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Why Two Dimensions?

I will confess, up front, that I am a snob when it comes to 2-D. Why am I
am talking about it today? Because it is going to help me understand a
more complicated problem in four dimensions.

I In 2-D things simplify considerably. Often theories can be solved
exactly, with all quantum effects accounted for.

I On the other hand, these simplifications often kill the features that
we are interested in.

Trade off: Tractable vs. ‘Realistic’ models

Interested in BH thermodynamics in arbitary models of 2-D dilaton gravity

I Exactly solvable, but no dynamics.

I Sacrifice integrability. Assume coupled to unspecified, dynamical
matter.

I Attempt a rigorous semiclassical analysis.
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The Semiclassical Limit

Consider the Euclidean path integral

Z =
∫

DgDX exp
(
−1

~
IE [g,X]

)
.

I In the semiclassical (~→ 0) limit it should be dominated by
contributions from solutions of the equations of motion.

(Conveniently ignore low-diff. of field configs in path integral, etc.)

I We want to exploit the relationship between Z and the Euclidean
partition function

Z ∼ e−β Ω

I Ω is the thermodynamic potential for the appropriate ensemble, β is
the periodicity of the Euclidean time.
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Saddle-point Approximation

Consider a small perturbation around a classical solution

IE [gcl + δg,Xcl + δX] =IE [gcl, Xcl] + δIE [gcl, Xcl; δg, δX]

+
1
2
δ2IE [gcl, Xcl; δg, δX] + . . .

I The leading term is the ‘on-shell’ action.

I The linear term should vanish on solutions gcl and Xcl.

I The quadratic term represents the first corrections.

Z ∼ exp
(
−1

~
IE [gcl, Xcl]

) ∫
DδgDδX exp

(
− 1

2~
δ2IE

)
× . . .
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The Problem

In theories with gravity, the action we use to obtain the equations of
motion almost never gives a sensible path integral formulation of the
theory! Typically we find:

1. The action diverges on-shell.

2. The first variation of the action does not vanish for all field
configurations that contribute to the path integral.

Boundary terms:

δI
∣∣
on−shell

∼
∫

∂M
dx
√
γ
[
πab δγab + πX δX

]
6= 0

3. The Gaussian integral in the saddle point approximation may diverge.

The semiclassical analysis is much more involved than we might have
guessed!
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The Action

The standard form of the action for this theory is

IE =− 1
16πG2

∫
M
d2x
√
g
[
X R− U(X) (∇X)2 − 2V (X)

]
− 1

8πG2

∫
∂M
dx
√
γ X K

I The dilaton X is defined via its coupling to the Ricci scalar.

I This also fixes the coupling to the extrinsic curvature of (∂M, γ).
I The model is then specified by kinetic and potential functions for the

dilaton.

I The boundary integral is the dilaton gravity analog of the
Gibbons-Hawking-York boundary term.
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The Equations of Motion

Extremize the action: δIE = 0

U(X)∇µX∇νX − 1

2
gµνU(X)(∇X)2 − gµνV (X) +∇µ∇νX − gµν∇2X = 0

R +
∂U(X)

∂X
(∇X)2 + 2 U(X)∇2X − 2

∂V (X)

∂X
= 0

I Equations redundant if ∇X 6= 0
I Solutions of these equations always have at least one Killing vector

(We’ll define Q(X) in a moment.)

I Orbits of this vector are isosurfaces of the dilaton

LkX = kµ∂µX = 0

10 / 54



The Equations of Motion

Extremize the action: δIE = 0

U(X)∇µX∇νX − 1

2
gµνU(X)(∇X)2 − gµνV (X) +∇µ∇νX − gµν∇2X = 0

R +
∂U(X)

∂X
(∇X)2 + 2 U(X)∇2X − 2

∂V (X)

∂X
= 0

I Equations redundant if ∇X 6= 0

I Solutions of these equations always have at least one Killing vector

(We’ll define Q(X) in a moment.)

I Orbits of this vector are isosurfaces of the dilaton

LkX = kµ∂µX = 0

10 / 54



The Equations of Motion

Extremize the action: δIE = 0

U(X)∇µX∇νX − 1

2
gµνU(X)(∇X)2 − gµνV (X) +∇µ∇νX − gµν∇2X = 0

R +
∂U(X)

∂X
(∇X)2 + 2 U(X)∇2X − 2

∂V (X)

∂X
= 0

I Equations redundant if ∇X 6= 0
I Solutions of these equations always have at least one Killing vector

(We’ll define Q(X) in a moment.)

I Orbits of this vector are isosurfaces of the dilaton

LkX = kµ∂µX = 0

10 / 54



The Equations of Motion

Extremize the action: δIE = 0

U(X)∇µX∇νX − 1

2
gµνU(X)(∇X)2 − gµνV (X) +∇µ∇νX − gµν∇2X = 0

R +
∂U(X)

∂X
(∇X)2 + 2 U(X)∇2X − 2

∂V (X)

∂X
= 0

I Equations redundant if ∇X 6= 0
I Solutions of these equations always have at least one Killing vector

kµ := εµνeQ(X) ∂νX ⇒ Lkgµν = ∇µkν +∇νkµ = 0

(We’ll define Q(X) in a moment.)

I Orbits of this vector are isosurfaces of the dilaton

LkX = kµ∂µX = 0

10 / 54



The Equations of Motion

Extremize the action: δIE = 0

U(X)∇µX∇νX − 1

2
gµνU(X)(∇X)2 − gµνV (X) +∇µ∇νX − gµν∇2X = 0

R +
∂U(X)

∂X
(∇X)2 + 2 U(X)∇2X − 2

∂V (X)

∂X
= 0

I Equations redundant if ∇X 6= 0
I Solutions of these equations always have at least one Killing vector

kµ := εµνeQ(X) ∂νX ⇒ Lkgµν = ∇µkν +∇νkµ = 0

(We’ll define Q(X) in a moment.)

I Orbits of this vector are isosurfaces of the dilaton

LkX = kµ∂µX = 0

10 / 54



The Equations of Motion

Extremize the action: δIE = 0

U(X)∇µX∇νX − 1

2
gµνU(X)(∇X)2 − gµνV (X) +∇µ∇νX − gµν∇2X = 0

R +
∂U(X)

∂X
(∇X)2 + 2 U(X)∇2X − 2

∂V (X)

∂X
= 0

I Equations redundant if ∇X 6= 0
I Solutions of these equations always have at least one Killing vector

kµ := εµνeQ(X) ∂νX ⇒ Lkgµν = ∇µkν +∇νkµ = 0

(We’ll define Q(X) in a moment.)

I Orbits of this vector are isosurfaces of the dilaton

LkX = kµ∂µX = 0

10 / 54



The Equations of Motion

Extremize the action: δIE = 0

U(X)∇µX∇νX − 1

2
gµνU(X)(∇X)2 − gµνV (X) +∇µ∇νX − gµν∇2X = 0

R +
∂U(X)

∂X
(∇X)2 + 2 U(X)∇2X − 2

∂V (X)

∂X
= 0

I Equations redundant if ∇X 6= 0
I Solutions of these equations always have at least one Killing vector

kµ := εµνeQ(X) ∂νX ⇒ Lkgµν = ∇µkν +∇νkµ = 0

(We’ll define Q(X) in a moment.)

I Orbits of this vector are isosurfaces of the dilaton

LkX = kµ∂µX = 0

10 / 54



Coordinates

We can find a coordinate system where the solution takes the form

X = X(r) ds2 = N(r)2dr2 + ξ(r) (dτ +N τ (r)dr)2

I The Killing vector is ∂τ , with norm
√
ξ(r).

I Lapse and Shift functions for radial evolution.

For the rest of this talk we will set N τ = 0 and N(r) = ξ(r)−1/2, so the
metric is diagonal

ds2 = ξ(r) dτ2 +
1
ξ(r)

dr2

All results are independent of this choice of gauge. Our analysis was
performed using the general form of the metric.
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Solutions

I First, we define two model-dependent functions

Q(X) := Q0 +
∫ X

dX̃ U(X̃)

w(X) := w0 − 2
∫ X

dX̃ V (X̃)eQ(X̃)

I Q0 and w0 are arbitary constants.

I Integrate the equations of motion for

X = X(r) ds2 = ξ(r) dτ2 +
1
ξ(r)

dr2

The solution is

∂rX = e−Q(X) ξ(X) = eQ(X)
(
w(X)− 2M
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I M is an integration constant.

I The combination w0 − 2M appears in ξ(X).
I Q0 can be absorbed into a rescaling of r.

We have obtained solutions that are parameterized by a single integration
constant.

I Choose w0 so that M ≥ 0.

I Refer to the M = 0 solution as the ‘ground state’.

ξg(X) := w(X)eQ(X)

We will frequently use this function.
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Black Holes

Solutions with M > 0 may exhibit horizons.

ξ(X) = eQ(X)
(
w(X)− 2M

)
The Killing norm ξ(X) is non-negative on Xh ≤ X <∞.

Asymptotics

I X →∞ is the asymptotic region of the spacetime.

I In most models w(X)→∞ as X →∞. Treat this as a ‘working
assumption’.

I ξ(X) ∼ eQw as X →∞.

Horizon

I The horizon occurs at w(Xh) = 2M , where ξ(Xh) = 0.

I If ∃ multiple Xh then we always take the outermost horizon.
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Black Holes

The gττ component of the metric vanishes at Xh. Regularity of the metric
requires τ ∼ τ + β.

β =
4π
∂rξ

∣∣∣∣
rh

=
4π

w′(X)

∣∣∣∣
Xh

I If ξ → 1 at X →∞ then β−1 is the temperature measured by an
asymptotic observer.

I Denote the inverse periodicity by T := β−1 = w′(X)
4π

∣∣∣
Xh

I The proper local temperature is related to β−1 by a factor that
depends on the dilaton

T (X) =
1√
ξ(X)

β−1

I ξ−1/2 is the ‘Tolman factor’.
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The Free Energy?

Not so fast!

Given the black hole solution, can we calculate the free energy?

Z ∼ exp
(
−1

~
IE [gcl, Xcl]

)
∼ e−β F

Evaluating the on-shell action will lead to problems. Let’s see why:

I The action contains boundary terms (GHY term).

I The only component of ∂M that contributes is a surface orthogonal
to r.

I This is an isosurface of the dilaton X.

I The boundary corresponds to the asymptotic limit X →∞.

Need a limiting procedure to calculate the action. Implement this in a
coordinate-independent way by putting a regulator on the dilaton.

X ≤ Xreg
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The regulated action

Calculate the action with a regulator X ≤ Xreg on the dilaton.

I reg
E = β

(
2M − w(Xreg)− 2πXh T

)
The next step is to remove the regulator by taking the Xreg →∞ limit.
But w(Xreg)→∞ in this limit! Important conclusions:

1. The action IE is not well defined on-shell.

2. Can’t just drop the part that diverges.

3. Need a systematic approach to ‘fixing’ the action.

This last point is especially important. We also find

lim
Xreg→∞

δIreg
E 6= 0

This means the semiclassical limit isn’t well defined.
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Variational Properties of the Action

Consider small, independent variations of gµν and X

δIE =

Z
M
d2x

√
g

h
Eµνδgµν + EXδX

i
+

Z
∂M

dx
√

γ
h
πabδγab + πXδX

i

I Bulk terms are the equations of motion.
I Boundary terms involve ‘momenta’ conjugate to γab and X

πab = −1
2
γabnµ∇µX πX = U(X)nµ∇µX −K

Does this vanish on-shell? Ignore δX and look at δγab

δIreg
E =

Z
dτ

»
−1

2
∂rX δξ + . . .

–

This needs to vanish for all δξ that preserve the boundary conditions on
the fields.
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What δξ preserve the boundary conditions?

Consider the general form of ξ(X)

ξ(X) = w(X)eQ(X) − 2MeQ(X)

I Leading term is w(X)eQ(X)

I Sub-leading term is −2MeQ(X)

Assume that boundary conditions preserved by variations of the form

δξ ∼ δM eQ(X)

What does this mean for δI? Using ∂rX = e−Q, we get

δI =
∫
dτδM 6= 0
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The Improved Action

We have found that the action IE is not suitable for the path integral
formulation of the theory.

I Follow the approach used in hep-th/0411121 (J. Davis & RM)

I New action Γ related to IE by

IE = Γ + ICT

I ‘Boundary Counterterm’ ICT

ICT =
∫

∂M
dxLCT (γ,X)

I Counterterm is intrinsic to boundary: Γ and IE have the same
equations of motion.

I Determine ICT so that Γ is finite, δΓ = 0 on-shell.
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Boundary Counterterms

I Same idea as boundary counterterms in AdS/CFT.

1. Balasubramanian & Kraus
2. Emparan, Johnson, & Myers
3. Henningson & Skenderis

I More recently in asymptotically flat spacetimes

1. Kraus, Larsen, & Siebelink
2. Mann & Marolf

I Covariant version of surface terms in 3 + 1 gravity

1. ADM
2. Regge & Teitelboim
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Hamilton-Jacobi Equation

Boundary Counterterm is a solution of the Hamilton-Jacobi equation.

1. Begin with ‘Hamiltonian’ associated with radial evolution.

H = 2πXγab π
ab + 2U(X)

(
γab π

ab
)2

+ V (X) = 0

2. Momenta are functional derivatives of the on-shell action

πab =
1
√
γ

δ

δ γab
IE

∣∣∣
eom

πX =
1
√
γ

δ

δ X
IE

∣∣∣
eom

3. Obtain a non-linear, functional differential equation for the on-shell
action.

4. Solve for ICT
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Solving for ICT

Hard to solve the H-J equation in general. Exploit symmetries to make the
problem easier. Start with:

ICT =
∫

∂M
dxLCT (γ,X)

1. Invariant under diffeos of ∂M
2. ∂M is an isosurface of X

ICT =
∫

∂M
dx
√
γ LCT (X)

H-J equation reduces to a linear diff-eq. Easy to Solve:

ICT = −
∫

∂M
dx
√
γ
√
w(X) e−Q(X)
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The Improved Action

The correct action for 2-D dilaton gravity is

Γ =− 1
2

∫
M
d2x
√
g
[
XR− U(X) (∇X)2 − 2V (X)

]
−
∫

∂M
dx
√
γ X K +

∫
∂M
dx
√
γ
√
w(X) e−Q(X)

This action has three important properties

1. Yields the same EOM as IE .

2. Finite on-shell.

Γ
∣∣
eom

= β (M − 2πXh T )

3. First variation δΓ vanishes on-shell ∀ δgµν and δX that preserve the
boundary conditions.

δΓ
∣∣
eom

= 0
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The Euclidean Path Integral

A sensible starting point. Recovers ‘classical’ physics as ~→ 0.

Z =
∫

DgDX exp
(
−1

~
Γ[g,X]

)

Well-defined saddle point approximation?

Z ∼ exp
(
−1

~
Γ[gcl, Xcl]

) ∫
DδgDδX exp

(
− 1

2~
δ2Γ
)
× . . .

I Leading term is finite.

I Linear term vanishes.

I Still have to worry about the quadratic term.
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A Black Hole in a Box

Follow the approach due to York (PRD 33, 1986). Consider the
Schwarzschild BH in 4-D.

ds2 =
(

1− 2M G

r

)
dτ2 +

(
1− 2M G

r

)−1

dr2 + r2dΩ2

I Entropy S =
Ah

4G
= 4πGM2, ADM mass is M .

I Entropy is a convex function of M ⇒ Z(β) not well-defined.
(Steepest Descents: Gaussian integral diverges.)

I Specific heat is negative! Not really thermodynamics (Gross, Perry, and

Yaffe).

Solution: Put the black hole in a box or ‘cavity’ r ≤ rc. Proper temp Tc

and area of cavity wall Ac fixed via a thermal reservoir.

Thermodynamically Stable System
iff CA > 0
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The Dilaton Box

Same problem with most 2-D Dilaton gravity black holes. Apply same
idea:

X ≤ Xc

I ‘Cavity wall’ is dilaton isosurface X = Xc.

I Interpret this as contact with thermal reservoir.

I Reservoir keeps quantities fixed at cavity wall (Boundary conditions).

I Proper periodicity of Euclidean time βc (Proper temperature).

I What is the analog of the area of the cavity wall?

In 2-D any sufficiently regular function of the dilaton yields a conserved
current. ∃ an infinite number of conserved charges associated with X.
Pick one:

Dc := Xc
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The Canonical Ensemble

Fixing Dc and βc specifies the path integral boundary conditions. Classical
solutions consistent with these boundary conditions dominate. Real,
non-neg M that satisfy:

βc =
√
ξ(Dc,M)β(M)

I β(M) is the periodicity of Euclidean time (regularity of the metric at
Xh).

I There may be 0, 1, or multiple solutions.

I Assume for now that there is 1 thermodynamically stable classical
solution.
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The Entropy

Now that we have the Free Energy we can calculate all the relevant
thermodynamic quantities.

S = − ∂Fc

∂Tc

∣∣∣∣
Dc

The variation of Fc at fixed Dc is given by

dFc

∣∣
Dc

= −2πXh dTc +
(

T√
ξc
− Tc

)
1
T
dM

The coefficient of dM vanishes since Tc := T/
√
ξc.

S = 2πXh

Applies for all models. Does not depend on Xc.
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1/4 of the Area? In what units?

We have suppressed the 2-D Newton’s constant G2 in these calculations.
Restoring it gives:

S =
Xh

4G2

I Area of a d-dim unit sphere: Ad =
2πd/2

Γ(d/2)
I A1 = lim

d→1
Ad = 2

I One dimensional ‘sphere’ is two disjoint points: Ah = A1/2
I Coupling b/t X and R: Geff := G2/Xh.

S =
Ah

4Geff
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The Dilaton Chemical Potential

There is a chemical potential conjugate to the conserved dilaton charge.

Define with a ‘minus’ sign like the pressure in standard thermo:

ψc = − ∂Fc

∂Dc

∣∣∣∣
Tc

The expression for ψc is not too illuminating on its own

ψc = −1
2
Uc e

−Qc

(√
ξc −

√
ξg

c

)
− Vc e

Qc

(
1√
ξc
− 1√

ξg
c

)

Three important points:

1. ψc vanishes for the M = 0 solution b/c ξc = ξg
c.

2. ψc is non-zero for M 6= 0 at finite Dc.

3. ψc tends to fall off much faster than D−1
c asymptotically.
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The Internal Energy

So far we have been working in the canonical ensemble with the Helmholtz
free energy Fc.

Perform a Legendre transform to obtain internal energy
Ec:

1. This is manifestly positive b/c M ≥ 0 and wc ≥ 0.

2. Agrees with the quasilocal definition of the proper energy

3. Not the same as the conserved charge Q∂τ associated with Killing
vector ∂τ

Q∂τ
:= lim

Xc→∞

√
ξc T

abuaub = M
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How Do We Interpret Ec?

For finite cavities Ec 6= M . This is why the system can be stable
thermodynamically.

Notice that we can write M in terms of Ec as:

M =
√
ξg

cEc −
1

2wc

(√
ξg

cEc

)2

What does this mean? Consider a model where ξg = 1. These are quite
common (‘MGS’ models). In that case M is the ADM mass:

M = Ec −
E 2

c

2wc

Two contributions to M:

1. The internal energy of the system.

2. The gravitational binding energy associated with internal energy Ec

collected in the region X ≤ Xc.
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The First Law

We can now establish a very important result. The internal energy Ec

satisfies the first law of thermodynamics:

dEc = Tc dS − ψc dDc

1. This result applies for all models.

2. It does not depend on what we choose for the dilaton charge.

3. It holds for any value of Xc.

We should think of this as a ‘quasilocal’ form of the first law. It contains a
great deal more information than the result dM = T dS.

I Properly accounts for the non-linear effects of gravitational binding
energy.

I Incoporates the dilaton charge and its chemical potential.

lim
Xc→∞

ψc dDc = 0
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Thermodynamic Stability

Up to this point we have assumed that the system is stable
thermodynamically. The specific heat at constant Dilaton charge should
be positive:

In general, thermodynamic stability has to be examined on a case-by-case
basis. But there is one important result that is independent of the model.

1. Suppose the boundary conditions at the cavity wall identify a classical
solution that satisfies wc = wh + ε, with 0 < ε� 1.

2. Then the specific heat simplifies to

CD =
ε

T
+O(ε2)
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Backgrounds of 2-D String Theory

∃ Euclidean BHs in 2-D with an exact CFT description (Witten ‘91)

I SL(2,R)/U(1) gauged WZW model

I SL(2) current algebra with level k

I ‘Witten BH’: large k limit

ds2 = α′ k
(
dy2 + tanh2 y dθ2

)
X = X0 cosh2 y

Related to an exact (in α′) background (Dijkgraaf, Verlinde2 ‘92)

ds2 = dx2 +
tanh2(b x)

1− p tanh2(b x)
dτ2

X = X0 cosh2(b x)
√

1− p tanh2(b x)

b2 :=
1

α′ (k − 2)
p :=

2
k
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Witten’s Black Hole

Treat the Witten BH as a solution of string theory β-functions at lowest
order in α′. The target-space action is a DG model with:

U(X) = − 1
X

V (X) = − 8
α′
X

The functions eQ and w are:

w(X) =
4√
α′
X eQw = 1

So we obtain (Gibbons & Perry ‘92)

T =
1

π
√
α′

S = 2πXh M = T S
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Witten’s Black Hole

We can also calculate the internal energy and the Helmholtz free energy:

Ec =
4√
α′
Xc

(
1−

√
1− Xh

Xc

)
Fc = Ec − Tc S

As Xc →∞ these behave as

Ec →M Fc → 0

Fc → 0 as Xc → 0 was viewed as an obstruction to understanding the
thermodynamics of this system. (Kazakov & Tseytlin ‘01). Not a problem
with our approach. There is one glaring problem, though:
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The Exact String Black Hole

Exact solution understood in terms of worldsheet CFT. More recently:
proposed target-space action for the ESBH (Grumiller ‘05).

I All orders in α′

I Does not incorporate the tachyon.

Important Point: We are working with exact backgrounds in string
theory.

1. Can’t couple arbitrary matter (reservoir).

2. Can’t place an abrupt cut-off on spacetime fields (X ≤ Xc).

We can use Xc in our calculations, but we have to treat it like the
regulator we used earlier. Must take Xc →∞ limit in all
calculations!
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The Exact String Black Hole

Convenient to make the following field redefinition:

X = ρ+ arcsinh ρ

Coordinate change to express ESBH solution in diagonal gauge:

ξ = 1− k

1 +
√
ρ2 + 1

Horizon at ξ = 0

ρh =
√
k(k − 2)

T =
b

2π

√
1− 2

k

Geometry encodes some info about worldsheet CFT: k ≥ 2
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The Exact String Black Hole

The relevant functions for the ESBH are

w = 2b
(√

ρ2 + 1− 1
)

eQ =
1

w − 4b

This allows us to work out the thermodynamics.

S = 2π
(√

k(k − 2) + arcsinh (
√
k(k − 2))

)
Large k limit gives entropy for Witten BH + logarithmic α′ corrections.

F = −b
√

1− 2
k

arcsinh
√
k(k − 2)

Manifestly non-positive. Stable against tunneling to ‘CDV’.
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Stability?

For the Witten BH we found that CD diverged in the Xc →∞ limit. For
the ESBH we find:

CD = 2πk
√
k(k − 2)

CD is positive and finite ∀ finite k > 2.

I For the Exact String Black Hole there is no good notion of a finite
cavity or reservoir.

I No choice but to remove Xc from calculations: Xc →∞
I System still admits a consistent thermodynamics.

I No external requirements or restrictions.

Conclude that, in 2-D, string theory is its own reservoir. It is
self-contained and self-consistent.
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Higher Dimensions, Here We Come!

Interesting extension of our results:

I Invested a lot of energy in formulating a Euclidean path integral with
sensible properties.

I Thermo results followed from the functional form of the on-shell
(improved) action.

Consider gravity in d+ 1 dimensions:

Id+1 = − 1

16πG

Z
M
d d+1x

√
g (R− 2Λ)− 1

8πG

Z
∂M

d dx
√

γ(K + . . .)

The . . . are boundary counterterms. Precise form depends on Λ.
Solutions with a d− 1 sphere

ds2 = ξ(r)dτ2 +
1

ξ(r)
dr2 + G

2
d−1 ϕ(r)2dΩ 2

d−1

Reduce on-shell action on Sd−1. Looks like 2-D DG action. Our thermo
results apply!
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Counterterms and Spacetime Asymptotics

Not so simple. Don’t know how to reduce the boundary counterterms.

I Sensitive to asymptotics. Λ must be fixed.

I Results for Λ < 0 can’t be applied to Λ = 0.

I No general formulation that works for arbitrary Λ.

Proposal: Assume that the reduction of the d+ 1 dimensional bndy
counterterms is given by the expression we derived for ICT .

Result: We recover the standard thermodynamics for all spherically
symmetric black holes in dimension d+ 1 ≥ 3.
Obtain one set of results that work for any choice of Λ.

Caveat: Can’t ‘lift’ the 2-D counterterm to higher dimensions.
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The S-wave Reduction

The s-wave reduction of the on-shell action looks like a 2-D DG model with

X = ΥGϕ(r)d−1 Υ :=
Ad−1

8πG

The dilaton X(r) is the proper area of a sphere with coordinate radius r in
d+ 1 dimensional Planck Units.

U(X) = −
„

d− 2

d− 1

«
1

X

V (X) = − (d− 2)(d− 1)

2
Υ

2
d−1 X

d−3
d−1 + e

d(d− 1)

2 `2
X

Cosmological constant:

Λ := e
d(d− 1)

2 `2
e = ±1, 0
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The S-wave Reduction

The functions eQ(X) and w(X) are given by:

eQ =
1

d− 1
Υ

1
1−d X

2−d
d−1

w = (d− 1) Υ
1

d−1 X
d−2
d−1

(
1− e

`2
Υ

2
1−d X

2
d−1

)

The boundary counterterm is

ICT = −β w
√

1− 2M
w

Now apply all the results of our thermo analysis.
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General Results

1. The entropy is 1/4 of the proper area of the horizon, in Planck units.

S = 2πXh =
Ah

4G

2. Any spherically symmetric BH in d+ 1 dimensions satisfies the
quasilocal form of the first law

dEc = Tc dS − pc dAc

3. The internal energy is related to Q∂τ = M by

lim
rc→∞

√
ξcEc = M
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Thermodynamic Stability

The sign of the specific heat depends on Λ, M , Xc.
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We skipped almost everything!

I We also studied various non-perturbative instabilities.

I Added gauge fields

I Considered reductions of rotating black holes in higher dimensions

I Much more . . .

Next Stage

I Include additional degree of freedom

I Dilaton gravity coupled to a scalar field.

I Calculate tunneling rates in Cosmology?
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