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What is a black hole?
Fishy analogy (Bill Unruh)

Above: black hole
(NASA picture)
Left: Waterfall

Analogy:
Infinity↔ Lake

Horizon↔ Point of no return

Singularity↔Waterfall
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As simple as possible but not simpler...
2D or not 2D: that is the question

Riemann (Weyl+Ricci): N2(N2−1)
12 components in N dimensions

4D: 20 (10 Weyl and 10 Ricci)

5D: 50 (35 Weyl and 15 Ricci)

10D: 825 (770 Weyl and 55 Ricci)

11D: 1210 (1144 Weyl and 66 Ricci)

3D: 6 (Ricci)

2D: 1 (Ricci scalar) → Lowest dimension with curvature

1D: 0

But: 2D EH IEH = κ
∫

d2x
√

gR: no equations of motion!
Number of graviton modes: N(N−3)

2

Stuck already in the formulation of the model?

Have to go beyond Einstein-Hilbert in 2D!
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Example of 2D black hole
Schwarzschild black hole

Artistic impression Spherical symmetry Carter-Penrose diagram of Schwarzschild

Spherical symmetry reduces 4D to 2D

2D: Time and surface radius

Exact solution of Einstein equations: Schwarzschild

Schwarzschild: “Hydrogen atom of General Relativity”

Quantize in 2D!
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Spherical reduction

Line element adapted to spherical symmetry:

ds2 = g(N)
µν︸︷︷︸

full metric

dxµ dxν = gαβ(xγ)︸ ︷︷ ︸
2D metric

dxα dxβ − φ2(xα)︸ ︷︷ ︸
surface area

dΩ2
SN−2

,

Insert into N-dimensional EH action IEH = κ
∫

dNx
√
−g(N)R(N):

IEH = κ
2π(N−1)/2

Γ(N−1
2 )︸ ︷︷ ︸

N−2 sphere

∫
d2x

√
−gφN−2︸ ︷︷ ︸

determinant

[
R +

(N − 2)(N − 3)

φ2

(
(∇φ)2 − 1

)
︸ ︷︷ ︸

Ricci scalar

]

Cosmetic redefinition X ∝ (λφ)N−2:

IEH ∝
∫

d2x
√
−g
[

XR +
N − 3

(N − 2)X
(∇X )2 − λ2X (N−4)/(N−2)︸ ︷︷ ︸

Scalar−tensor theory a.k.a. dilaton gravity

]
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Second order formulation

Similar action arises from string theory, from other kinds of
dimensional reduction, from intrinsically 2D considerations, ...
Generic action:

I2DG = κ

∫
d2x

√
−g
[
XR + U(X )(∇X )2 − V (X )

]
(1)

Special case U = 0, V = X 2: EOM R = 2X

I ∝
∫

d2x
√
−gR2

Similarly f (R) Lagrangians related to (1) with U = 0
String context: X = e−2φ, with φ as string dilaton
Conformal trafo to different model with Ũ(X ) = 0:
Ṽ (X ) = d

dX w(X ) := V (X )eQ(X)︸ ︷︷ ︸
conformally invariant

, with Q(X ) :=
∫ X dyU(y)
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Selected list of models

Model U(X) V (X) w(X)

1. Schwarzschild (1916) − 1
2X −λ2 −2λ2√X

2. Jackiw-Teitelboim (1984) 0 ΛX 1
2 ΛX2

3. Witten BH (1991) − 1
X −2b2X −2b2X

4. CGHS (1992) 0 −2b2 −2b2X
5. (A)dS2 ground state (1994) − a

X BX a 6= 2 : B
2−a X2−a

6. Rindler ground state (1996) − a
X BXa BX

7. BH attractor (2003) 0 BX−1 B ln X
8. SRG (N > 3) − N−3

(N−2)X −λ2X (N−4)/(N−2) −λ2 N−2
N−3 X (N−3)/(N−2)

9. All above: ab-family (1997) − a
X BXa+b b 6= −1 : B

b+1 Xb+1

10. Liouville gravity a beαX a 6= −α : b
a+α

e(a+α)X

11. Reissner-Nordström (1916) − 1
2X −λ2 + Q2

X −2λ2√X − 2Q2/
√

X

12. Schwarzschild-(A)dS − 1
2X −λ2 − `X −2λ2√X − 2

3 `X3/2

13. Katanaev-Volovich (1986) α βX2 − Λ
R X eαy (βy2 − Λ) dy

14. Achucarro-Ortiz (1993) 0 Q2
X − J

4X3 − ΛX Q2 ln X + J
8X2 −

1
2 ΛX2

15. Scattering trivial (2001) generic 0 const.
16. KK reduced CS (2003) 0 1

2 X(c − X2) − 1
8 (c − X2)2

17. exact string BH (2005) lengthy −γ −(1 +
p

1 + γ2)

18. Symmetric kink (2005) generic −XΠn
i=1(X2 − X2

i ) lengthy
19. KK red. conf. flat (2006) − 1

2 tanh (X/2) A sinh X 4A cosh (X/2)

20. 2D type 0A − 1
X −2b2X + b2q2

8π
−2b2X + b2q2

8π
ln X

Red: mentioned in abstract Blue: pioneer models
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First order formulation
Gravity as gauge theory (89: Isler, Trugenberger, Chamseddine, Wyler, 91: Verlinde,
92: Cangemi, Jackiw, Achucarro, 93: Ikeda, Izawa, 94: Schaller, Strobl)

Example: Jackiw-Teitelboim model (U = 0, V = ΛX )

[Pa, Pb] = ΛεabJ , [Pa, J] = εa
bPb ,

Non-abelian BF theory:

IBF =

∫
XAF A =

∫ [
Xa dea+Xaε

a
bω∧eb+X dω+εabea∧ebΛX

]
field strength F = dA + [A, A]/2 contains SO(1, 2) connection
A = eaPa + ωJ, coadjoint Lagrange multipliers XA

Generic first order action:

I2DG ∝
∫ [

Xa T a︸︷︷︸
torsion

+X R︸︷︷︸
curvature

+ ε︸︷︷︸
volume

(X aXaU(X ) + V (X ))
]

(2)

T a = dea + εa
bω ∧ eb, R = dω, ε = εabea ∧ eb
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Classical solutions
Light-cone components and Eddington-Finkelstein gauge (87: Polyakov, 92: Kummer,
Schwarz, 96: Klösch, Strobl)

Constant dilaton vacua:

X = const. , V (X ) = 0 , R = V ′(X )

Minkowski, Rindler or (A)dS only

isolated solutions (no constant of motion)

Generic solutions in EF gauge ω0 = e+
0 = 0, e−0 = 1:

ds2 = 2eQ(X) du dX + eQ(X)(w(X ) + M)︸ ︷︷ ︸
Killing norm

du2 (3)

Birkhoff theorem: at least one Killing vector ∂u

one constant of motion: mass M

dilaton is coordinate x0 (residual gauge trafos!)
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Global structure
Simple algorithm exists to construct all possible global structures (Israel, Walker)

Key ingredient: Killing norm!

for each zero w(X ) + M = 0:
Killing horizon

multiple zeros: extremal horizons
(BPS)

glue together basic EF-patches

caveat: bifurcation points

check geodesics for
(in)completeness

Simple example: Carter-Penrose
diagram on the left: Killing norm
1− 2M/r + Q2/r2 (RN)
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Hawking radiation
Quantization on fixed background; method by Christensen and Fulling

conformal anomaly
< T µ

µ >∝ R

conservation equation
∇µ < T µν >= 0

boundary conditions
(Unruh, Hartle-Hawking,
Boulware)

get flux from trace
2D Stefan-Boltzmann (flux ∝ T 2

H ):

TH =
1

2π
|w ′(X )|X=Xh = surface gravity

other thermodynamical quantities of interest:
entropy: X on horizon, specific heat: w ′/w ′′ on horizon
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Thermodynamics from Euclidean path integral

Partition function:

Z =

∫
DgDXe−

1
~ Γ[gµν ,X ]

Euclidean action:

Γ[gµν , X ] = Ibulk[gµν , X ] + IGHY[γµν , X ]+Icounter[det (γµν), X ]

Analogy in QM:

Γ[p, q] =

∫
dt [−qṗ − H(p, q)]︸ ︷︷ ︸

bulk term

+ qp|tfti︸︷︷︸
Gibbons−Hawking−York

+ C(q)|tfti︸ ︷︷ ︸
counter term

Bulk term: “usual” action

GHY: boundary conditions

Counter term: consistency of path integral
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Applications?
The usefulness of Lineland

toy models (2D strings, black hole evaporation, . . . )
classically: spherically symmetric sector of general
relativity (critical collapse)
semi-classically: near horizon geometry effectively 2D
(Carlip, Wilczek, . . . )
thermodynamics: investigation using the Ruppeiner
formalism (Aman, Bengtsson, Pidokrajt, Ruppeiner, . . . )
solid state analogues: cigar shaped Bose-Einstein
condensate as Jackiw-Teitelboim (Fedichev+Fischer);
perfect fluid in Laval nozzle (Unruh, Schützhold, Barcelo,
Liberati, Visser, Volovik, Cadoni, Mignemi, . . . )
more speculative ideas: at high energies gravity effectively
2D (Reuter, Ambjorn, Loll)? gravity near the Earth: linear
potential, i.e., effectively 2D (Mann, Young)?

instead of these interesting issues focus now on quantum
aspects without fixing background
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aspects without fixing background
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Models in 2D
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2 Classical and Semi-Classical Black Holes
Classical black holes
Semi-Classical black holes and thermodynamics

3 Quantum and Virtual Black Holes
Path integral quantization
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Quantization of specific models
Non-comprehensive history

1992: Cangemi, Jackiw (CGHS)

1994: Louis-Martinez, Gegenberg, Kunstatter (U = 0)

1994: Kuchař (Schwarzschild)

1995: Cangemi, Jackiw, Zwiebach (CGHS)

1997: Kummer, Liebl, Vassilevich (generic geometry)

1999: Kummer, Liebl, Vassilevich (minimally coupled
scalar, generic geometry)

2000-2002: DG, Kummer, Vassilevich (non-minimally
coupled scalar, generic geometry)

2004: Bergamin, DG, Kummer (minimally coupled matter,
generic SUGRA)

2006: DG, Meyer (non-minimally coupled fermions,
generic geometry)
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Non-minimally coupled matter
Prominent example: Einstein-massless Klein-Gordon model (Choptuik)

no matter: integrability, no scattering, no propagating
physical modes

with matter: no integrability in general, scattering, critical
collapse

Massless scalar field S:

Im =

∫
d2x

√
−gF (X )(∇S)2

minimal coupling: F = const.

non-minimal coupling otherwise

spherical reduction: F ∝ X
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Non-perturbative path integral quantization
Integrating out geometry exactly

constraint analysis
{

Gi(x), Gj(x ′)
}

= GkCk
ijδ(x − x ′)

BRST charge Ω = c iGi + c ic jCij
kpk (ghosts c i , pk )

gauge fixing fermion to achieve EF gauge

integrating ghost sector yields

Z [sources] =

∫
Df δ

(
f + iδ/δje+

1

)
Z̃ [f , sources]

with (S̃ = S
√

f )

Z̃ [f , sources] =

∫
DS̃D(ω, ea, X , X a) det ∆F .P. exp i(Ig.f . + sources)

Can integrate over all fields except matter non-perturbatively!
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Non-local effective theory
Convert local gravity theory with matter into non-local matter theory without gravity

Generating functional for Green functions (F = 1):

Z̃ [f , sources] =

∫
DS̃ exp i

∫
(Lk + Lv + Ls)d2x

Lk = ∂0S∂1S−E−
1 (∂0S)2 , Lv = −w ′(X̂ ) , Ls = σS+je+

1
Ê+

1 + . . . ,

S̃ = Sf 1/2 , Ê+
1 = eQ(X̂) , X̂ = a + bx0︸ ︷︷ ︸

X

+∂−2
0 (∂0S)2︸ ︷︷ ︸
non−local

+. . . , a = 0 , b = 1 ,

E−
1 = w(X ) + M , Ê+

1 = eQ(X) + eQ(X)U(X )∂−2
0 (∂0S)2 + . . .∫

DS̃ exp i
∫
Lk = exp

(
i/96π

∫
x

∫
y

fRx�−1
xy Ry

)
︸ ︷︷ ︸

Polyakov

Red: geometry, Magenta: matter, Blue: boundary conditions
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1 = eQ(X) + eQ(X)U(X )∂−2
0 (∂0S)2 + . . .∫

DS̃ exp i
∫
Lk = exp

(
i/96π

∫
x

∫
y

fRx�−1
xy Ry

)
︸ ︷︷ ︸

Polyakov

Red: geometry, Magenta: matter, Blue: boundary conditions
Daniel Grumiller Introduction to black holes in two dimensions



Some Feynman diagrams
lowest order non-local vertices:

V(4)(x,y)a

x y

∂0 S

q’

∂0 S

q

∂0 S

k’

∂0 S

k

+

V(4)(x,y)b

x y

∂0 S

q’

∂0 S

q

∂1 S

k’

∂0 S

k

propagator corrections:

vacuum bubbles:

vertex corrections:

so far: calculated only lowest order vertices and
propagator corrections

partial resummations possible (similar to Bethe-Salpeter)?

non-local loops vanish to this order
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S-matrix for s-wave gravitational scattering
Quantizing the Einstein-massless-Klein-Gordon model

ingoing s-waves q = αE , q′ = (1− α)E interact and scatter into
outgoing s-waves k = βE , k ′ = (1− β)E

T (q, q′; k , k ′) ∝ T̃ δ(k + k ′ − q − q′)/|kk ′qq′|3/2 (4a)

with Π = (k + k ′)(k − q)(k ′ − q) and

T̃ = Π ln
Π2

E6 +
1
Π

∑
p

p2 ln
p2

E2 ·

(
3kk ′qq′ − 1

2

∑
r 6=p

∑
s 6=r ,p

r2s2

)
(4b)

result finite and simple

monomial scaling with E

forward scattering poles Π = 0

decay of s-waves possible
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Virtual black holes
Reconstruct geometry from matter

“Intermediate geometry” (caveat: off-shell!):

i0

i-

i+

ℑ-

ℑ+

y

ds2 = 2 du dr+[1−δ(u − u0)θ(r0 − r)︸ ︷︷ ︸
localized

(2M/r+ar+d)] du2

Schwarzschild and Rindler terms

nontrivial part localized

geometry is non-local (depends on r , u, r0, u0︸ ︷︷ ︸
y

)

geometry asymptotically fixed (Minkowski)

Daniel Grumiller Introduction to black holes in two dimensions



Literature I
Some books and reviews for further orientation

J. D. Brown, “LOWER DIMENSIONAL GRAVITY,” World
Scientific Singapore (1988).

A. Strominger, “Les Houches lectures on black holes,”
hep-th/9501071 .

D. Grumiller, W. Kummer, and D. Vassilevich, “Dilaton
gravity in two dimensions,” Phys. Rept. 369 (2002)
327–429, hep-th/0204253 .

D. Grumiller and R. Meyer, “Ramifications of lineland,”
hep-th/0604049 .
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