialltor, ...)
» Models should be as simple as possible, but not simpler
» Gauge/gravity duality
» Deeper understanding of black hole holography
AdS3/CFT, correspondence best understood
Quantum gravity via AdS/CFT? (Witten '07, Li, Song, Strominger '08)
Applications to 2D condensed matter systems?
Gauge gravity duality beyond standard AdS/CFT: warped AdS,
asymptotic Lifshitz, non-relativistic CFTs, logarithmic CFTs, ...
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Motivation

» Quantum gravity
» Address conceptual issues of quantum gravity
» Black hole evaporation, information loss, black hole microstate
counting, virtual black hole production, ...
» Technically much simpler than 4D or higher D gravity
> Integrable models: powerful tools in physics (Coulomb problem,
Hydrogen atom, harmonic oscialltor, ...)
» Models should be as simple as possible, but not simpler
» Gauge/gravity duality
» Deeper understanding of black hole holography
AdS3/CFTy correspondence best understood
Quantum gravity via AdS/CFT? (Witten '07, Li, Song, Strominger '08)
Applications to 2D condensed matter systems?
Gauge gravity duality beyond standard AdS/CFT: warped AdS,
asymptotic Lifshitz, non-relativistic CFTs, logarithmic CFTs, ...
» Physics
» Cosmic strings (Deser, Jackiw, 't Hooft '84, '92)
» Black hole analog systems in condensed matter physics (graphene,
BEC, fluids, ...)

v vyVvYyy
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Gravity in lower dimensions
D?(D?-1)

Riemann-tensor =—55— components in D dimensions:

> 11D: 1210 (1144 Weyl and 66 Ricci)
» 10D: 825 (770 Weyl and 55 Ricci)
» 5D: 50 (35 Weyl and 15 Ricci)

» 4D: 20 (10 Weyl and 10 Ricci)
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Gravity in lower dimensions

. D2(D2—1) . . . .
Riemann-tensor —{3—— components in D dimensions:

11D: 1210 (1144 Weyl and 66 Ricci)
10D: 825 (770 Weyl and 55 Ricci)
5D: 50 (35 Weyl and 15 Ricci)

4D: 20 (10 Weyl and 10 Ricci)

3D: 6 (Ricci)

2D: 1 (Ricci scalar)
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» 2D: 1 (Ricci scalar)

» 2D: lowest dimension exhibiting black holes (BHs)
» Simplest gravitational theories with BHs in 2D
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Gravity in lower dimensions

. D2(D2—1) . . . .
Riemann-tensor —{3—— components in D dimensions:

» 11D: 1210 (1144 Weyl and 66 Ricci)
» 10D: 825 (770 Weyl and 55 Ricci)

» 5D: 50 (35 Weyl and 15 Ricci)

» 4D: 20 (10 Weyl and 10 Ricci)

» 3D: 6 (Ricci)

» 2D: 1 (Ricci scalar)

» 2D: lowest dimension exhibiting black holes (BHs)
» Simplest gravitational theories with BHs in 2D

» 3D: lowest dimension exhibiting BHs and gravitons

» Simplest gravitational theories with BHs and gravitons in 3D

D. Grumiller — Gravity in three dimensions Introduction to 3D gravity 5/26



Outline

Topologically massive gravity
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Action and equations of motion of topologically massive gravity (TMG)

Consider the action (Deser Jackiw & Templeton '82)

1
™G — ]6 3 / xz

)x v
2 M2 (0L +

2
3 FUuTFTvp)}
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Action and equations of motion of topologically massive gravity (TMG)

Consider the action (Deser, Jackiw & Templeton '82)

1
Itve = N
TMG 167 G /d x R+ —l—

)\ v
2 M2 (0L +

2
3 FUHTFTVP)}

Equations of motion:

1
2
with the Cotton tensor defined as

1
Cuw = 3 qﬁﬁvaR@, + (u )

1
9uv + — C/Il/ -

R/u/ - £2

g/wB
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Action and equations of motion of topologically massive gravity (TMG)

Consider the action (Deser, Jackiw & Templeton '82)

1 2
3 )\ v
Ity = 167 G /d TN — R“‘ ‘|‘ 2% s FPAJ(0#FJVP+ graurrﬁrvp)}

Equations of motion:

1
2
with the Cotton tensor defined as

1
Cuw = 3 5uaﬂvaR5V + (u )

1
9uv + — C/n/ -

R/u/ _ {/2

g R —

,—[Some properties of TMG} \

» Massive gravitons and black holes
> AdS solutions and asymptotic AdS solutions
» warped AdS solutions and warped AdS black holes

» Lifshitz solutions and Lifshitz pp-waves

\.
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Classical solutions (exact)

Stationarity plus axi-symmetry:

» Two commuting Killing vectors
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Classical solutions (exact)

Stationarity plus axi-symmetry:
» Two commuting Killing vectors
» Effectively reduce 2+1 dimensions to 14-0 dimensions
» Like particle mechanics, but with up to three time derivatives

» Still surprisingly difficult to get exact solutions!
Reduced action (Clement '94):

. 1 o 9 1 . .
Iole, X' ~ /dpe b e*QXlX'jmj 2 + o e 3 €ijk XiXI Xk

Here e is the Einbein and X = (T, X,Y) a Lorentzian 3-vector
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Classical solutions (exact)

Stationarity plus axi-symmetry:
» Two commuting Killing vectors
» Effectively reduce 2+1 dimensions to 14-0 dimensions
» Like particle mechanics, but with up to three time derivatives
» Still surprisingly difficult to get exact solutions!
Reduced action (Clement '94):

. 1 o 2 1 . .
Iole, X' ~ /dpe b eiQXlijj -2 + o e 3 €ijk XixI Xk

Here e is the Einbein and X = (T, X,Y) a Lorentzian 3-vector
Classification of solutions:
» Einstein solutions: AdS, BTZ
» warped solutions: warped AdS, warped black holes
» Lifshitz solutions: zero modes of asymptotic Lifshitz pp-waves
» other solutions? (Ertl, Grumiller, Johansson, in prep.)
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TMG at the chiral point

Definition: TMG at the chiral point is TMG with the tuning
ul=1

between the cosmological constant and the Chern—Simons coupling.
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TMG at the chiral point

Definition: TMG at the chiral point is TMG with the tuning
pul=1

between the cosmological constant and the Chern—Simons coupling.

Why special? (Li, Song & Strominger '08)
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TMG at the chiral point
Definition: TMG at the chiral point is TMG with the tuning
ul=1

between the cosmological constant and the Chern—Simons coupling.
Why special? (Li, Song & Strominger '08)
Calculating the central charges of the dual boundary CFT yields

3¢ 1 3¢ 1
CL:E(l—ﬂ) cR:@(l—i——)

wl
Thus, at the chiral point we get

3¢
cr, =0 0326
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TMG at the chiral point

Definition: TMG at the chiral point is TMG with the tuning
ul=1

between the cosmological constant and the Chern—Simons coupling.
Why special? (Li, Song & Strominger '08)
Calculating the central charges of the dual boundary CFT yields

3¢ 1 3¢ 1
= (1-— = (1+—
L =56 uz) n =55 ( +M)
Thus, at the chiral point we get
3¢
cr, =0 CR = a

» Abbreviate “Cosmological TMG at the chiral point” as CCTMG
» CCTMG is also known as “chiral gravity"”

» Dual CFT: chiral? (conjecture by Li, Song & Strominger '08)

» More adequate name for CCTMG: “logarithmic gravity”
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Gravitons around AdS3 in CTMG

Linearization around AdS background.
Juv = Guv + hyw
Line-element g, of pure AdS:
d52 s = g dotda” = (52( — cosh? pdr? + sinh? pd¢? + (1/)2)
Isometry group: SL(2,R); x SL(2,R)r

Useful to introduce light-cone coordinates u =7+ ¢, v = 7 — ¢.
The SL(2,R)}, generators

Lo = 10,

44y [COsh2p 1
[sinh 2p " ~ sinh 2p

obey the algebra [Lo, L+1] = FLy1, [L1,L_1] = 2Ly.

The SL(2,R)R generators Ly, L1 obey same algebra, but with

Lilzie av:':%ap

U v, L— L
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Gravitons around AdS3 in CTMG
Linearization around AdS background.
Y = G +
leads to linearized EOM that are third order PDE
v N2

1 e
GG+ =) = (DEDEDMh),, = 0
u

with three mutually commuting first order operators
1

(DHR)Y =60 £0e,Vo  (DM)," =64+ —£,""Va

7
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Gravitons around AdS3 in CTMG
Linearization around AdS background.

Juv = Guv + h,u,z/
leads to linearized EOM that are third order PDE

1 ,
G/(/L) + /7 C/(t}/) - (DRDLDM}I)W =0 (1)
with three mutually commuting first order operators
_ 1 _
(DHR)Y =60 £0e,*Vo  (DM)," =61+ 1o Va

Three linearly independent solutions to (1):

(D*nF) =0 (DFRT), =0  (DMAM) =0

N Ny pv
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Gravitons around AdS3 in CTMG
Linearization around AdS background.

Juv = Guv + h,u,z/
leads to linearized EOM that are third order PDE

1 s
(;5111/) + /7 C/(/}) — (DRDLDA[}],)IH, = O (1)
with three mutually commuting first order operators
_ 1 _
R

Three linearly independent solutions to (1):

(D*nF) =0 (DFRT), =0  (DMAM) =0

N Ny pv

[ At chiral point left (L) and massive (M) branches coincide! ]
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Degeneracy at the chiral point
Will be quite important later!

Li, Song & Strominger found all normalizable solutions of linearized EOM.
» Primaries: Lo, Lo eigenstates o)/ F/M ith
Lle/L/M — Ele/L/M =0
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Degeneracy at the chiral point
Will be quite important later!

Li, Song & Strominger found all normalizable solutions of linearized EOM.
» Primaries: Lo, Ly eigenstates ¢L/F%/M with
Lle/L/M — Ele/L/M =0
» Descendants: act with L_; and L_; on primaries

» General solution: linear combination of ¢f/L/M
» Linearized metric is then the real part of the wavefunction

huw = Rety,
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Degeneracy at the chiral point
Will be quite important later!

Li, Song & Strominger found all normalizable solutions of linearized EOM.

» Primaries: Lo, Ly eigenstates ¢L/F%/M with
Lle/L/M — Ele/L/M =0
» Descendants: act with L_; and L_; on primaries

» General solution: linear combination of ¢f/L/M
» Linearized metric is then the real part of the wavefunction

huw = Rety,
» At chiral point: L and M branches degenerate. Get log solution
(Grumiller & Johansson '08)
/11/(/1[) o l‘/u/
pul—1 ué —1
with property

(DLE’log)uu - (D loo)uu ?é 0 ((DL) 10g>ﬂl’ =0
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Sign oder nicht sign?
That is the question. Choosing between Skylla and Charybdis.

» With signs defined as in this
talk: BHs positive energy,
gravitons negative energy
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negative energy, gravitons
positive energy
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Sign oder nicht sign?
That is the question. Choosing between Skylla and Charybdis.

» With signs defined as in this
talk: BHs positive energy,
gravitons negative energy

» With signs as defined in Carlip,
Deser, Waldron, Wise '08: BHs
negative energy, gravitons
positive energy

» Either way need a mechanism to
eliminate unwanted negative
energy objects — either the
gravitons or the BHs
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Sign oder nicht sign?
That is the question. Choosing between Skylla and Charybdis.

>

With signs defined as in this
talk: BHs positive energy,
gravitons negative energy

With signs as defined in Carlip,
Deser, Waldron, Wise '08: BHs
negative energy, gravitons
positive energy

Either way need a mechanism to
eliminate unwanted negative
energy objects — either the
gravitons or the BHs

Even at chiral point the problem
persists because of the
logarithmic mode. See Figure.
(thanks to Niklas Johansson)

Energy for all branches:
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Outline

Logarithmic CFT conjecture
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Motivating the conjecture

e N

Log mode exhibits interesting property:

L/log 2 1 @,log
H( e >:(0 2)( - >
o8 AACE
() =(02) ()

Here H = Lo+ Lo ~ 0 is the Hamilton operator and J = Lo—Lg ~ 0y
the angular momentum operator.

\. J
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Motivating the conjecture

e N

Log mode exhibits interesting property:

L/log 2 1 @,log
H( e >:(0 2)( - >
o8 AACE
() =(02) ()

Here H = Lo+ Lo ~ 0 is the Hamilton operator and J = Lo—Lg ~ 0y
the angular momentum operator.

\. J

Such a Jordan form of H and J is defining property of a logarithmic CFT!
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Motivating the conjecture

e N

Log mode exhibits interesting property:

L/log 2 1 @,log
H( e >:(0 2)( - >
o8 AACE
() =(02) ()

Here H = Lo+ Lo ~ 0 is the Hamilton operator and J = Lo—Lg ~ 0y
the angular momentum operator.

\. J

Such a Jordan form of H and J is defining property of a logarithmic CFT!

Logarithmic CFT conjecture]
CCTMG dual to a logarithmic CFT (Grumiller, Johansson '08) ]
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Early hints for validity of conjecture

Properties of logarithmic mode:
» Perturbative solution of linearized EOM, but not pure gauge
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Early hints for validity of conjecture

Properties of logarithmic mode:
» Perturbative solution of linearized EOM, but not pure gauge
» Energy of logarithmic mode is finite
log 47
T 112G

and negative — instability! (Grumiller & Johansson '08)
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Early hints for validity of conjecture

Properties of logarithmic mode:
» Perturbative solution of linearized EOM, but not pure gauge
» Energy of logarithmic mode is finite

47
1152G ¢3

and negative — instability! (Grumiller & Johansson '08)

log _

» Logarithmic mode is asymptotically AdS
ds? = d/) + ( (U >/1/( +A( >P+ ,[(J) +A( ),/*2/)// ) dz? da?

lij g
but violates Brown—Henneaux boundary conditions! (yi(jl) =0)

’BH
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Early hints for validity of conjecture

Properties of logarithmic mode:
» Perturbative solution of linearized EOM, but not pure gauge
» Energy of logarithmic mode is finite
log 47
T 112G
and negative — instability! (Grumiller & Johansson '08)

» Logarithmic mode is asymptotically AdS
ds” = dp® + (1 e/ 44

47D 4 AP/t ) dat o
(1)

but violates Brown—Henneaux boundary conditions! (;; ’BH =0)
» Consistent log boundary conditions replacing Brown—Henneaux
(Grumiller & Johansson '08, Martinez, Henneaux & Troncoso '09)
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Early hints for validity of conjecture

Properties of logarithmic mode:
» Perturbative solution of linearized EOM, but not pure gauge
» Energy of logarithmic mode is finite
log 47
T 112G
and negative — instability! (Grumiller & Johansson '08)
» Logarithmic mode is asymptotically AdS

ds? = dp? + (“,7-(](-])62/’“ + “,"f]'-wp + “,xg-)) + “,wg)eifzf’//' + ... ) dz’ da’
(1)

but violates Brown—Henneaux boundary conditions! (;; ’BH =0)
» Consistent log boundary conditions replacing Brown—Henneaux
(Grumiller & Johansson '08, Martinez, Henneaux & Troncoso '09)

» Brown—York stress tensor is finite and traceless, but not chiral
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Early hints for validity of conjecture

Properties of logarithmic mode:
» Perturbative solution of linearized EOM, but not pure gauge
» Energy of logarithmic mode is finite
log 47
T 112G
and negative — instability! (Grumiller & Johansson '08)
Logarithmic mode is asymptotically AdS

(1)
ij

v

ds2 — d/)2 + (ﬁr;(;'])e?p/ﬁ +y W54 AY'S')) + A/y/g'z)epr//i + .. ) dzt dad

but violates Brown—Henneaux boundary conditions! (%‘(jl)’BH =0)
» Consistent log boundary conditions replacing Brown—Henneaux

(Grumiller & Johansson '08, Martinez, Henneaux & Troncoso '09)

v

Brown—York stress tensor is finite and traceless, but not chiral

v

Log mode persists non-perturbatively, as shown by Hamilton analysis
(Grumiller, Jackiw & Johansson '08, Carlip '08)
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Correlators in logarithmic CFTs
» Any CFT has a conserved traceless energy momentum tensor.

T.:=0 T,, = OL(z) ZZ = OR(Z)
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Correlators in logarithmic CFTs

» Any CFT has a conserved traceless energy momentum tensor.
ng =0 Tzz = OL(Z) ng = OR(Z)

» The 2- and 3-point correlators are fixed by conformal Ward identities.

(0%(z) 0%(0)) = %

(0*(2) 0%(0)) = %

(0 (z) 0™(0)) =0

(0%(2) 0%(z) 0%(0)) = Z,Q(C;, 7)2
(0% (2) OF (") OF(0)) = -

(O%(2) 0F(2) OR(0)) = 0
(O (z) 0" (=) OF(0)) = 0

Central charges ¢y, p determine key properties of CFT.
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Correlators in logarithmic CFTs

» Any CFT has a conserved traceless energy momentum tensor.
ng =0 Tzz = OL(Z) ng = OR(Z)
» The 2- and 3-point correlators are fixed by conformal Ward identities.

Central charges ¢,/ determine key properties of CFT.

» Suppose there is an additional operator O™ with conformal weights
h=2+4+¢, h=¢

N

, B
(0% (2,2) 0M(0,0)) = 5

which degenerates with O" in limit ¢z, oc e — 0
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Correlators in logarithmic CFTs

» Any CFT has a conserved traceless energy momentum tensor.
ng =0 Tzz = OL(Z) 25 = OR( )

» The 2- and 3-point correlators are fixed by conformal Ward identities.
Central charges ¢,/ determine key properties of CFT.

» Suppose there is an additional operator O™ with conformal weights
h=2+¢e h=c¢

N

B

(0% (2,2) 0M(0,0)) = 5

which degenerates with O" in limit ¢z, oc e — 0
» Then energy momentum tensor acquires logarithmic partner 0'°%

(’)L b
Olog, — + 7L OM
where
by := lim —— 75 0
cr,—0 g
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Correlators in logarithmic CFTs
» Any CFT has a conserved traceless energy momentum tensor.
ng =0 Tzz = OL(Z) ng = OR(Z)

» The 2- and 3-point correlators are fixed by conformal Ward identities.
Central charges ¢/ determine key properties of CFT.

> Suppose there is an additional operator OM with conformal weights
h=2+¢, h=c¢c which degenerates with O in limit ¢, xe — 0

» Then energy momentum tensor acquires logarithmic partner (0'°2

» Some 2-point correlators:
(0 (2)0"(0,0)) =0
: b
L log YL
(07(2)0(0,0)) = o4
= - bl 212
<Olog(zﬂ/§>olog(0: 0)> _ )L H(TZ’L‘Z’ )
z

“New anomaly” by determines key properties of logarithmic CFT.
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Check of logarithmic CFT conjecture for 2- and 3-point correlators

If LCFT conjecture is correct then following procedure must work:
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If LCFT conjecture is correct then following procedure must work:
» Calculate non-normalizable modes for left, right and logarithmic
branches by solving linearized EOM on gravity side
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Check of logarithmic CFT conjecture for 2- and 3-point correlators
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» According to AdS3/LCFT3 dictionary these non-normalizable modes
are sources for corresponding operators in the dual CFT
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Check of logarithmic CFT conjecture for 2- and 3-point correlators

If LCFT conjecture is correct then following procedure must work:

» Calculate non-normalizable modes for left, right and logarithmic
branches by solving linearized EOM on gravity side

» According to AdS3/LCFT3 dictionary these non-normalizable modes
are sources for corresponding operators in the dual CFT
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> These correlators must coinicde with the ones of a logarithmic CFT
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Check of logarithmic CFT conjecture for 2- and 3-point correlators

If LCFT conjecture is correct then following procedure must work:

» Calculate non-normalizable modes for left, right and logarithmic
branches by solving linearized EOM on gravity side

» According to AdS3/LCFT3 dictionary these non-normalizable modes
are sources for corresponding operators in the dual CFT

» Calculate 2- and 3-point correlators on the gravity side, e.g. by
plugging non-normalizable modes into second and third variation of
the on-shell action

> These correlators must coinicde with the ones of a logarithmic CFT

Except for value of new anomaly b7 no freedom in this procedure.
Either it works or it does not work.
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Check of logarithmic CFT conjecture for 2- and 3-point correlators

If LCFT conjecture is correct then following procedure must work:

» Calculate non-normalizable modes for left, right and logarithmic
branches by solving linearized EOM on gravity side

» According to AdS3/LCFT3 dictionary these non-normalizable modes
are sources for corresponding operators in the dual CFT

» Calculate 2- and 3-point correlators on the gravity side, e.g. by
plugging non-normalizable modes into second and third variation of
the on-shell action

> These correlators must coinicde with the ones of a logarithmic CFT

Except for value of new anomaly b7 no freedom in this procedure.
Either it works or it does not work.

» Works at level of 2-point correlators (Skenderis, Taylor & van Rees
'09, Grumiller & Sachs '09)

» Works at level of 3-point correlators (Grumiller & Sachs '09)

» Value of new anomaly: by = —cp = —30/G
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Alternative calculation of new anomaly by,

As final consistency check perform the following short-cut.
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» Consider small but non-vanising central charge ¢y,
» Then weights h = 2 + € and h = ¢ of massive modes differ
infinitesimally from weights 2 and 0 of left mode
> The new anomaly is given by the ratio of these two small quantities

. c
by, = lim _L
e—0 £
> Result obtained in this way must coincide with result for b7, from the

2- and 3-point correlators

Recover the result (Grumiller & Hohm '09, Grumiller, Johansson &
Zojer, to appear)
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Alternative calculation of new anomaly by,

As final consistency check perform the following short-cut.
» Consider small but non-vanising central charge ¢y,
» Then weights h = 2 + € and h = ¢ of massive modes differ

infinitesimally from weights 2 and 0 of left mode
> The new anomaly is given by the ratio of these two small quantities
_ c
by, = lim L
e—0 €

> Result obtained in this way must coincide with result for b7, from the
2- and 3-point correlators

Recover the result (Grumiller & Hohm '09, Grumiller, Johansson &
Zojer, to appear)
3¢
bL = ——

G

Conclusion: all consistency tests show validity of LCFT conjecture!
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Outline

Consequences, Generalizations & Applications
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Summary and comments

TMG at the chiral/logarithmic point puf = 1:

» 3D gravity theory with black holes and massive graviton excitations
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3D gravity theory with black holes and massive graviton excitations

Conjectured to be dual to logarithmic CFT
Conjecture passed several independent consistency tests
Non-trivial Jordan cell structure on gravity side, like in LCFT

Operator degenerates with energy-momentum tensor at the point
where central charge vanishes — good indication for a LCFT
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Summary and comments

TMG at the chiral/logarithmic point puf = 1:

» 3D gravity theory with black holes and massive graviton excitations

» Conjectured to be dual to logarithmic CFT

> Conjecture passed several independent consistency tests

» Non-trivial Jordan cell structure on gravity side, like in LCFT

> Operator degenerates with energy-momentum tensor at the point
where central charge vanishes — good indication for a LCFT

» Correlators on gravity side match precisely those of LCFT

» Central charges: ¢, =0, cg = 3¢/G, new anomaly: by, = —3/(/G

» LCFTs non-unitary < bulk gravitons negative energy

» LCFTs cannot be chiral < Brown—York stress tensor not chiral

[ If conjecture true: first example of AdS3/LCFTy correspondence! ]
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Consequences for chiral gravity

Chiral gravity conjectured to exist as consistent quantum theory of gravity
by Li, Song & Strominger '08
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stricter fall-off conditions than ansymptotic AdS (Brown—Henneaux)
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Consequences for chiral gravity

Chiral gravity conjectured to exist as consistent quantum theory of gravity
by Li, Song & Strominger '08

Dual CFT would be a chiral CFT with ¢, =0 and cg = 3¢/G
Partition function trivially factorizes holomorphically

v

v

Z=2.7p=Zn

Thus avoids problems with original approach by Witten '07

Chiral gravity defined by truncation of the dual LCFT

Truncation either by requiring periodicity in time or by imposing
stricter fall-off conditions than ansymptotic AdS (Brown—Henneaux)

v

v

v

Not clear whether truncation consistent in full quantum theory
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Consequences for chiral gravity

Chiral gravity conjectured to exist as consistent quantum theory of gravity
by Li, Song & Strominger '08

Dual CFT would be a chiral CFT with ¢, =0 and cg = 3¢/G
Partition function trivially factorizes holomorphically

v

v

Z=2.7p=Zn

Thus avoids problems with original approach by Witten '07

Chiral gravity defined by truncation of the dual LCFT

Truncation either by requiring periodicity in time or by imposing
stricter fall-off conditions than ansymptotic AdS (Brown—Henneaux)

v

v

v

Not clear whether truncation consistent in full quantum theory

Not clear yet if chiral gravity exists!
If it exists: excellent toy model for quantum gravity!
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Generalizations to new massive gravity and generalized massive gravity

Q: Is TMG the only gravity theory dual to a LCFT?
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Generalizations to new massive gravity and generalized massive gravity

Q: Is TMG the only gravity theory dual to a LCFT?

New massive gravity (Bergshoeff, Hohm & Townsend '09):
A Pay=g[or+ - (R"Ru - > B — 2am?
e = Jerg | COVTITRT e e T g ) A

Similar story (Grumiller & Hohm '09, Alishahiha & Naseh '10):
» Linearized EOM around AdS3 (g =g+ h)
(DEDEDMDMp) =0
» Logarithmic point for A=3: ¢, =cg =0
» Massive modes degenerate with left and right boundary gravitons
> 2-point correlators on gravity side match precisely those of a LCFT
» New anomalies: by = br = —012//G
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Potential applications in condensed matter physics

LCFTs arise in systems with quenched disorder.
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Potential applications in condensed matter physics

LCFTs arise in systems with quenched disorder.

» Quenched disorder: systems with random variable that does not
evolve in time

» Examples: spin glasses, quenched random magnets, dilute
self-avoiding polymers, percolation

» For sufficient amount of disorder perturbation theory breaks down —
random critical point

» Infamous denominator in correlators:

_ fD¢ exp (— I[¢] — [d?2'V(2')O(2")) O(z) O(0)
i = [ovew) D6 exp (— 119] — Ja2V()O())

» Different ways to deal with denominator (replica trick, SUSY)

» Result: operators degenerate and correlators acquire logarithmic
behavior, exactly as in LCFT (Cardy '99)

» Exploit LCFTs to compute correlators of quenched random systems

» Apply AdS3/LCFT; to describe strongly coupled LCFTs!
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Next steps

» Quantum gravity
» Consistency of truncation to chiral gravity?
» Existence of (log) extremal CFTs for arbitrary level k?
» Unitary completion of dual logarithmic CFT?
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Next steps

» Quantum gravity
» Consistency of truncation to chiral gravity?
» Existence of (log) extremal CFTs for arbitrary level k?
» Unitary completion of dual logarithmic CFT?
» Gauge/gravity duality
» Do 3-point correlators match with LCFT for new massive gravity?
» LCFT in generalized massive gravity (TMG plus NMG)? Other
examples?
» Complete the AdS3/LCFT; dictionary!
» Physics
» Condensed matter physics applications?
> ldentify relevant observables in strong coupling limit, like /s in
strongly coupled N = 4 SYM plasmal
» Compute relevant dual processes on gravity side and make predictions!

[ Thanks for your attention! ]
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