Aspects of Holography in 2d Dilaton Gravity

Jakob Salzer

Institute for Theoretical Physics, TU Wien

Universitat de Barcelona
Barcelona, Nov 27th 2017

Based on: 1509.08486, 1607.06974, 1708.08471
with Daniel Grumiller, Robert McNees, Carlos Valcárcel, Dmitri Vassilevich
and ongoing work with Hernán Gonzalez
Motivation I - Holography

- Holographic principle might provide insight into quantum gravity
Motivation I - Holography

- Holographic principle might provide insight into quantum gravity
- Well studied in AdS$_d$-space; boundary theory CFT$_{d-1}$
Motivation I - Holography

- Holographic principle might provide insight into quantum gravity
- Well studied in AdS_d-space; boundary theory CFT_{d-1}
- How general is the holographic principle?
Motivation I - Holography

- Holographic principle might provide insight into quantum gravity
- Well studied in AdS_d-space; boundary theory CFT_{d-1}
- How general is the holographic principle?
 - Set-up a holographic framework in other space-times e.g., asymptotically flat?

MC Escher: Circle Limit III
Motivation I - Holography

- Holographic principle might provide insight into quantum gravity
- Well studied in AdS_d-space; boundary theory CFT_{d-1}
- How general is the holographic principle?
 - Set-up a holographic framework in other space-times e.g., asymptotically flat?
 - Works in any dimension?

MC Escher: Circle Limit III
Motivation I - Holography

- Holographic principle might provide insight into quantum gravity
- Well studied in AdS_d-space; boundary theory CFT_{d-1}
- How general is the holographic principle?
 - Set-up a holographic framework in other space-times e.g., asymptotically flat?
 - Works in any dimension?
- What about 2d? Is there/What is the boundary theory?

Mc Escher: Circle Limit III
Holographic principle might provide insight into quantum gravity

Well studied in AdS_d-space; boundary theory CFT_{d-1}

How general is the holographic principle?
 - Set-up a holographic framework in other space-times e.g., asymptotically flat?
 - Works in any dimension?

What about 2d? Is there/What is the boundary theory?

A simple model for holography in 2d

MC Escher: Circle Limit III
Motivation I - Holography

- Holographic principle might provide insight into quantum gravity
- Well studied in AdS$_d$-space; boundary theory CFT$_{d-1}$
- How general is the holographic principle?
 - Set-up a holographic framework in other space-times e.g., asymptotically flat?
 - Works in any dimension?
- What about 2d? Is there/What is the boundary theory?
- A simple model for holography in 2d
- Holography for near-extremal black holes

MC Escher: Circle Limit III
Motivation I - Holography

- Holographic principle might provide insight into quantum gravity
- Well studied in AdS_d-space; boundary theory CFT_{d-1}
- How general is the holographic principle?
 - Set-up a holographic framework in other space-times e.g., asymptotically flat?
 - Works in any dimension?
- What about 2d? Is there/What is the boundary theory?
- A simple model for holography in 2d
- Holography for near-extremal black holes
 - near horizon region of the form $\text{AdS}_2 \times K$, K...compact space

MC Escher: Circle Limit III
Motivation I - Holography

- Holographic principle might provide insight into quantum gravity
- Well studied in AdS_d-space; boundary theory CFT_{d-1}
- How general is the holographic principle?
 - Set-up a holographic framework in other space-times e.g., asymptotically flat?
 - Works in any dimension?
- What about 2d? Is there/What is the boundary theory?
- A simple model for holography in 2d
- Holography for near-extremal black holes
 - near horizon region of the form $\text{AdS}_2 \times K$, $K...$compact space
- recently, boundary theory might be related to SYK model [Kitaev; Maldacena, Stanford, Yang; Engelsøy, Mertens, Verlinde; Jevicki, Suzuki, Yoon;...]

MC Escher: Circle Limit III
Motivation I - Holography

- Holographic principle might provide insight into quantum gravity
- Well studied in AdS_d-space; boundary theory CFT_{d-1}
- How general is the holographic principle?
 - Set-up a holographic framework in other space-times e.g., asymptotically flat?
 - Works in any dimension?
- What about 2d? Is there/What is the boundary theory?
- A simple model for holography in 2d
- Holography for near-extremal black holes
 - near horizon region of the form $\text{AdS}_2 \times K$, K...compact space
- recently, boundary theory might be related to SYK model [Kitaev; Maldacena, Stanford, Yang; Engels"{o}y, Mertens, Verlinde; Jevicki, Suzuki, Yoon;...]
- Study asymptotic dynamics of gravity theories in AdS_2
1 Motivation

2 Two-dimensional Dilaton Gravity

3 Dilaton Gravity as a Poisson Sigma model

4 AdS$_2$ Holography
 • Constant dilaton sector
 • Linear dilaton sector

5 Conclusion
1 Motivation

2 Two-dimensional Dilaton Gravity

3 Dilaton Gravity as a Poisson Sigma model

4 AdS\textsubscript{2} Holography
 - Constant dilaton sector
 - Linear dilaton sector

5 Conclusion
How to obtain a gravity theory in two dimensions?

Two-dimensional manifold \mathcal{M}; $g_{\mu\nu} +$ other dynamical fields
How to obtain a gravity theory in two dimensions?

Two-dimensional manifold \mathcal{M}; $g_{\mu\nu} +$ other dynamical fields

Naïve guess

Two-dimensional EH action

\[
I[g] = \int_{\mathcal{M}} d^2 x \sqrt{|g|} R[g]
\]
How to obtain a gravity theory in two dimensions?

Two-dimensional manifold \mathcal{M}; $g_{\mu\nu} + \text{other dynamical fields}$

Naïve guess

Two-dimensional EH action

$$I[g] = \int_{\mathcal{M}} d^2x \sqrt{|g|} R[g]$$

$$I[g + \delta g] = I[g] + \int_{\mathcal{M}} d^2x \sqrt{|g|} \left(R^{\mu\nu} - \frac{1}{2} R g^{\mu\nu} \right) \delta g_{\mu\nu}$$

$= 0 \text{ in two dimensions}$

\Rightarrow no restrictions on the metric
How to obtain a gravity theory in two dimensions?

Two-dimensional manifold \mathcal{M}; $g_{\mu\nu}$ + other dynamical fields

Naïve guess

Two-dimensional EH action

$$I[g] = \int_{\mathcal{M}} d^2x \sqrt{|g|} R[g]$$

$$I[g + \delta g] = I[g] + \int_{\mathcal{M}} d^2x \sqrt{|g|} \left(R^{\mu\nu} - \frac{1}{2} R g^{\mu\nu} \right) \delta g_{\mu\nu}$$

\Rightarrow no restrictions on the metric

$$\int_{\mathcal{M}} d^2x \sqrt{|g|} R[g] = 2\pi \chi(\mathcal{M})$$

\Rightarrow Topological invariant
\[
I[g, X] = -\frac{1}{16\pi G_2} \int_{\mathcal{M}} d^2x \sqrt{|g|} \left(R \right)
\]
Generalized Dilaton Models- Gravity in two Dimensions

\[l[g, X] = -\frac{1}{16\pi G_2} \int_{\mathcal{M}} d^2x \sqrt{|g|} \left(X R \right) \]

\[X \text{...scalar field: “dilaton”} \]
Generalized Dilaton Models- Gravity in two Dimensions

\[I[g, X] = -\frac{1}{16\pi G_2} \int_{\mathcal{M}} d^2x \sqrt{|g|} \left(X R - 2V(X) \right) \]

\(X \) ...scalar field: “dilaton”

What is the motivation for studying an action of this specific form?

Motivated by:
- Spherical reduction of Einstein Gravity
- Dilaton Gravity as Gauge Theory
- Dilaton Gravity from Strings
\[l[g, X] = -\frac{1}{16\pi G_2} \int_{\mathcal{M}} d^2 x \sqrt{|g|} \left(X R - U(X)(\nabla X)^2 - 2V(X) \right) \]

\[X \ldots \text{scalar field: “dilaton”} \]
Generalized Dilaton Models- Gravity in two Dimensions

\[I[g, X] = -\frac{1}{16\pi G_2} \int_{\mathcal{M}} d^2x \sqrt{|g|} \left(XR - U(X)(\nabla X)^2 - 2V(X) \right) \]

X...scalar field: “dilaton”

What is the motivation for studying an action of this specific form?
Generalized Dilaton Models- Gravity in two Dimensions

\[I[g, X] = -\frac{1}{16\pi G_2} \int_{\mathcal{M}} d^2x \sqrt{|g|} \left(X R - U(X)(\nabla X)^2 - 2V(X) \right) \]

X...scalar field: “dilaton”

What is the motivation for studying an action of this specific form?
Motivated by:

- Spherical reduction of Einstein Gravity
- Dilaton Gravity as Gauge Theory
- Dilaton Gravity from Strings
Generalized Dilaton Models- Gravity in two Dimensions

\[l[g, X] = -\frac{1}{16\pi G_2} \int_{\mathcal{M}} d^2x \sqrt{|g|} \left(X R - U(X)(\nabla X)^2 - 2V(X) \right) \]

\[X \text{...scalar field: “dilaton”} \]

What is the motivation for studying an action of this specific form?
Motivated by:
- Spherical reduction of Einstein Gravity
Generalized Dilaton Models- Gravity in two Dimensions

\[l[g, X] = -\frac{1}{16\pi G_2} \int_{\mathcal{M}} d^2x \sqrt{|g|} \left(X R - U(X)(\nabla X)^2 - 2V(X) \right) \]

\(X \)...scalar field: “dilaton”

What is the motivation for studying an action of this specific form?
Motivated by:
- Spherical reduction of Einstein Gravity
- Dilaton Gravity as Gauge Theory
Generalized Dilaton Models- Gravity in two Dimensions

\[I[g, X] = -\frac{1}{16 \pi G_2} \int_{\mathcal{M}} d^2x \sqrt{|g|} \left(X \mathcal{R} - U(X)(\nabla X)^2 - 2V(X) \right) \]

\(X \)…scalar field: “dilaton”

What is the motivation for studying an action of this specific form?
Motivated by:

- Spherical reduction of Einstein Gravity
- Dilaton Gravity as Gauge Theory
- Dilaton Gravity from Strings
Spherically reduced Einstein gravity

- Starting point: \(d\)-dimensional manifold \(\mathcal{M}_d\), metric \(g_d\)
Spherically reduced Einstein gravity

- Starting point: \(d\)-dimensional manifold \(\mathcal{M}_d\), metric \(g_d\)
- Assume that \(\mathcal{M}_d\) is spherically symmetric: \(\mathcal{M}_d \rightarrow \mathcal{M}_2 \times S^{d-2}\)

\[
ds^2 = g_{\mu \nu} \, dx^\mu \, dx^\nu + \lambda^{-2} X^{\frac{2}{d-2}} \, d\Omega^2_{S^{d-2}}
\]
Spherically reduced Einstein gravity

- Starting point: d-dimensional manifold \mathcal{M}_d, metric g_d
- Assume that \mathcal{M}_d is spherically symmetric: $\mathcal{M}_d \to \mathcal{M}_2 \times S^{d-2}$

$$ds^2 = g_{\mu\nu} \, dx^\mu \, dx^\nu + \lambda^{-2} \, X^{d-2} \, d\Omega_{S^{d-2}}^2$$

- d-dimensional Einstein-Hilbert action: $L = \frac{1}{16\pi G} \int_{\mathcal{M}_d} \, d^d x \sqrt{|g_d|} \, R[g_d]$
Spherically reduced Einstein gravity

- Starting point: d-dimensional manifold \mathcal{M}_d, metric g_d
- Assume that \mathcal{M}_d is spherically symmetric: $\mathcal{M}_d \to \mathcal{M}_2 \times S^{d-2}$

\[
ds^2 = g_{\mu \nu} \, dx^\mu \, dx^\nu + \lambda^{-2} X^{\frac{2}{d-2}} \, d\Omega_{S^{d-2}}^2
\]

- d-dimensional Einstein-Hilbert action: $L = \frac{1}{16\pi G} \int_{\mathcal{M}_d} d^d x \sqrt{|g_d|} R[g_d]$
- Express in terms of two-dimensional quantities

\[
I = \frac{A_{d-2}}{\lambda^{d-2} 16\pi G_N} \int_{\mathcal{M}} d^2 x \sqrt{|g|} \left(XR + \frac{d - 3}{d - 2} \left(\nabla X \right)^2 \frac{X}{X} + \lambda^2 (d - 2)(d - 3) X^{\frac{d-3}{d-2}} \right)
\]
Spherically reduced Einstein gravity

- Starting point: d-dimensional manifold \mathcal{M}_d, metric g_d
- Assume that \mathcal{M}_d is spherically symmetric: $\mathcal{M}_d \rightarrow \mathcal{M}_2 \times S^{d-2}$

$$ds^2 = g_{\mu\nu} \, dx^\mu \, dx^\nu + \lambda^{-2} X^{\frac{2}{d-2}} \, d\Omega_{S^{d-2}}^2$$

- d-dimensional Einstein-Hilbert action: $L = \frac{1}{16\pi G} \int_{\mathcal{M}_d} d^d x \sqrt{|g_d|} \, R[g_d]$
- Express in terms of two-dimensional quantities

$$I = \frac{A_{d-2}}{\lambda^{d-2} 16\pi G_N} \int_{\mathcal{M}} d^2 x \sqrt{|g|} \left(X R + \frac{d-3}{d-2} \frac{(\nabla X)^2}{X} + \lambda^2 (d-2)(d-3) X^{-\frac{3}{d-2}} \right)$$

- Set $\frac{A_{d-2}}{\lambda^{d-2} 16\pi G_N} \equiv \frac{1}{16\pi G_2}$
Spherically reduced Einstein gravity

- Starting point: d-dimensional manifold \mathcal{M}_d, metric g_d
- Assume that \mathcal{M}_d is spherically symmetric: $\mathcal{M}_d \to \mathcal{M}_2 \times S^{d-2}$

$$ds^2 = g_{\mu\nu} \, dx^\mu \, dx^\nu + \lambda^{-2} \, X^{\frac{2}{d-2}} \, d\Omega_{S^{d-2}}^2$$

- d-dimensional Einstein-Hilbert action: $L = \frac{1}{16\pi G} \int_{\mathcal{M}_d} d^d x \sqrt{|g_d|} \, R[g_d]$
- Express in terms of two-dimensional quantities

$$I = \frac{A_{d-2}}{\lambda^{d-2} \, 16\pi \, G_N} \int_{\mathcal{M}} d^2 x \sqrt{|g|} \left(XR + \frac{d - 3}{d - 2} \left(\nabla X \right)^2 + \lambda^2 (d - 2)(d - 3) X^{\frac{d-3}{d-2}} \right) \equiv U(X)(\nabla X)^2 \equiv 2V(X)$$

- Set $\frac{A_{d-2}}{\lambda^{d-2} \, 16\pi \, G_N} \equiv \frac{1}{16\pi G_2}$
Spherically reduced Einstein gravity

- Starting point: d-dimensional manifold \mathcal{M}_d, metric g_d
- Assume that \mathcal{M}_d is spherically symmetric: $\mathcal{M}_d \to \mathcal{M}_2 \times S^{d-2}$

\[ds^2 = g_{\mu\nu} \, dx^\mu \, dx^\nu + \lambda^{-2} X^{\frac{2}{d-2}} \, d\Omega^2_{S^{d-2}} \]

- d-dimensional Einstein-Hilbert action: $L = \frac{1}{16\pi G} \int_{\mathcal{M}_d} d^d x \sqrt{|g_d|} R[g_d]$
- Express in terms of two-dimensional quantities

\[
I = \frac{A_{d-2}}{\lambda^{d-2} 16\pi G_N} \int_{\mathcal{M}} d^2 x \sqrt{|g|} \left(X R + \frac{d - 3}{d - 2} \left(\nabla X \right)^2 \right) + \lambda^2 (d - 2)(d - 3) X^{\frac{d-3}{d-2}} \\
\equiv U(X)(\nabla X)^2 + 2V(X)
\]

- Set $\frac{A_{d-2}}{\lambda^{d-2} 16\pi G_N} \equiv \frac{1}{16\pi G_2}$

\[\implies \text{Dilaton gravity model!} \]
Generalized Dilaton Models - The action

Bulk action

\[I = -\frac{1}{16\pi G_2} \left[\int_{\mathcal{M}} d^2x \sqrt{|g|} \left(X R - U(X)(\nabla X)^2 - 2V(X) \right) \right] \]
Generalized Dilaton Models - The action

Bulk action

\[I = -\frac{1}{16\pi G_2} \int d^2x \sqrt{|g|} \left(XR - U(X)(\nabla X)^2 - 2V(X) \right) \]

- geometric properties defined by \(g_{\mu\nu} \)
Generalized Dilaton Models - The action

Bulk action

\[
I = -\frac{1}{16\pi G_2} \left[\int_{\mathcal{M}} d^2x \sqrt{|g|} \left(XR - U(X)(\nabla X)^2 - 2V(X) \right) \right]
\]

- geometric properties defined by \(g_{\mu\nu} \)
- \(G_2 X^{-1} \) determines effective Newton’s constant
Generalized Dilaton Models - The action

Bulk action

\[
I = -\frac{1}{16\pi G_2} \left[\int_{\mathcal{M}} d^2x \sqrt{|g|} \left(XR - U(X)(\nabla X)^2 - 2V(X) \right) \right]
\]

- geometric properties defined by \(g_{\mu\nu} \)
- \(G_2X^{-1} \) determines effective Newton’s constant
- functions \(U, V \) define specific model (Callan-Giddings-Harvey-Strominger, Jackiw-Teitelboim, spherical reduced Einstein gravity,...)
Generalized Dilaton Models - The action

Bulk action

\[
I = -\frac{1}{16\pi G_2} \left[\int_{\mathcal{M}} d^2x \sqrt{|g|} \left(XR - U(X)(\nabla X)^2 - 2V(X) \right) \right]
\]

- geometric properties defined by \(g_{\mu\nu} \)
- \(G_2 X^{-1} \) determines effective Newton’s constant
- functions \(U, V \) define specific model (Callan-Giddings-Harvey-Strominger, Jackiw-Teitelboim, spherical reduced Einstein gravity,...)
- by counting: no local degrees of freedom, but still non-trivial (cf. 3d gravity)
Generalized Dilaton Models - The action

Bulk action

\[
I = - \frac{1}{16\pi G_2} \left[\int_{\mathcal{M}} d^2x \sqrt{|g|} \left(XR - U(X)(\nabla X)^2 - 2V(X) \right) \right]
\]

- geometric properties defined by \(g_{\mu\nu} \)
- \(G_2X^{-1} \) determines effective Newton’s constant
- functions \(U, V \) define specific model (Callan-Giddings-Harvey-Strominger, Jackiw-Teitelboim, spherical reduced Einstein gravity,...)
- by counting: no local degrees of freedom, but still non-trivial (cf. 3d gravity)
- Two sets of solutions:
Generalized Dilaton Models - The action

Bulk action

\[
I = -\frac{1}{16\pi G_2} \int_{\mathcal{M}} d^2 x \sqrt{|g|} \left(X R - U(X)(\nabla X)^2 - 2V(X) \right)
\]

- geometric properties defined by $g_{\mu\nu}$
- $G_2 X^{-1}$ determines effective Newton’s constant
- functions U, V define specific model (Callan-Giddings-Harvey-Strominger, Jackiw-Teitelboim, spherical reduced Einstein gravity,...)
- by counting: no local degrees of freedom, but still non-trivial (cf. 3d gravity)
- Two sets of solutions:
 - linear (running) dilaton solutions: exist generically; **can be written in closed form!**
Generalized Dilaton Models - The action

Bulk action

\[I = -\frac{1}{16\pi G_2} \int_{\mathcal{M}} d^2 x \sqrt{|g|} \left(XR - U(X)(\nabla X)^2 - 2V(X) \right) \]

- geometric properties defined by \(g_{\mu\nu} \)
- \(G_2 X^{-1} \) determines effective Newton’s constant
- functions \(U, V \) define specific model (Callan-Giddings-Harvey-Strominger, Jackiw-Teitelboim, spherical reduced Einstein gravity, ...)
- by counting: no local degrees of freedom, but still non-trivial (cf. 3d gravity)
- Two sets of solutions:
 - linear (running) dilaton solutions: exist generically; **can be written in closed form**!
 - constant dilaton vacua (CDV): only for specific choices of potential \(V(X) \)
Generalized Dilaton Models - The action

Bulk action

\[I = -\frac{1}{16\pi G_2} \int d^2 x \sqrt{|g|} \left(X R - U(X)(\nabla X)^2 - 2V(X) \right) \]

- geometric properties defined by \(g_{\mu\nu} \)
- \(G_2 X^{-1} \) determines effective Newton’s constant
- functions \(U, V \) define specific model (Callan-Giddings-Harvey-Strominger, Jackiw-Teitelboim, spherical reduced Einstein gravity,...)
- by counting: no local degrees of freedom, but still non-trivial (cf. 3d gravity)
- Two sets of solutions:
 - linear (running) dilaton solutions: exist generically; can be written in closed form!
 - constant dilaton vacua (CDV): only for specific choices of potential \(V(X) \)
- always exists (at least) one conserved quantity: Casimir
Generalized Dilaton Models - The action

Bulk action

\[
I = -\frac{1}{16\pi G_2} \left[\int_\mathcal{M} d^2x \sqrt{|g|} \left(X R - U(X)(\nabla X)^2 - 2V(X) \right) \right]
\]

- geometric properties defined by \(g_{\mu\nu} \)
- \(G_2 X^{-1} \) determines effective Newton’s constant
- functions \(U, V \) define specific model (Callan-Giddings-Harvey-Strominger, Jackiw-Teitelboim, spherical reduced Einstein gravity,...)
- by counting: no local degrees of freedom, but still non-trivial (cf. 3d gravity)
- Two sets of solutions:
 - linear (running) dilaton solutions: exist generically; can be written in closed form!
 - constant dilaton vacua (CDV): only for specific choices of potential \(V(X) \)
- always exists (at least) one conserved quantity: Casimir
- generalizations, e.g. add a Maxwell-term \(\int_\mathcal{M} d^2x \sqrt{|g|} F(X) f^{\mu\nu} f_{\mu\nu} \) with coupling \(F(X) \)
1 Motivation

2 Two-dimensional Dilaton Gravity

3 Dilaton Gravity as a Poisson Sigma model

4 AdS$_2$ Holography
 - Constant dilaton sector
 - Linear dilaton sector

5 Conclusion
Poisson-Sigma models (PSMs)

Poisson sigma model (PSM) formulation simplifies calculations considerably (cf. Chern-Simons in 3d)

Can provide new viewpoints (cf. 3d Chern-Simons ⇔ WZW models)

Poisson-Sigma model [Schaller, Strobl; Ikeda]

Base space: 2d manifold \(M \)

Target space: a Poisson manifold \(\Sigma \) with coordinates \(X^I \)

A Poisson tensor \(P^{IJ}(X^K) = -P^{JI}(X^K) \) obeying the identity

\[
P^{LI} \partial_X P^{JK} + \text{(cycl.)} = 0
\]

Poisson bracket on \(\Sigma \) given by

\[
\{X^I, X^J\} = P^{IJ}(X^K)
\]

gauge fields \(A^I \), one-forms on \(M \) taking values in \(\Sigma \)

Action given by

\[
I = -\frac{k}{2\pi} \int_M (A^I dX^I + \frac{1}{2} P^{IJ}(X^K) A^I \wedge A^J).
\]
Poisson-Sigma models (PSMs)

Poisson sigma model (PSM) formulation simplifies calculations considerably (cf. Chern-Simons in 3d)
Can provide new viewpoints (cf. 3d Chern-Simons \Leftrightarrow WZW models)
Poisson-Sigma models (PSMs)

Poisson sigma model (PSM) formulation simplifies calculations considerably (cf. Chern-Simons in 3d) Can provide new viewpoints (cf. 3d Chern-Simons ⇔ WZW models) Poisson-Sigma model [Schaller, Strobl; Ikeda]
Poisson-Sigma models (PSMs)

Poisson sigma model (PSM) formulation simplifies calculations considerably (cf. Chern-Simons in 3d)
Can provide new viewpoints (cf. 3d Chern-Simons ⇔ WZW models)
Poisson-Sigma model [Schaller, Strobl; Ikeda]

- base space: 2d manifold \mathcal{M}:
Poisson-Sigma models (PSMs)

Poisson sigma model (PSM) formulation simplifies calculations considerably (cf. Chern-Simons in 3d)
Can provide new viewpoints (cf. 3d Chern-Simons \Leftrightarrow WZW models)
Poisson-Sigma model [Schaller, Strobl; Ikeda]

- base space: $2d$ manifold \mathcal{M}:
- target space: a Poisson manifold Σ with coordinates X^I
Poisson-Sigma models (PSMs)

Poisson sigma model (PSM) formulation simplifies calculations considerably (cf. Chern-Simons in 3d)
Can provide new viewpoints (cf. 3d Chern-Simons ⇔ WZW models)
Poisson-Sigma model [Schaller, Strobl; Ikeda]

- base space: 2d manifold \mathcal{M}:
- target space: a Poisson manifold Σ with coordinates X^I
- a Poisson tensor $P^{IJ}(X^K) = -P^{JI}(X^K)$ obeying the identity $P^{LI} \partial_L P^{JK} + (\text{cycl.}) = 0$
Poisson-Sigma models (PSMs)

Poisson sigma model (PSM) formulation simplifies calculations considerably (cf. Chern-Simons in 3d)
Can provide new viewpoints (cf. 3d Chern-Simons \Leftrightarrow WZW models)
Poisson-Sigma model [Schaller, Strobl; Ikeda]

- base space: 2d manifold \mathcal{M}:
- target space: a Poisson manifold Σ with coordinates X^I
- a Poisson tensor $P^{IJ}(X^K) = -P^{JI}(X^K)$ obeying the identity $P^{LI} \partial_L P^{JK} + \text{(cycl.)} = 0$
- Poisson bracket on Σ given by $\{X^I, X^J\} = P^{IJ}(X^K)$
Poisson-Sigma models (PSMs)

Poisson sigma model (PSM) formulation simplifies calculations considerably (cf. Chern-Simons in 3d)
Can provide new viewpoints (cf. 3d Chern-Simons ⇔ WZW models)

Poisson-Sigma model [Schaller, Strobl; Ikeda]

- base space: 2d manifold \mathcal{M}:
- target space: a Poisson manifold Σ with coordinates X^I
- a Poisson tensor $P^{IJ}(X^K) = -P^{JI}(X^K)$ obeying the identity $P^{LI} \partial_L P^{JK} + \text{(cycl.)} = 0$
- Poisson bracket on Σ given by $\{X^I, X^J\} = P^{IJ}(X^K)$
- gauge fields A_I, one-forms on \mathcal{M} taking values in Σ
Poisson-Sigma models (PSMs)

Poisson sigma model (PSM) formulation simplifies calculations considerably (cf. Chern-Simons in 3d)
Can provide new viewpoints (cf. 3d Chern-Simons \Leftrightarrow WZW models)
Poisson-Sigma model [Schaller, Strobl; Ikeda]

- base space: 2d manifold \mathcal{M}:
- target space: a Poisson manifold Σ with coordinates X^I
- a Poisson tensor $P^{IJ}(X^K) = -P^{JI}(X^K)$ obeying the identity $P^{LI} \partial_L P^{JK} + \text{(cycl.)} = 0$
- Poisson bracket on Σ given by $\{X^I, X^J\} = P^{IJ}(X^K)$
- gauge fields A_I, one-forms on \mathcal{M} taking values in Σ
- action given by

$$I = -\frac{k}{2\pi} \int_{\mathcal{M}} \left(A_I \, dX^I + \frac{1}{2} P^{IJ}(X^K) A_I \wedge A_J \right).$$
PSM formulation of dilaton gravity

\[I = -\frac{k}{2\pi} \int_{\mathcal{M}} \left(X^I dA_I + \frac{1}{2} P^{IJ}(X^K)A_I \wedge A_J \right). \]

Relation between PSM and 2d dilaton gravity
PSM formulation of dilaton gravity

\[I = -\frac{k}{2\pi} \int_{\mathcal{M}} \left(X^I \, dA_I + \frac{1}{2} P^{IJ} (X^K) A_I \wedge A_J \right). \]

2d dilaton gravity in first order formulation

\[I = -\frac{k}{2\pi} \int_{\mathcal{M}} \left(X^a \, \text{De}_a + X \, \text{d} \omega + \epsilon \, V(X^c, X) \right) \]

Relation between PSM and 2d dilaton gravity
PSM formulation of dilaton gravity

\[I = -\frac{k}{2\pi} \int_{\mathcal{M}} \left(X^I \, dA_I + \frac{1}{2} P^{IJ}(X^K)A_I \wedge A_J \right). \]

2d dilaton gravity in first order formulation

\[I = -\frac{k}{2\pi} \int_{\mathcal{M}} \left(X^a \, De_a + X \, d\omega + \epsilon \, V(X^c, X) \right) \]

Relation between PSM and 2d dilaton gravity

- choose three-dimensional Poisson manifold with coordinates \((X, X^a)\)
PSM formulation of dilaton gravity

\[I = -\frac{k}{2\pi} \int_{\mathcal{M}} \left(X^I dA_I + \frac{1}{2} P^{IJ}(X^K) A_I \wedge A_J \right). \]

2d dilaton gravity in first order formulation

\[I = -\frac{k}{2\pi} \int_{\mathcal{M}} \left(X^a D e_a + X \underbrace{d\omega}_{\text{de} + \epsilon_a \omega \wedge e_b} + \frac{1}{2} \underbrace{\epsilon_b \omega^a}_{\frac{1}{2} d\omega + \epsilon} + \underbrace{\mathcal{V}(X^c, X)}_{-\frac{1}{2} X^c X_c U(X) - V(X)} \right) \]

Relation between PSM and 2d dilaton gravity

- choose three-dimensional Poisson manifold with coordinates \((X, X^a)\)
- Poisson tensor \(P^{ab} = \mathcal{V} \epsilon^{ab}, P^a X^a = X^b \epsilon^a_b\)

Jakob Salzer
Aspects of Holography in 2d Dilaton Gravity
UB, Nov 27th 7 / 26
PSM formulation of dilaton gravity

\[I = -\frac{k}{2\pi} \int_{\mathcal{M}} \left(X^I dA_I + \frac{1}{2} P^{IJ}(X^K)A_I \wedge A_J \right). \]

2d dilaton gravity in first order formulation

\[I = -\frac{k}{2\pi} \int_{\mathcal{M}} \left(X^a De_a + X d\omega + \epsilon \ V(X^c, X) \right) \]

Relation between PSM and 2d dilaton gravity

- choose three-dimensional Poisson manifold with coordinates \((X, X^a)\)
- Poisson tensor \(P^{ab} = \mathcal{V} \epsilon^{ab}, P^{Xa} = X^b \epsilon^a_b\)
- identify \(A_X = \omega, A_a = e_a\)
PSM formulation of dilaton gravity

\[I = -\frac{k}{2\pi} \int_{\mathcal{M}} \left(X^I \, dA_I + \frac{1}{2} P^{IJ}(X^K)A_I \wedge A_J \right). \]

2d dilaton gravity in first order formulation

\[I = -\frac{k}{2\pi} \int_{\mathcal{M}} \left(X^a \, De_a + X \begin{array}{c} \frac{1}{2} \, d\omega \end{array} + \varepsilon \begin{array}{c} \mathcal{V}(X^c, X) \end{array} \right) \]

Relation between PSM and 2d dilaton gravity

- choose three-dimensional Poisson manifold with coordinates \((X, X^a)\)
- Poisson tensor \(P^{ab} = \mathcal{V}\varepsilon^{ab}, P^{Xa} = X^b \varepsilon^a_b\)
- identify \(A_X = \omega, A_a = e_a\)
- coupling to (non-)abelian gauge fields straightforward
Equations of motion and symmetries

\[I = -\frac{k}{2\pi} \int_{\mathcal{M}} \left(X^I \, dA_I + \frac{1}{2} P^{IJ} (X^K) A_I \wedge A_J \right). \]

Equations of motion

\[
\begin{align*}
\text{d}X^I + P^{IJ} A_J &= 0 \\
\text{d}A_I + \frac{1}{2} \partial_I P^{JK} A_J \wedge A_K &= 0
\end{align*}
\]
Equations of motion and symmetries

\[I = -\frac{k}{2\pi} \int_{\mathcal{M}} \left(X^I \, dA_I + \frac{1}{2} P^{IJ} (X^K) A_I \wedge A_J \right). \]

Equations of motion

\[
\begin{align*}
 dX^I + P^{IJ} A_J &= 0 \\
 dA_I + \frac{1}{2} \partial_I P^{JK} A_J \wedge A_K &= 0
\end{align*}
\]

Symmetries of the action

\[
\begin{align*}
 \delta_{\lambda} X^I &= P^{IJ} \lambda_J \\
 \delta_{\lambda} A_I &= -d\lambda_I - \partial_I P^{JK} \lambda_K A_J.
\end{align*}
\]
Equations of motion and symmetries

\[I = -\frac{k}{2\pi} \int_{\mathcal{M}} \left(X^I \, dA_I + \frac{1}{2} P^{IJ}(X^K) A_I \wedge A_J \right) . \]

Equations of motion

\[dX^I + P^{IJ} A_J = 0 \]
\[dA_I + \frac{1}{2} \partial_I P^{JK} A_J \wedge A_K = 0 \]

Symmetries of the action

\[\delta_\lambda X^I = P^{IJ} \lambda_J \]
\[\delta_\lambda A_I = -d\lambda_I - \partial_I P^{JK} \lambda_K A_J . \]

Diffeomorphisms and Lorentz transformations \(\Leftrightarrow \) non-linear gauge symmetry (on-shell), e.g.,

\[\delta_\lambda X^I = P^{IJ} \underbrace{\lambda_J}_{=-P^{IJ} \xi^\mu A_{\mu J}} = -P^{IJ} \xi^\mu A_{\mu J} = \xi^\mu \partial_\mu X^I = \delta_\xi X^I \]

\[:=-\xi^\mu A_{\mu I} \]
Equations of motion and symmetries

\[I = -\frac{k}{2\pi} \int_\mathcal{M} \left(X^I \, dA_I + \frac{1}{2} P^{IJ} (X^K) A_I \wedge A_J \right). \]

Equations of motion

\[dX^I + P^{IJ} A_J = 0 \]
\[dA_I + \frac{1}{2} \partial_I P^{JK} A_J \wedge A_K = 0 \]

Symmetries of the action

\[\delta_\lambda X^I = P^{IJ} \lambda_J \]
\[\delta_\lambda A_I = -d\lambda_I - \partial_I P^{JK} \lambda_K A_J. \]

Diffeomorphisms and Lorentz transformations \(\Leftrightarrow\) non-linear gauge symmetry (on-shell), e.g.,

\[\delta_\lambda X^I = P^{IJ} \lambda_J \]
\[= -P^{IJ} \xi^\mu A_{\mu J} = \xi^\mu \partial_\mu X^I = \delta_\xi X^I \]
\[:= -\xi^\mu A_{\mu I} \]

\(P^{IJ}\) degenerate \(\Rightarrow\) \(\exists\) a conserved Casimir function \(C = C(X^I)\)
Equations of motion and symmetries

\[I = -\frac{k}{2\pi} \int_{\mathcal{M}} \left(X^I \, dA_I + \frac{1}{2} P^{IJ} (X^K) A_I \wedge A_J \right). \]

Equations of motion

\[dX^I + P^{IJ} A_J = 0 \]
\[dA_I + \frac{1}{2} \partial_I P^{JK} A_J \wedge A_K = 0 \]

Symmetries of the action

\[\delta_\lambda X^I = P^{IJ} \lambda_J \]
\[\delta_\lambda A_I = -d\lambda_I - \partial_I P^{JK} \lambda_K A_J. \]

Diffeomorphisms and Lorentz transformations ⇔ non-linear gauge symmetry (on-shell), e.g.,

\[\delta_\lambda X^I = P^{IJ} \lambda_J = -P^{IJ} \xi^\mu A_{\mu J} = \xi^\mu \partial_\mu X^I = \delta_\xi X^I \]
\[:= -\xi^\mu A_{\mu I} \]

\(P^{IJ} \) degenerate ⇒ \(\exists \) a conserved Casimir function \(C = C(X^I) \)
\[\{X^I, C\} = P^{IJ} \partial_J C = 0 \]
Equations of motion and symmetries

\[l = -\frac{k}{2\pi} \int_M \left(X^I \, dA_I + \frac{1}{2} P^{IJ} (X^K) A_I \wedge A_J \right). \]

Equations of motion

\[dX^I + P^{IJ} A_J = 0 \]
\[dA_I + \frac{1}{2} \partial_I P^{JK} A_J \wedge A_K = 0 \]

Symmetries of the action

\[\delta_\lambda X^I = P^{IJ} \lambda_J \]
\[\delta_\lambda A_I = -d\lambda_I - \partial_I P^{JK} \lambda_K A_J. \]

Diffeomorphisms and Lorentz transformations \(\Leftrightarrow \) non-linear gauge symmetry (on-shell), e.g.,

\[\delta_\xi X^I = P^{IJ} \lambda_J = -P^{IJ} \xi^\mu A_{\mu J} = \xi^\mu \partial_\mu X^I = \delta_\xi X^I \]
\[:= -\xi^\mu A_{\mu I} \]

\(P^{IJ} \) degenerate \(\Rightarrow \) \(\exists \) a conserved Casimir function \(C = C(X^I) \)

\[\{ X^I, C \} = P^{IJ} \partial_I C = 0 \]
\[0 = -P^{IJ} A_J \partial_I C = dX^I \partial_I C = dC \]
Motivation

Two-dimensional Dilaton Gravity

Dilaton Gravity as a Poisson Sigma model

AdS$_2$ Holography
- Constant dilaton sector
- Linear dilaton sector

Conclusion
Study asymptotic dynamics in the two solution sectors of dilaton gravity
AdS$_2$ holography

Study asymptotic dynamics in the two solution sectors of dilaton gravity

- Constant dilaton sector (CDV)
Study asymptotic dynamics in the two solution sectors of dilaton gravity

- Constant dilaton sector (CDV)
- Linear dilaton sector
AdS$_2$ holography

Study asymptotic dynamics in the two solution sectors of dilaton gravity

- Constant dilaton sector (CDV)
- Linear dilaton sector
AdS$_2$ CDV holography in PSM formulation: previous results

- AdS$_2$ holography for a particular model of constant dilaton coupled to a $U(1)$ field: chiral CFT dual [Hartman, Strominger (2008); Castro, Grumiller, Larsen, McNees (2008)]
AdS$_2$ CDV holography in PSM formulation: previous results

- AdS$_2$ holography for a particular model of constant dilaton coupled to a $U(1)$ field: chiral CFT dual [Hartman, Strominger (2008); Castro, Grumiller, Larsen, McNees (2008)]

- Later shown that all charges for this model vanish \Rightarrow contains only vacuum state [Castro, Song (2012)]
AdS$_2$ CDV holography in PSM formulation: previous results

- AdS$_2$ holography for a particular model of constant dilaton coupled to a $U(1)$ field: chiral CFT dual [Hartman, Strominger (2008); Castro, Grumiller, Larsen, McNees (2008)]

- Later shown that all charges for this model vanish \Rightarrow contains only vacuum state [Castro, Song (2012)]

 Is this true only for this specific model? Maybe non-trivial constant dilaton holography for other models?
Dilaton Holography coupled to $U(1)$ field in the constant dilaton sector on Euclidean AdS$_2$
Dilaton Holography coupled to $U(1)$ field in the constant dilaton sector on Euclidean AdS$_2$

Equations of motion

$$dX^I + P^{IJ} A_J = 0$$
$$dA_I + \frac{1}{2} \partial_I P^{JK} A_J \wedge A_K = 0,$$
Dilaton Holography coupled to $U(1)$ field in the constant dilaton sector on Euclidean AdS_2

Equations of motion

\[d\chi^I + P^{IJ} A_J = 0 \]
\[dA_I + \frac{1}{2} \partial_I P^{JK} A_J \wedge A_K = 0 , \]
Dilaton Holography coupled to $U(1)$ field in the constant dilaton sector on Euclidean AdS$_2$

Equations of motion

\[
dX^I + P^{IJ}A_J = 0
\]

\[
dA_I + \frac{1}{2} \partial_I P^{JK} A_J \wedge A_K = 0,
\]

- constant dilaton solutions: $X^I = \bar{X}^I = \text{const} \Rightarrow P^{IJ}(\bar{X}^K) = 0$
Dilaton Holography coupled to $U(1)$ field in the constant dilaton sector on Euclidean AdS_2

Equations of motion

\[
\begin{align*}
\text{d}X^I + P^{IJ}A_J &= 0 \\
\text{d}A_I + \frac{1}{2} \partial_I P^{JK} A_J \wedge A_K &= 0,
\end{align*}
\]

- constant dilaton solutions: $X^I = \bar{X}^I = \text{const} \Rightarrow P^{IJ}(\bar{X}^K) = 0$
- AdS_2 solution with $R = -2 \Rightarrow \partial_X Y|_{X^I = \bar{X}^I} = 1$
General Strategy: Boundary Conditions, Gauge Transformations and Symmetries

- Theory not only defined by action but also by **boundary conditions**;
Theory not only defined by action but also by boundary conditions;

Choose boundary conditions for fields; should contain some interesting solutions
Theory not only defined by action but also by boundary conditions;

Choose boundary conditions for fields; should contain some interesting solutions

Having chosen boundary conditions, one has to classify gauge transformations according to:

- Trivial (proper, pure, genuine) gauge transformations, redundancy in the theory; do not change the physical state

- Non-trivial (improper) gauge transformations that change the physical state

Asymptotic symmetries are the quotient of allowed transformations by trivial transformations

Asymptotic symmetry algebra coincides with symmetry algebra of putative dual theory.
Theory not only defined by action but also by boundary conditions; Choose boundary conditions for fields; should contain some interesting solutions

Having chosen boundary conditions, one has to classify gauge transformations according to:

- **allowed** transformations of the theory, i.e., transformations that preserve the boundary conditions
Theory not only defined by action but also by boundary conditions;
⇒ Choose boundary conditions for fields; should contain some interesting solutions

Having chosen boundary conditions, one has to classify gauge transformations according to:

- **allowed** transformations of the theory, i.e., transformations that preserve the boundary conditions
- **trivial** (proper, pure, genuine) gauge transformations, redundancy in the theory; do not change the physical state ⇒ vanishing charge
General Strategy: Boundary Conditions, Gauge Transformations and Symmetries

- Theory not only defined by action but also by boundary conditions;
- Choose boundary conditions for fields; should contain some interesting solutions

Having chosen boundary conditions, one has to classify gauge transformations according to:

- *allowed* transformations of the theory, i.e., transformations that preserve the boundary conditions
- *trivial (proper, pure, genuine)* gauge transformations, redundancy in the theory; do not change the physical state ⇒ vanishing charge
- *non-trivial (improper)* gauge transformations that change the physical state ⇒ non-vanishing charge ⇒ "Symmetry transformations"
General Strategy: Boundary Conditions, Gauge Transformations and Symmetries

- Theory not only defined by action but also by boundary conditions;
- Choose boundary conditions for fields; should contain some interesting solutions

Having chosen boundary conditions, one has to classify gauge transformations according to:

- *allowed* transformations of the theory, i.e., transformations that preserve the boundary conditions
- *trivial* (*proper*, *pure*, *genuine*) gauge transformations, redundancy in the theory; do not change the physical state \(\Rightarrow\) vanishing charge
- *non-trivial* (*improper*) gauge transformations that change the physical state \(\Rightarrow\) non-vanishing charge \(\Rightarrow\) “Symmetry transformations”
- asymptotic symmetries are the quotient of allowed transformations by trivial transformations \(\Rightarrow\) asymptotic symmetry algebra
General Strategy: Boundary Conditions, Gauge Transformations and Symmetries

- Theory not only defined by action but also by boundary conditions;
- Choose boundary conditions for fields; should contain some interesting solutions

Having chosen boundary conditions, one has to classify gauge transformations according to:

- **allowed** transformations of the theory, i.e., transformations that preserve the boundary conditions
- **trivial (proper,pure,genuine)** gauge transformations, redundancy in the theory; do not change the physical state ⇒ vanishing charge
- **non-trivial (improper)** gauge transformations that change the physical state ⇒ non-vanishing charge ⇒ “Symmetry transformations”
- asymptotic symmetries are the quotient of allowed transformations by trivial transformations ⇒ asymptotic symmetry algebra
- asymptotic symmetry algebra coincides with symmetry algebra of putative dual theory.
AdS$_2$ CDV holography in PSM formulation: boundary-conditions

- work at finite temperature \Rightarrow periodicity in Euclidean time: $\phi \sim \phi + \beta$

Jakob Salzer
Aspects of Holography in 2d Dilaton Gravity
UB, Nov 27th
work at finite temperature \Rightarrow periodicity in Euclidean time: $\phi \sim \phi + \beta$

solutions should have topology of a disc
work at finite temperature ⇒ periodicity in Euclidean time: \(\phi \sim \phi + \beta \)

solutions should have topology of a disc

boundary conditions:

\[
\begin{align*}
X^0 &= 0 & A_{\varphi 0} &= \frac{1}{2} e^\rho - \frac{1}{2} e^{-\rho} \mathcal{M}(\varphi) + \mathcal{O}(e^{-3\rho}) & A_{\rho 0} &= 0 \\
X^1 &= 0 & A_{\varphi 1} &= 0 & A_{\rho 1} &= 1 \\
X = \bar{X} & & A_{\varphi X} &= -\frac{1}{2} e^\rho - \frac{1}{2} e^{-\rho} \mathcal{M}(\varphi) + \mathcal{O}(e^{-3\rho}) & A_{\rho X} &= 0
\end{align*}
\]
work at finite temperature \Rightarrow periodicity in Euclidean time: $\phi \sim \phi + \beta$

solutions should have topology of a disc

boundary conditions:

\begin{align*}
X^0 &= 0 & A_{\varphi 0} &= \frac{1}{2} e^\rho - \frac{1}{2} e^{-\rho} M(\varphi) + O(e^{-3\rho}) & A_{\rho 0} &= 0 \\
X^1 &= 0 & A_{\varphi 1} &= 0 & A_{\rho 1} &= 1 \\
X = \bar{X} & A_{\varphi X} = -\frac{1}{2} e^\rho - \frac{1}{2} e^{-\rho} M(\varphi) + O(e^{-3\rho}) & A_{\rho X} &= 0
\end{align*}

\Rightarrow line element with unit AdS$_2$ radius:

\[ds^2 = d\rho^2 + \frac{1}{4} \left(e^{2\rho} + 2M(\varphi) + (M(\varphi))^2 e^{-2\rho} \right) d\varphi^2 \]
AdS$_2$ CDV holography in PSM formulation: asymptotic symmetries

- free function $\mathcal{M}(\varphi)$ in the bc’s; looks like “boundary stress tensor”
AdS$_2$ CDV holography in PSM formulation: asymptotic symmetries

- free function $\mathcal{M}(\varphi)$ in the bc’s; looks like “boundary stress tensor”
- determine boundary condition preserving transformations $\delta_\lambda X^I, \delta_\lambda A_I$
AdS$_2$ CDV holography in PSM formulation:

asymptotic symmetries

- free function $\mathcal{M}(\varphi)$ in the bc’s; looks like “boundary stress tensor”
- determine boundary condition preserving transformations $\delta_\lambda X^I, \delta_\lambda A_I$
- $\Rightarrow \delta_\lambda \mathcal{M} = -\mathcal{M}' \lambda - 2\lambda' \mathcal{M} - \frac{1}{2} \lambda'''

$\delta_\lambda \mathcal{M}$ transforms under infinitesimal Virasoro symmetry; boundary stress tensor(?)

are these improper symmetry or proper gauge transformations

\Rightarrow calculate the corresponding canonical charge

Use Hamiltonian approach (Regge-Teitelboim), covariant phase space (Lee-Wald, Barnich-Brandt) etc. to calculate canonical boundary current:

$\delta Q_\lambda = k_2 \pi \delta X_I \lambda_I \bigg|_{\rho \to \infty}$

With our bc’s, $\delta X_I = 0$ \Rightarrow $\delta Q_\lambda = 0$

Transformations are pure gauge! Theory is trivial (classically)!

independent of specific model U, V and presence of $U(1)$ field
AdS$_2$ CDV holography in PSM formulation:
asymptotic symmetries

- free function $\mathcal{M}(\varphi)$ in the bc’s; looks like “boundary stress tensor”
- determine boundary condition preserving transformations $\delta_\lambda X^I, \delta_\lambda A_I$
- $\Rightarrow \delta_\lambda \mathcal{M} = -\mathcal{M}' \lambda - 2\lambda' \mathcal{M} - \frac{1}{2} \lambda''$
- \mathcal{M} transforms under infinitesimal Virasoro symmetry; boundary stress tensor (?)
AdS$_2$ CDV holography in PSM formulation: asymptotic symmetries

- free function $\mathcal{M}(\varphi)$ in the bc’s; looks like “boundary stress tensor”
- determine boundary condition preserving transformations $\delta_\lambda X^I, \delta_\lambda A_I$
- $\Rightarrow \delta_\lambda \mathcal{M} = -\mathcal{M}' \lambda - 2\lambda' \mathcal{M} - \frac{1}{2} \lambda'''$
- \mathcal{M} transforms under infinitesimal Virasoro symmetry; boundary stress tensor(?)
- are these improper symmetry or proper gauge transformations \Rightarrow calculate the corresponding canonical charge

Use Hamiltonian approach (Regge-Teitelboim), covariant phase space (Lee-Wald, Barnich-Brandt) etc. to calculate canonical boundary current:

Canonical boundary current

$$\delta Q_\lambda = \frac{k}{2\pi} \delta X^I \lambda^I \bigg|_{\rho \to \infty}$$
AdS$_2$ CDV holography in PSM formulation: asymptotic symmetries

- free function $M(\varphi)$ in the bc’s; looks like “boundary stress tensor”
- determine boundary condition preserving transformations $\delta_{\lambda} X^I, \delta_{\lambda} A_I$
 \[\Rightarrow \delta_{\lambda} M = -M' \lambda - 2\lambda' M - \frac{1}{2} \lambda''' \]
- M transforms under infinitesimal Virasoro symmetry; boundary stress tensor(?)
- are these improper symmetry or proper gauge transformations \Rightarrow calculate the corresponding canonical charge

Use Hamiltonian approach (Regge-Teitelboim), covariant phase space (Lee-Wald, Barnich-Brandt) etc. to calculate canonical boundary current:

Canonical boundary current

\[
\delta Q_{\lambda} = \frac{k}{2\pi} \delta X^I \lambda_I \bigg|_{\rho \to \infty}
\]

With our bc’s, $\delta X^I = 0 \Rightarrow \delta Q_{\lambda} = 0$
AdS$_2$ CDV holography in PSM formulation: asymptotic symmetries

- free function $\mathcal{M}(\varphi)$ in the bc’s; looks like “boundary stress tensor”
- determine boundary condition preserving transformations $\delta_\lambda X^I, \delta_\lambda A_I$
- $\Rightarrow \delta_\lambda \mathcal{M} = -\mathcal{M}' \lambda - 2\lambda' \mathcal{M} - \frac{1}{2} \lambda''$
- \mathcal{M} transforms under infinitesimal Virasoro symmetry; boundary stress tensor(?)
- are these improper symmetry or proper gauge transformations \Rightarrow calculate the corresponding canonical charge

Use Hamiltonian approach (Regge-Teitelboim), covariant phase space (Lee-Wald, Barnich-Brandt) etc. to calculate canonical boundary current:

Canonical boundary current

$$\delta Q_\lambda = \frac{k}{2\pi} \delta X^I \lambda_I \bigg|_{\rho \to \infty}$$

With our bc’s, $\delta X^I = 0 \Rightarrow \delta Q_\lambda = 0$

Transformations are pure gauge! Theory is trivial (classically)!
AdS$_2$ CDV holography in PSM formulation:

- asymptotic symmetries
 - free function $\mathcal{M}(\varphi)$ in the bc’s; looks like “boundary stress tensor”
 - determine boundary condition preserving transformations $\delta_\lambda X^I, \delta_\lambda A_I$
 - $\Rightarrow \delta_\lambda \mathcal{M} = -\mathcal{M}'\lambda - 2\lambda'\mathcal{M} - \frac{1}{2}\lambda''$
 - \mathcal{M} transforms under infinitesimal Virasoro symmetry; boundary stress tensor(?)
 - are these improper symmetry or proper gauge transformations \Rightarrow calculate the corresponding canonical charge

Use Hamiltonian approach (Regge-Teitelboim), covariant phase space (Lee-Wald, Barnich-Brandt) etc. to calculate canonical boundary current:

Canonical boundary current

$$\delta Q_\lambda = \frac{k}{2\pi} \delta X^I \lambda_I \bigg|_{\rho \to \infty}$$

With our bc’s, $\delta X^I = 0 \Rightarrow \delta Q_\lambda = 0$

Transformations are pure gauge! Theory is trivial (classically)!

- independent of specific model U, V and presence of $U(1)$ field
AdS$_2$ CDV holography in PSM formulation: partition function

Quantum correction? \(\Rightarrow\) Calculate one-loop partition function around CDVs
Quantum correction? ⇒ Calculate one-loop partition function around CDVs

- Zero-loop result: on-shell action $\Gamma|_{CDV} = 0 \rightarrow Z_{0\text{-loop}} = 1$
AdS$_2$ CDV holography in PSM formulation:

partition function

Quantum correction? \Rightarrow Calculate one-loop partition function around CDVs

- Zero-loop result: on-shell action $\Gamma|_{CDV} = 0 \rightarrow Z_{0\text{-loop}} = 1$
- One-loop result $Z_{1\text{-loop}} = \frac{\det(\nabla^\dagger_\mu \nabla^\mu)^{1/2}}{\det(\nabla_\mu \nabla^{\mu \dagger})^{1/2}}$, where $\nabla_\mu \chi_I = (\partial_\mu \delta^I_J + \partial_I P^{JK} A_{\mu J}) \chi_J$
AdS$_2$ CDV holography in PSM formulation: partition function

Quantum correction? ⇒ Calculate one-loop partition function around CDVs

- Zero-loop result: on-shell action $\Gamma|_{CDV} = 0 \rightarrow Z_{0\text{-loop}} = 1$
- One-loop result $Z_{1\text{-loop}} = \frac{\det(\nabla_{\mu}^\dagger \nabla^\mu)^{\frac{1}{2}}}{\det(\nabla_{\mu} \nabla_{\mu}^\dagger)^{\frac{1}{2}}}$, where $\nabla_{\mu} \chi^I = (\partial_{\mu} \delta^J_l + \partial_{l} P^{JK} A_{\mu J}) \chi_J$
AdS$_2$ CDV holography in PSM formulation:

partition function

Quantum correction? \[\Rightarrow \] Calculate one-loop partition function around CDVs

- Zero-loop result: on-shell action $\Gamma|_{CDV} = 0 \rightarrow Z_{0\text{-loop}} = 1$

- One-loop result $Z_{1\text{-loop}} = \frac{\det(\nabla^\dagger_\mu \nabla^\mu)^{\frac{1}{2}}}{\det(\nabla_\mu \nabla_\mu^\dagger)^{\frac{1}{2}}} = 1$, where $\nabla_\mu \chi_I = (\partial_\mu \delta^J_I + \partial_I P^{JK} A_{\mu J}) \chi_J$

- Full one-loop partition function trivial
AdS$_2$ CDV holography in PSM formulation: partition function

Quantum correction? \(\Rightarrow \) Calculate one-loop partition function around CDVs

- Zero-loop result: on-shell action \(\Gamma|_{CDV} = 0 \rightarrow Z_{0\text{-loop}} = 1 \)

- One-loop result \(Z_{1\text{-loop}} = \frac{\det(\nabla^\dagger_{\mu} \nabla^\mu)^{\frac{1}{2}}}{\det(\nabla_{\mu} \nabla_{\mu}^\dagger)^{\frac{1}{2}}} = 1 \), where \(\nabla_{\mu} \chi_I = (\partial_{\mu} \delta^J_I + \partial_I P^{JK} A_{\mu J}) \chi_J \)

- Full one-loop partition function trivial

 2d dilaton gravity constant dilaton sector trivial!
AdS$_2$ CDV holography in PSM formulation:
partition function

Quantum correction? \Rightarrow Calculate one-loop partition function around CDVs

- Zero-loop result: on-shell action $\Gamma|_{CDV} = 0 \rightarrow Z_{0\text{-loop}} = 1$

- One-loop result $Z_{1\text{-loop}} = \frac{\det(\nabla^\dagger_\mu \nabla^\mu) \frac{1}{2}}{\det(\nabla_\mu \nabla_\mu^\dagger) \frac{1}{2}} = 1$, where $\nabla_\mu \chi_I = (\partial_\mu \delta^J_I + \partial_I P^{JK} A_{\mu J}) \chi_J$

- Full one-loop partition function trivial

2d dilaton gravity constant dilaton sector trivial!

independent of specific model U, V, and presence of $U(1)$ field
AdS$_2$ holography

Study holography in the two solution sectors of dilaton gravity

- Constant dilaton sector (CDV)
- Linear dilaton sector
Jackiw–Teitelboim (JT) model

Jackiw-Teitelboim model:

\[I = -\frac{k}{4\pi} \int_{\mathcal{M}} d^2x \sqrt{|g|} (X(R + 2)) \]
Jackiw–Teitelboim (JT) model

Jackiw-Teitelboim model:

\[I = -\frac{k}{4\pi} \int \mathcal{M} d^2x \sqrt{|g|} (X(R + 2)) \]

- locally AdS$_2$
Jackiw–Teitelboim (JT) model

Jackiw–Teitelboim model:

\[I = -\frac{k}{4\pi} \int_{\mathcal{M}} d^2x \sqrt{|g|} (X(R + 2)) \]

- locally AdS$_2$
- Has black hole solutions!

Figure: Penrose diagram for the Jackiw–Teitelboim model
Jackiw–Teitelboim (JT) model

Jackiw–Teitelboim model:

\[I = -\frac{k}{4\pi} \int_{\mathcal{M}} d^2x \sqrt{|g|} (X(R + 2)) \]

- locally AdS$_2$
- Has black hole solutions!
- At finite temperature: Poincaré disc/cigar geometry

Figure: Finite temperature black hole
Jackiw–Teitelboim (JT) model

Jackiw-Teitelboim model:

\[I = -\frac{k}{4\pi} \int_{\mathcal{M}} d^2 x \sqrt{|g|} (X(R + 2)) \]

- locally AdS$_2$
- Has black hole solutions!
- At finite temperature: Poincaré disc/cigar geometry
- Boundary theory of JT model related to SYK model

Figure: Finite temperature black hole
Sachdev-Ye-Kitaev model

Quantum mechanical model of N Majorana fermions ψ_i [Sachdev, Ye; Kitaev; Maldacena, Stanford]

\[H = \sum_{ijkl} j_{ijkl} \psi_i \psi_j \psi_k \psi_l \]
Sachdev-Ye-Kitaev model

- Quantum mechanical model of N Majorana fermions ψ_i [Sachdev, Ye; Kitaev; Maldacena, Stanford]
 \[H = \sum_{ijkl} j_{ijkl} \psi_i \psi_j \psi_k \psi_l \]
- j_{ijkl} random couplings with $<j_{ijkl}> = 0$, $<j_{ijkl}^2> = 3! J^2 / N^3$
Sachdev-Ye-Kitaev model

- Quantum mechanical model of N Majorana fermions ψ_i [Sachdev, Ye; Kitaev; Maldacena, Stanford]
 \[H = \sum_{ijkl} j_{ijkl} \psi_i \psi_j \psi_k \psi_l \]

- j_{ijkl} random couplings with $\langle j_{ijkl} \rangle = 0$, $\langle j_{ijkl}^2 \rangle = 3! J^2 / N^3$

- in strong coupling limit at large N develops reparametrization symmetry
Sachdev-Ye-Kitaev model

- Quantum mechanical model of N Majorana fermions ψ_i [Sachdev, Ye; Kitaev; Maldacena, Stanford]

$$H = \sum_{ijkl} j_{ijkl} \psi_i \psi_j \psi_k \psi_l$$

- j_{ijkl} random couplings with $< j_{ijkl} >= 0$, $< j_{ijkl}^2 >= 3! J^2 / N^3$
- in strong coupling limit at large N develops reparametrization symmetry
- reparametrization symmetry spontaneously broken to $\text{SL}(2)$ by groundstate
Sachdev-Ye-Kitaev model

- Quantum mechanical model of N Majorana fermions ψ_i [Sachdev, Ye; Kitaev; Maldacena, Stanford]

$$H = \sum_{ijkl} j_{ijkl} \psi_i \psi_j \psi_k \psi_l$$

- j_{ijkl} random couplings with $\langle j_{ijkl} \rangle = 0$, $\langle j_{ijkl}^2 \rangle = 3!J^2/N^3$
- in strong coupling limit at large N develops reparametrization symmetry
- reparametrization symmetry spontaneously broken to $SL(2)$ by groundstate
- reparametrizations \rightarrow Goldstone bosons governed by Schwarzian action

Schwarzian action

$$I = \frac{N}{2\beta J} \int_0^\beta d\tau \left(\frac{2\pi^2}{\beta^2} \dot{f}^2 + \{f; \tau\} \right). \quad \{f; \tau\} = \left(\frac{\dddot{f}}{f} \right) - \frac{3}{2} \left(\frac{\ddot{f}}{f} \right)^2$$
Sachdev-Ye-Kitaev model

- Quantum mechanical model of N Majorana fermions ψ_i [Sachdev, Ye; Kitaev; Maldacena, Stanford]
 $$H = \sum_{ijkl} j_{ijkl} \psi_i \psi_j \psi_k \psi_l$$

- j_{ijkl} random couplings with $\langle j_{ijkl} \rangle = 0$, $\langle j^2_{ijkl} \rangle = 3! J^2 / N^3$

- in strong coupling limit at large N develops reparametrization symmetry

- reparametrization symmetry spontaneously broken to $SL(2)$ by groundstate

- reparametrizations \rightarrow Goldstone bosons governed by Schwarzian action

Schwarzian action

$$I = \frac{N}{2 \beta J} \int_{0}^{\beta} d\tau \left(\frac{2 \pi^2}{\beta^2} \dot{f}^2 + \{ f; \tau \} \right). \quad \{ f; \tau \} = \left(\frac{\ddot{f}}{\dot{f}} \right) - \frac{3}{2} \left(\frac{\dddot{f}}{\dot{f}} \right)^2$$

- Schwarzian action governs also asymptotic dynamics of Jackiw–Teitelboim model [Maldacena, Stanford, Yang] \Rightarrow holography! (?)
Schwarzian action– Generalizations?

- SYK model first step towards dual theory to AdS_2; however some problems (e.g., additional matter, random couplings make questions about black holes delicate)
SYK model first step towards dual theory to AdS_2; however some problems (e.g.,
additional matter, random couplings make questions about black holes delicate)

Host of other SYK-like models has been proposed; possibly more straightforward to
find gravity interpretation
SYK model first step towards dual theory to AdS_2; however some problems (e.g., additional matter, random couplings make questions about black holes delicate)

Host of other SYK-like models has been proposed; possibly more straightforward to find gravity interpretation

Understand the appearance of the Schwarzian action in the Jackiw–Teitelboim model in the PSM formalism
Schwarzian action—Generalizations?

- SYK model first step towards dual theory to AdS_2; however some problems (e.g., additional matter, random couplings make questions about black holes delicate)
- Host of other SYK-like models has been proposed; possibly more straightforward to find gravity interpretation
- Understand the appearance of the Schwarzian action in the Jackiw–Teitelboim model in the PSM formalism
- Generalize this from the gravitational perspective, i.e., find a similar action governing the asymptotic dynamics for other models
Linear PSMs

Take as Poisson manifold the dual space \mathfrak{g}^* of a (semi-simple) Lie algebra \mathfrak{g}.

$$I = -\frac{k}{2\pi} \int_M \left(X^I \, dA_I + \frac{1}{2} P^{IJ}(X^K) A_I \wedge A_J \right).$$

with

$$\left\{ X^I, X^J \right\} = P^{IJ}(X^K) = f_{IJ}^K X^K \quad f_{IK}^{IJ} \ldots \text{structure constants of } \mathfrak{g}$$
Linear PSMs

Take as Poisson manifold the dual space g^* of a (semi-simple) Lie algebra g.

$$I = -\frac{k}{2\pi} \int_M \left(X^I \, dA_I + \frac{1}{2} P^{IJ}(X^K) A_I \wedge A_J \right).$$

with

$$\{ X^I, X^J \} = P^{IJ}(X^K) = f^{IJ}_K X^K \quad f^{IJ}_K \ldots \text{structure constants of } g$$

Using the invariant, bilinear form $\langle \cdot, \cdot \rangle$ on g rewrite the action as

BF action

$$I = -\frac{k}{2\pi} \int_M \langle \mathcal{X}, (dA + \frac{1}{2}[A, A]) \rangle = -\frac{k}{2\pi} \int_M \langle \mathcal{X}, \mathcal{F} \rangle.$$

with $\mathcal{X} = X^I L_I, \mathcal{F} = F^I L_I$, where $[L_I, L_J] = f_{IJ}^K L_K$.
Linear PSMs

Take as Poisson manifold the dual space g^* of a (semi-simple) Lie algebra g.

$$I = -\frac{k}{2\pi} \int_M \left(X^I \, dA_I + \frac{1}{2} P^{IJ}(X^K)A_I \wedge A_J \right).$$

with

$$\{ X^I, X^J \} = P^{IJ}(X^K) = f^{IJ}_K \, X^K \quad f^{IJ}_K \text{ ...structure constants of } g$$

Using the invariant, bilinear form $\langle \cdot, \cdot \rangle$ on g rewrite the action as

BF action

$$I = -\frac{k}{2\pi} \int_M \langle X, (dA + \frac{1}{2} [A, A]) \rangle = -\frac{k}{2\pi} \int_M \langle X, F \rangle.$$

with $X = X^I L_I$, $F = F^I L_I$, where $[L_I, L_J] = f_{IJ}^K L_K$.

For $g = sl(2, \mathbb{R})$, Jackiw–Teitelboim model
Equation of motion— Symmetries

BF action

\[I = -\frac{k}{2\pi} \int_{\mathcal{M}} \langle \mathcal{X}, \mathcal{F} \rangle. \]
Equation of motion– Symmetries

BF action

\[
I = -\frac{k}{2\pi} \int_\mathcal{M} \langle \mathcal{X}, \mathcal{F} \rangle.
\]

- Equations of motion

\[
d\mathcal{X} + [\mathcal{A}, \mathcal{X}] = 0 \quad \mathcal{F} = d\mathcal{A} + \frac{1}{2} [\mathcal{A}, \mathcal{A}] = 0
\]

Notice: stabilizer equation

\[
\delta \lambda \mathcal{A} = 0
\]

is equal to the dilaton equation of motion.
Equation of motion – Symmetries

BF action

\[I = -\frac{k}{2\pi} \int_{\mathcal{M}} \langle \mathcal{X}, \mathcal{F} \rangle. \]

- Equations of motion

\[d\mathcal{X} + [A, \mathcal{X}] = 0 \quad \mathcal{F} = dA + \frac{1}{2} [A, A] = 0 \]

- Gauge symmetries

\[\delta_\lambda \mathcal{X} = [\lambda, \mathcal{X}] \quad \delta_\lambda A = d\lambda + [A, \lambda] \]
Equation of motion – Symmetries

BF action

\[I = -\frac{k}{2\pi} \int_M \langle X, F \rangle. \]

- Equations of motion
 \[dX + [A, X] = 0 \quad F = dA + \frac{1}{2}[A, A] = 0 \]

- Gauge symmetries
 \[\delta_\lambda X = [\lambda, X] \quad \delta_\lambda A = d\lambda + [A, \lambda] \]

- Observables

Notice: stabilizer equation \(\delta_\lambda A = 0 \) is equal to the dilaton equation of motion.
Equation of motion– Symmetries

BF action

\[I = -\frac{k}{2\pi} \int_M \langle \mathcal{X}, \mathcal{F} \rangle. \]

- Equations of motion
 \[d \mathcal{X} + [A, \mathcal{X}] = 0 \quad \mathcal{F} = dA + \frac{1}{2} [A, A] = 0 \]

- Gauge symmetries
 \[\delta_\lambda \mathcal{X} = [\lambda, \mathcal{X}] \quad \delta_\lambda A = d\lambda + [A, \lambda] \]

- Observables
 - Casimir
 \[C = -\frac{1}{2} \langle \mathcal{X}, \mathcal{X} \rangle \]
Equation of motion– Symmetries

BF action

\[I = -\frac{k}{2\pi} \int_{\mathcal{M}} \langle \mathcal{F}, \mathcal{F} \rangle. \]

- Equations of motion

\[d\mathcal{X} + [A, \mathcal{X}] = 0 \quad \mathcal{F} = dA + \frac{1}{2}[A, A] = 0 \]

- Gauge symmetries

\[\delta_\lambda \mathcal{X} = [\lambda, \mathcal{X}] \quad \delta_\lambda A = d\lambda + [A, \lambda] \]

- Observables
 - Casimir

\[C = -\frac{1}{2} \langle \mathcal{X}, \mathcal{X} \rangle \]

- Holonomies

\[\text{Hol}[A] = \mathcal{P} \exp \int A \]
Equation of motion– Symmetries

BF action

\[I = -\frac{k}{2\pi} \int_{\mathcal{M}} \langle \mathcal{X}, \mathcal{F} \rangle. \]

- **Equations of motion**

 \[d\mathcal{X} + [A, \mathcal{X}] = 0 \quad \mathcal{F} = dA + \frac{1}{2}[A, A] = 0 \]

- **Gauge symmetries**

 \[\delta_\lambda \mathcal{X} = [\lambda, \mathcal{X}] \quad \delta_\lambda A = d\lambda + [A, \lambda] \]

- **Observables**
 - **Casimir**
 \[C = -\frac{1}{2} \langle \mathcal{X}, \mathcal{X} \rangle \]
 - **Holonomies**
 \[\text{Hol}[A] = \mathcal{P} \exp \oint A \]

- **Notice:** stabilizer equation \(\delta_\lambda A = 0 \) is equal to the dilaton equation of motion
Cigar Geometry

- Interested in asymptotic dynamics of the theory
- Define solution space:
 - Solutions should have topology of disc of periodicity β

\[X = X_\infty + \cdots \]
\[\rho \]
\[\tau \]
Cigar Geometry

- Interested in asymptotic dynamics of the theory
- Define solution space:
 - Solutions should have topology of disc of periodicity β
 - Define boundary conditions X^∞, A^∞ for X, A

\[
\rho
\]

\[
\tau
\]

\[
A = A^\infty + \ldots
\]

\[
X = X^\infty + \ldots
\]
Interested in asymptotic dynamics of the theory
Define solution space:
- Solutions should have topology of disc of periodicity β
- Define boundary conditions X^∞, A^∞ for X, A
- Solutions should be smooth \Rightarrow Holonomy must belong to center of group G

\[\rho \]

\[\text{Hol}[A] \neq I \]

\[\tau \]

\[A = A^\infty + \cdots \]

\[X = X^\infty + \cdots \]
Cigar Geometry

- Interested in asymptotic dynamics of the theory
- Define solution space:
 - Solutions should have topology of disc of periodicity β
 - Define boundary conditions \mathcal{X}^∞, \mathcal{A}^∞ for \mathcal{X}, \mathcal{A}
 - Solutions should be smooth \Rightarrow Holonomy must belong to center of group G

\[\rho \]

\[\text{Hol}[\mathcal{A}] = I \]

\[\tau \]

\[\mathcal{A} = \mathcal{A}^\infty + \cdots \]

\[\mathcal{X} = \mathcal{X}^\infty + \cdots \]
Interested in asymptotic dynamics of the theory

Define solution space:
- Solutions should have topology of disc of periodicity β
- Define boundary conditions X^∞, A^∞ for X, A
- Solutions should be smooth \Rightarrow Holonomy must belong to center of group G
- Singles out subset A_S of boundary conditions A^∞

$$\rho$$

τ

$$\text{Hol}[A] = I$$

$$\mathcal{A} = \mathcal{A}_S + \cdots$$

$$\mathcal{X} = \mathcal{X}^\infty + \cdots$$
Well-defined action principle—“Holographic renormalization”

- Above solutions are not necessarily saddle-points of

\[
I = -\frac{k}{2\pi} \int_{\mathcal{M}} \langle \mathcal{X}, \mathcal{F} \rangle.
\]
Well-defined action principle—“Holographic renormalization”

- Above solutions are not necessarily saddle-points of

\[I = -\frac{k}{2\pi} \int_{\mathcal{M}} \langle \mathcal{X}, \mathcal{F} \rangle. \]

\[\delta I = (\text{equations of motion}) - \frac{k}{2\pi} \int_{\partial \mathcal{M}} \langle \mathcal{X}^\infty, \delta \mathcal{A}^\infty \rangle. \]
Well-defined action principle—“Holographic renormalization”

- Above solutions are not necessarily saddle-points of

\[I = -\frac{k}{2\pi} \int_{\mathcal{M}} \langle \mathcal{X}, \mathcal{F} \rangle. \]

\[\delta I = (\text{equations of motion}) - \frac{k}{2\pi} \int_{\partial\mathcal{M}} \langle \mathcal{X}_\infty, \delta A_\infty \rangle. \]

- Depending on boundary conditions last term will not be zero \(\Rightarrow \delta I|_{\text{on-shell}} \neq 0 \)
Well-defined action principle—“Holographic renormalization”

- Above solutions are not necessarily saddle-points of

\[
I = -\frac{k}{2\pi} \int_{\mathcal{M}} \langle X, F \rangle.
\]

\[
\delta I = (\text{equations of motion}) - \frac{k}{2\pi} \int_{\partial \mathcal{M}} \langle X^\infty, \delta A^\infty \rangle.
\]

- Depending on boundary conditions last term will not be zero \(\Rightarrow \delta I|_{\text{on-shell}} \neq 0\)
- Add a boundary term \(I_{bdy}\) to \(I\) to remedy this;
Well-defined action principle—“Holographic renormalization”

- Above solutions are not necessarily saddle-points of

\[I = -\frac{k}{2\pi} \int_{\mathcal{M}} \langle \mathcal{X}, \mathcal{F} \rangle. \]

\[\delta I = (\text{equations of motion}) - \frac{k}{2\pi} \int_{\partial \mathcal{M}} \langle \mathcal{X}^\infty, \delta \mathcal{A}^\infty \rangle. \]

- Depending on boundary conditions last term will not be zero \(\Rightarrow \delta I|_{\text{on-shell}} \neq 0 \)

- Add a boundary term \(I_{\text{bdy}} \) to \(I \) to remedy this;

- Integrability condition

\[\mathcal{A}^\infty = df \mathcal{X}^\infty + u^{-1} du \quad u \in G \quad f \ldots \text{arbitrary} \]
Well-defined action principle—“Holographic renormalization”

- Above solutions are not necessarily saddle-points of

\[l = -\frac{k}{2\pi} \int_{\mathcal{M}} \langle \mathcal{X}, \mathcal{F} \rangle. \]

\[\delta l = \text{(equations of motion)} - \frac{k}{2\pi} \int_{\partial \mathcal{M}} \langle \mathcal{X}^\infty, \delta \mathcal{A}^\infty \rangle. \]

- Depending on boundary conditions last term will not be zero \(\Rightarrow \delta l \big|_{\text{on-shell}} \neq 0 \)
- Add a boundary term \(l_{\text{bdy}} \) to \(l \) to remedy this;
- integrability condition

\[\mathcal{A}^\infty = df \mathcal{X}^\infty + u^{-1} du \quad u \in G \quad f \ldots \text{arbitrary} \]

Improved action

\[\Gamma = l + l_{\text{bdy}} = -\frac{k}{2\pi} \int_{\mathcal{M}} \langle \mathcal{X}, \mathcal{F} \rangle - \frac{k}{2\pi} \int_{\partial \mathcal{M}} df \ C \]

where \(C = -\frac{1}{2} \langle \mathcal{X}, \mathcal{X} \rangle \).
$G = \text{SL}(2, \mathbb{R})$: Schwarzian action for the JT model

- Imposing the "geometry" equations of motion $\mathcal{F} = 0$

$$\Gamma_{\text{on-shell}} = -\frac{k}{2\pi} \int_{\partial \mathcal{M}} d\tau \dot{f} \ C$$
$G = \text{SL}(2, \mathbb{R})$: Schwarzian action for the JT model

- Imposing the “geometry” equations of motion $\mathcal{F} = 0$
 \[
 \Gamma_{\text{on-shell}} = -\frac{k}{2\pi} \int_{\partial \mathcal{M}} d\tau \dot{f} \ C
 \]

- Choose $G = \text{SL}(2, \mathbb{R})$: $[L_m, L_n] = L_{m+n}$, $m, n = -1, 0, +1$
$G = \text{SL}(2, \mathbb{R})$: Schwarzian action for the JT model

- Imposing the “geometry” equations of motion $\mathcal{F} = 0$

$$\Gamma_{\text{on-shell}} = -\frac{k}{2\pi} \int_{\partial \mathcal{M}} d\tau \dot{f} \ C$$

- Choose $G = \text{SL}(2, \mathbb{R})$: $[L_m, L_n] = L_{m+n} \quad m, n = -1, 0, +1$

- $A^\infty = \frac{e^\rho}{2} L_+ + \frac{e^{-\rho}}{2} \mathcal{M} L_-$
\(G = \text{SL}(2, \mathbb{R})\): Schwarzian action for the JT model

- Imposing the “geometry” equations of motion \(\mathcal{F} = 0 \)

\[
\Gamma_{\text{on-shell}} = -\frac{k}{2\pi} \int_{\partial\mathcal{M}} \dd\tau \dot{f} \ C
\]

- Choose \(G = \text{SL}(2, \mathbb{R})\): \([L_m, L_n] = L_{m+n}\) \(m, n = -1, 0, +1 \)

- \(A^\infty = \frac{e^\rho}{2} L_+ + \frac{e^{-\rho}}{2} \dot{\mathcal{M}} L_- \)

- \(\delta \lambda \mathcal{M} = 2 \mathcal{M} \dot{\lambda} + \dot{\mathcal{M}} \lambda - \frac{1}{2} \ddot{\lambda} \)
$G = \text{SL}(2, \mathbb{R}):$ Schwarzian action for the JT model

- Imposing the “geometry” equations of motion $\mathcal{F} = 0$
 \[
 \Gamma_{\text{on-shell}} = -\frac{k}{2\pi} \int_{\partial\mathcal{M}} d\tau \dot{\gamma} C
 \]

- Choose $G = \text{SL}(2, \mathbb{R})$: $[L_m, L_n] = L_{m+n}$ $\quad m, n = -1, 0, +1$

- $A^\infty = \frac{e^\rho}{2} L_+ + \frac{e^{-\rho}}{2}
 \mathcal{M} L_-$

- $\delta \lambda \mathcal{M} = 2 \mathcal{M} \dot{\lambda} + \dot{\mathcal{M}} \lambda - \frac{1}{2} \dddot{\lambda}$

- looks like asymptotic symmetries are Virasoro
$G = \text{SL}(2, \mathbb{R})$: Schwarzian action for the JT model

- Imposing the “geometry” equations of motion $\mathcal{F} = 0$
 $$\Gamma_{\text{on-shell}} = -\frac{k}{2\pi} \int_{\partial \mathcal{M}} d\tau \dot{f} \ C$$

- Choose $G = \text{SL}(2, \mathbb{R})$: $[L_m, L_n] = L_{m+n}$, $m, n = -1, 0, +1$

- $A^\infty = \frac{e^\rho}{2} L_+ + \frac{e^{-\rho}}{2} M L_-$

- $\delta^\lambda \mathcal{M} = 2 \dot{M} \dot{\lambda} + \ddot{M} \lambda - \frac{1}{2} \dddot{\lambda}$

- Looks like asymptotic symmetries are Virasoro

- Using A^∞ and integrability condition \Rightarrow
 $$C = \frac{1}{f^2} \left(\mathcal{M} - \frac{1}{2} \{ f; \tau \} \right)$$
$G = \text{SL}(2, \mathbb{R})$: Schwarzian action for the JT model

- Imposing the “geometry” equations of motion $\mathcal{F} = 0$
 \[\Gamma_{\text{on-shell}} = -\frac{k}{2\pi} \int_{\partial \mathcal{M}} d\tau \dot{f} \ C \]

- Choose $G = \text{SL}(2, \mathbb{R})$: $[L_m, L_n] = L_{m+n}$ \[m, n = -1, 0, +1 \]

- $A^\infty = \frac{e^\rho}{2} L_+ + \frac{e^{-\rho}}{2} \mathcal{M} L_-$

- $\delta_\lambda \mathcal{M} = 2 \mathcal{M} \dot{\lambda} + \dot{\mathcal{M}} \lambda - \frac{1}{2} \dddot{\lambda}$

- Looks like asymptotic symmetries are Virasoro

- Using A^∞ and integrability condition \Rightarrow
 \[C = \frac{1}{\dot{f}^2} \left(\mathcal{M} - \frac{1}{2} \{f, \tau\} \right) \]

- Geometry is smooth for $\mathcal{M} = \frac{\pi^2}{\beta^2}$

Schwarzian action

\[\Gamma|_{\text{eom}} = -\frac{k}{4\pi} \int_{\partial \mathcal{M}} d\tau \left(\dot{g}^2 \frac{2\pi^2}{\beta^2} + \{g, \tau\} \right) \quad g := f^{-1} \]
\[G = \text{SL}(2, \mathbb{R}): \text{Schwarzian action for the JT model} \]

- Imposing the “geometry” equations of motion \(\mathcal{F} = 0 \)
 \[\Gamma_{\text{on-shell}} = -\frac{k}{2\pi} \int_{\partial\mathcal{M}} d\tau \dot{f} \ C \]

- Choose \(G = \text{SL}(2, \mathbb{R}) \): \([L_m, L_n] = L_{m+n} \quad m, n = -1, 0, +1\)

- \(A^\infty = \frac{e^\rho}{2} L_+ + \frac{e^{-\rho}}{2} \mathcal{M} L_- \)

- \(\delta_\lambda \mathcal{M} = 2\mathcal{M} \dot{\lambda} + \dot{\mathcal{M}} \lambda - \frac{1}{2} \dddot{\lambda} \)

- Looks like asymptotic symmetries are Virasoro

- Using \(A^\infty \) and integrability condition \(\Rightarrow \)
 \[C = \frac{1}{\dot{f}^2} \left(\mathcal{M} - \frac{1}{2} \{f; \tau\} \right) \]

- Geometry is smooth for \(\mathcal{M} = \frac{\pi^2}{\beta^2} \)

Schwarzian action

\[\Gamma|_{\text{eom}} = -\frac{k}{4\pi} \int_{\partial\mathcal{M}} d\tau \left(\dot{g}^2 \frac{2\pi^2}{\beta^2} + \{g, \tau\} \right) \quad g := f^{-1} \]

- But \(\partial_\tau C = \dot{x}^+ \left(2\mathcal{M} \dot{x}^+ + \dot{\mathcal{M}} x^+ - \frac{1}{2} \dddot{x}^+ \right) = 0, \quad x^+ = \dot{f}^{-1} \) by dilaton e.o.m.
\(G = \text{SL}(2, \mathbb{R}) \): Schwarzian action for the JT model

- Imposing the “geometry” equations of motion \(\mathcal{F} = 0 \)

\[
\Gamma_{\text{on-shell}} = -\frac{k}{2\pi} \int_{\partial \mathcal{M}} d\tau \dot{f} \ C
\]

- Choose \(G = \text{SL}(2, \mathbb{R}) \): \([L_m, L_n] = L_{m+n} \quad m, n = -1, 0, +1\)

- \(\mathcal{A}^\infty = \frac{e^\rho}{2} L_+ + \frac{e^{-\rho}}{2} \mathcal{M} L_- \)

- \(\delta \lambda \mathcal{M} = 2\mathcal{M} \dot{\lambda} + \dot{\mathcal{M}} \lambda - \frac{1}{2} \dddot{\lambda} \)

- Looks like asymptotic symmetries are Virasoro

- Using \(\mathcal{A}^\infty \) and integrability condition \(\Rightarrow \)

\[
C = \frac{1}{\dot{f}^2} \left(\mathcal{M} - \frac{1}{2} \{ f; \tau \} \right)
\]

- Geometry is smooth for \(\mathcal{M} = \frac{\pi^2}{\beta^2} \)

Schwarzian action

\[
\Gamma|_{\text{eom}} = -\frac{k}{4\pi} \int_{\partial \mathcal{M}} d\tau \left(\dot{g}^2 \frac{2\pi^2}{\beta^2} + \{ g, \tau \} \right) \quad g := f^{-1}
\]

- But \(\partial_\tau C = \dot{x}^+ \left(2\mathcal{M} \dot{x}^+ + \dot{\mathcal{M}} x^+ - \frac{1}{2} \dddot{x}^+ \right) = 0 \), \(x^+ = \dot{f}^{-1} \) by dilaton e.o.m.

- Solutions for \(\mathcal{M} = \frac{\pi^2}{\beta^2} \): \(\text{SL}(2) \); breaking Virasoro \(\rightarrow \) \(\text{SL}(2) \)
Generalizations of the Schwarzian action

\[\Gamma_{\text{on-shell}} = -\frac{k}{2\pi} \int_{\partial M} \, d\tau \dot{f} \, C \]
Generalizations of the Schwarzian action

\[\Gamma_{\text{on-shell}} = -\frac{k}{2\pi} \int_{\partial M} \dot{f} \ C \]

- couple dilaton gravity to matter e.g., add a $U(1)$ field
Generalizations of the Schwarzian action

\[\Gamma_{\text{on-shell}} = -\frac{k}{2\pi} \int_{\partial M} d\tau \dot{f} C \]

- couple dilaton gravity to matter e.g., add a $U(1)$ field

\[C = \frac{1}{f^2} \left(\mathcal{M} - \frac{1}{2} \{ f; \tau \} - \mathcal{P} \dot{\mu} + \frac{1}{4} \dot{\mu}^2 \right) \]
Generalizations of the Schwarzian action

\[\Gamma_{\text{on-shell}} = -\frac{k}{2\pi} \int_{\partial \mathcal{M}} d\tau \dot{f} \ C \]

• couple dilaton gravity to matter e.g., add a \(U(1) \) field

\[C = \frac{1}{\dot{f}^2} \left(\mathcal{M} - \frac{1}{2} \{ f; \tau \} - \mathcal{P} \dot{\mu} + \frac{1}{4} \dot{\mu}^2 \right) \]

• transformation law for stress tensor of warped conformal field theory [Detournay, Hartman, Hofman]
Generalizations of the Schwarzian action

\[\Gamma_{\text{on-shell}} = -\frac{k}{2\pi} \int_{\partial \mathcal{M}} d\tau \dot{f} \ C \]

- couple dilaton gravity to matter e.g., add a $U(1)$ field

\[C = \frac{1}{f^2} \left(\mathcal{M} - \frac{1}{2} \{ f; \tau \} - \mathcal{P} \dot{\mu} + \frac{1}{4} \dot{\mu}^2 \right) \]

- transformation law for stress tensor of warped conformal field theory [Detournay, Hartman, Hofman]

- regular solutions $(\mathcal{M}_0, \mathcal{P}_0) = \left(\frac{\pi^2}{\beta^2}, 0 \right)$
Generalizations of the Schwarzian action

\[\Gamma_{\text{on-shell}} = -\frac{k}{2\pi} \int_{\partial \mathcal{M}} d\tau \dot{f} \ C \]

- couple dilaton gravity to matter e.g., add a \(U(1) \) field

\[C = \frac{1}{\dot{f}^2} \left(\mathcal{M} - \frac{1}{2} \{f; \tau\} - \mathcal{P} \dot{\mu} + \frac{1}{4} \dot{\mu}^2 \right) \]

- transformation law for stress tensor of warped conformal field theory [Detournay, Hartman, Hofman]

- regular solutions \((\mathcal{M}_0, \mathcal{P}_0) = \left(\frac{\pi^2}{\beta^2}, 0 \right)\)

- breaking Virasoro \(\times \hat{U}(1) \rightarrow \text{SL}(2, \mathbb{R}) \times U(1) \)
Generalizations of the Schwarzian action

$$\Gamma_{\text{on-shell}} = -\frac{k}{2\pi} \int_{\partial\mathcal{M}} d\tau \dot{f} C$$

- couple dilaton gravity to matter e.g., add a $U(1)$ field

$$C = \frac{1}{f^2} \left(\mathcal{M} - \frac{1}{2} \{ f; \tau \} - \mathcal{P} \dot{\mu} + \frac{1}{4} \dot{\mu}^2 \right)$$

- transformation law for stress tensor of warped conformal field theory [Detournay, Hartman, Hofman]

- regular solutions $(\mathcal{M}_0, \mathcal{P}_0) = \left(\frac{\pi^2}{\beta^2}, 0 \right)$

- breaking Virasoro \times $\hat{U}(1) \rightarrow \text{SL}(2, \mathbb{R}) \times U(1)$

- SYK in presence of internal $U(1)$ global symmetry/Bosonic part of $\mathcal{N} = 2$ super-SYK [Fu, Gaiotto, Maldacena, Sachdev]
Generalizations of the Schwarzian action

\[\Gamma_{\text{on-shell}} = -\frac{k}{2\pi} \int_{\partial\mathcal{M}} d\tau \dot{f} C \]

- couple dilaton gravity to matter e.g., add a $U(1)$ field

\[C = \frac{1}{f^2} \left(\mathcal{M} - \frac{1}{2} \{ f; \tau \} - \mathcal{P} \dot{\mu} + \frac{1}{4} \dot{\mu}^2 \right) \]

- transformation law for stress tensor of warped conformal field theory [Detournay, Hartman, Hofman]

- regular solutions $(\mathcal{M}_0, \mathcal{P}_0) = \left(\frac{\pi^2}{\beta^2}, 0 \right)$

- breaking Virasoro $\times \hat{U}(1) \rightarrow \text{SL}(2, \mathbb{R}) \times U(1)$

- SYK in presence of internal $U(1)$ global symmetry/Bosonic part of $\mathcal{N} = 2$ super-SYK [Fu, Gaiotto, Maldacena, Sachdev]

- consider arbitrary (compact) internal global symmetry group \mathcal{G}: breaking Virasoro $\times \hat{\mathcal{G}} \rightarrow \text{SL}(2, \mathbb{R}) \times \mathcal{G}$
Generalizations of the Schwarzian action

\[\Gamma_{\text{on-shell}} = -\frac{k}{2\pi} \int_{\partial M} d\tau \dot{f} C \]

- couple dilaton gravity to matter e.g., add a $U(1)$ field

\[C = \frac{1}{\dot{f}^2} \left(\mathcal{M} - \frac{1}{2} \{ f; \tau \} - \mathcal{P} \dot{\mu} + \frac{1}{4} \dot{\mu}^2 \right) \]

- transformation law for stress tensor of warped conformal field theory [Detournay, Hartman, Hofman]

- regular solutions $(\mathcal{M}_0, \mathcal{P}_0) = \left(\frac{\pi^2}{\beta^2}, 0 \right)$

- breaking Virasoro $\times U(1) \to \text{SL}(2, \mathbb{R}) \times U(1)$

- SYK in presence of internal $U(1)$ global symmetry/Bosonic part of $\mathcal{N} = 2$ super-SYK [Fu, Gaiotto, Maldacena, Sachdev]

- consider arbitrary (compact) internal global symmetry group G: breaking Virasoro $\times \hat{G} \to \text{SL}(2, \mathbb{R}) \times G$

- Further generalization to groups not necessarily of the form $\text{SL}(2, \mathbb{R}) \times G$
AdS$_2$ holography subtle
AdS$_2$ holography subtle
trivial in constant dilaton sector
AdS$_2$ holography subtle
trivial in constant dilaton sector
in linear sector asymptotic dynamics governed by Schwarzian/Casimir action

Thank you for your attention!
Conclusion

- AdS$_2$ holography subtle
- trivial in constant dilaton sector
- in linear sector asymptotic dynamics governed by Schwarzian/Casimir action
- better (geometric) understanding of the emergence of the Schwarzian action from the Casimir
Conclusion

- AdS\(_2\) holography subtle
- trivial in constant dilaton sector
- in linear sector asymptotic dynamics governed by Schwarzian/Casimir action
- better (geometric) understanding of the emergence of the Schwarzian action from the Casimir
- study for arbitrary internal symmetry groups \(\mathcal{G}\) ⇒ identify possible boundary theories
Conclusion

- AdS$_2$ holography subtle
- trivial in constant dilaton sector
- in linear sector asymptotic dynamics governed by Schwarzian/Casimir action
- better (geometric) understanding of the emergence of the Schwarzian action from the Casimir
- study for arbitrary internal symmetry groups $G \Rightarrow$ identify possible boundary theories
- study non-AdS backgrounds, e.g., centrally extended ISO($1, 1$); boundary theory?

Thank you for your attention!

Jakob Salzer

Aspects of Holography in 2d Dilaton Gravity

UB, Nov 27th
AdS$_2$ holography subtle
trivial in constant dilaton sector
in linear sector asymptotic dynamics governed by Schwarzian/Casimir action
better (geometric) understanding of the emergence of the Schwarzian action from the Casimir
study for arbitrary internal symmetry groups $G \Rightarrow$ identify possible boundary theories
study non-AdS backgrounds, e.g., centrally extended ISO(1, 1); boundary theory?
higher spin Schwarzian action $SL(2, \mathbb{R}) \rightarrow SL(3, \mathbb{R})$?
Conclusion

- AdS$_2$ holography subtle
- trivial in constant dilaton sector
- in linear sector asymptotic dynamics governed by Schwarzian/Casimir action
- better (geometric) understanding of the emergence of the Schwarzian action from the Casimir
- study for arbitrary internal symmetry groups $\mathcal{G} \Rightarrow$ identify possible boundary theories
- study non-AdS backgrounds, e.g., centrally extended ISO(1, 1); boundary theory?
- higher spin Schwarzian action $\text{SL}(2, \mathbb{R}) \rightarrow \text{SL}(3, \mathbb{R})$?

Thank you for your attention!
Holographic Renormalization

Temperature
Euclidean Path Integral

- Important tool for studying holography or black hole thermodynamics: **Euclidean Path integral**

\[
Z = \int Dg DX e^{-I[g,X]},
\]

with \(I = I_{\text{bulk}} + I_{\text{GHY}} \).

Calculate free energy, correlation functions etc. However, yields wrong results for nearly all dilaton models!

E.g., in thermodynamics:
- Free energy is not finite
- First law of black hole mechanics does not hold

What goes wrong?

Jakob Salzer
Aspects of Holography in 2d Dilaton Gravity
Euclidean Path Integral

- important tool for studying holography or black hole thermodynamics: Euclidean Path integral
- For 2d dilaton gravity
 \[
 Z = \int \mathcal{D}g \mathcal{D}X \, e^{-I[g,X]},
 \]
 with \(I = I_{\text{bulk}} + I_{\text{GHY}} \).
Euclidean Path Integral

- important tool for studying holography or black hole thermodynamics: Euclidean Path integral
- For 2d dilaton gravity
 \[Z = \int \mathcal{D}g \mathcal{D}X \ e^{-l[g,X]} , \]
 with \(l = l_{\text{bulk}} + l_{\text{GHY}} \).
- calculate free energy, correlations functions etc.
Euclidean Path Integral

- important tool for studying holography or black hole thermodynamics: Euclidean Path integral
- For 2d dilaton gravity
 \[Z = \int \mathcal{D}g \mathcal{D}X \ e^{-I[g,X]}, \]
 with \(I = I_{\text{bulk}} + I_{\text{GHY}}. \)
- calculate free energy, correlations functions etc.
- However, yields wrong results for nearly all dilaton models!
Euclidean Path Integral

- important tool for studying holography or black hole thermodynamics: Euclidean Path integral
- For 2d dilaton gravity
 \[Z = \int Dg DX \ e^{-I[g,X]}, \]
 with \(I = I_{bulk} + I_{GHY}. \)
- calculate free energy, correlations functions etc.
- However, yields wrong results for nearly all dilaton models!
- e.g. in thermodynamics
Euclidean Path Integral

- important tool for studying holography or black hole thermodynamics: Euclidean Path integral
- For 2d dilaton gravity
 \[Z = \int \mathcal{D}g \mathcal{D}X \ e^{-I[g,X]}, \]
 with \(I = I_{\text{bulk}} + I_{\text{GHY}}. \)
- calculate free energy, correlations functions etc.
- However, yields wrong results for nearly all dilaton models!
- e.g. in thermodynamics
 - free energy is not finite
Euclidean Path Integral

- important tool for studying holography or black hole thermodynamics: Euclidean Path integral
- For 2d dilaton gravity
 \[Z = \int Dg DX e^{-I[g,X]} , \]
 with \(I = I_{\text{bulk}} + I_{\text{GHY}} \).
- calculate free energy, correlations functions etc.
- However, yields wrong results for nearly all dilaton models!
- e.g. in thermodynamics
 - free energy is not finite
 - first law of black hole mechanics does not hold
Euclidean Path Integral

- important tool for studying holography or black hole thermodynamics: Euclidean Path integral
- For 2d dilaton gravity
 \[Z = \int Dg \mathcal{D}X \, e^{-I[g,X]} , \]
 with \(I = I_{\text{bulk}} + I_{\text{GHY}} \).
- calculate free energy, correlations functions etc.
- However, yields wrong results for nearly all dilaton models!
- e.g. in thermodynamics
 - free energy is not finite
 - first law of black hole mechanics does not hold
- What goes wrong?
Euclidean Path Integral – the need for renormalization

\[Z = \int \mathcal{D}g \mathcal{D}X \, e^{-I_E[g,X]} \]
Euclidean Path Integral – the need for renormalization

\[Z = \int \mathcal{D}g \mathcal{D}X \ e^{-I_E[g,X]} \]

- choose boundary conditions (⇔ choose ensemble for thermodynamics)
Euclidean Path Integral – the need for renormalization

\[Z = \int Dg DX \ e^{-I_E[g,X]} \]

- choose boundary conditions (⇔ choose ensemble for thermodynamics)
- saddle-point approximation

...violated!

most dilaton gravity models violate these conditions

holographic renormalization ⇒ add a holographic counterterm
Euclidean Path Integral – the need for renormalization

\[Z = \int \mathcal{D}g \mathcal{D}X \, e^{-I_E[g, X]} \]

- choose boundary conditions (⇔ choose ensemble for thermodynamics)
- saddle-point approximation
- find classical solutions \(\bar{g}, \bar{X} \)
Euclidean Path Integral – the need for renormalization

$$\mathcal{Z} = \int \mathcal{D}g \mathcal{D}X \, e^{-I_E[g,X]}$$

- choose boundary conditions (\Leftrightarrow choose ensemble for thermodynamics)
- saddle-point approximation
- find classical solutions \bar{g}, \bar{X}
- expand Euclidean path integral around classical solution

$$\mathcal{Z} = \sum_i \exp \left(- I_E[\bar{g}_i, \bar{X}_i] \right) \int \mathcal{D}\delta g \mathcal{D}\delta X \exp \left(- \delta I_E[\bar{g}_i, \bar{X}_i] - \delta^2 I_E[\bar{g}_i, \bar{X}_i] + ... \right)$$

For thermodynamical stability: one-loop contribution positive definite
Euclidean Path Integral – the need for renormalization

\[Z = \int \mathcal{D}g \mathcal{D}X \, e^{-I_E[g,X]} \]

- choose boundary conditions (⇔ choose ensemble for thermodynamics)
- saddle-point approximation
- find classical solutions \(\bar{g}, \bar{X} \)
- expand Euclidean path integral around classical solution

\[Z = \sum_i \exp \left(-I_E[\bar{g}_i, \bar{X}_i] \right) \int \mathcal{D}\delta g \mathcal{D}\delta X \exp \left(-\delta l_E[\bar{g}_i, \bar{X}_i] - \delta^2 l_E[\bar{g}_i, \bar{X}_i] + \ldots \right) \]

- saddle-point approximation well-defined if:

- orange On-shell action \(I_E[\bar{g}_i, \bar{X}_i] \) finite
- blue \(\delta I_E = 0 \) for all variations compatible with boundary conditions
- For thermodynamical stability: brown one-loop contribution positive definite

violated!

most dilaton gravity models violate these conditions

holographic renormalization ⇒ add a holographic counterterm
Euclidean Path Integral – the need for renormalization

\[Z = \int Dg D\xi \, e^{-I_E[g, \xi]} \]

- choose boundary conditions (\(\Leftrightarrow\) choose ensemble for thermodynamics)
- saddle-point approximation
- find classical solutions \(\bar{g}, \bar{\xi}\)
- expand Euclidean path integral around classical solution

\[Z = \sum_i \exp \left(-I_E[\bar{g}_i, \bar{\xi}_i] \right) \int D\delta g D\delta \xi \exp \left(-\delta I_E[\bar{g}_i, \bar{\xi}_i] - \delta^2 I_E[\bar{g}_i, \bar{\xi}_i] + \ldots \right) \]

- saddle-point approximation well-defined if:
 - On-shell action \(I_E[\bar{g}_i, \bar{\xi}_i]\) finite

Jakob Salzer
Aspects of Holography in 2d Dilaton Gravity
UB, Nov 27th
Euclidean Path Integral – the need for renormalization

\[Z = \int Dg D\mathcal{X} e^{-I_E[g, \mathcal{X}]} \]

- choose boundary conditions (\(\Leftrightarrow\) choose ensemble for thermodynamics)
- saddle-point approximation
- find classical solutions \(\bar{g}, \bar{\mathcal{X}}\)
- expand Euclidean path integral around classical solution

\[Z = \sum_i \exp \left(-I_E[\bar{g}_i, \bar{\mathcal{X}}_i] \right) \int D\delta g D\delta \mathcal{X} \exp \left(-\delta I_E[\bar{g}_i, \bar{\mathcal{X}}_i] - \delta^2 I_E[\bar{g}_i, \bar{\mathcal{X}}_i] + ... \right) \]

- saddle-point approximation well-defined if:
 - On-shell action \(I_E[\bar{g}_i, \bar{\mathcal{X}}_i]\) finite
 - \(\delta I_E = 0\) for all variations compatible with boundary conditions
Euclidean Path Integral – the need for renormalization

\[Z = \int \mathcal{D}g \mathcal{D}X \ e^{-I_E[g,X]} \]

- choose boundary conditions (↔ choose ensemble for thermodynamics)
- saddle-point approximation
- find classical solutions \(\bar{g}, \bar{X} \)
- expand Euclidean path integral around classical solution

\[Z = \sum_i \exp \left(-I_E[\bar{g}_i, \bar{X}_i] \right) \int \mathcal{D}\delta g \mathcal{D}\delta X \exp \left(-\delta I_E[\bar{g}_i, \bar{X}_i] - \delta^2 I_E[\bar{g}_i, \bar{X}_i] + ... \right) \]

- saddle-point approximation well-defined if:
 - On-shell action \(I_E[\bar{g}_i, \bar{X}_i] \) finite
 - \(\delta I_E = 0 \) for all variations compatible with boundary conditions
 - For thermodynamical stability: one-loop contribution positive definite
Euclidean Path Integral – the need for renormalization

\[Z = \int \mathcal{D}g \mathcal{D}X \ e^{-I_E[g, X]} \]

- choose boundary conditions (\(\Leftrightarrow \) choose ensemble for thermodynamics)
- saddle-point approximation
- find classical solutions \(\bar{g}, \bar{X} \)
- expand Euclidean path integral around classical solution

\[Z = \sum_i \exp \left(-I_E[\bar{g}_i, \bar{X}_i] \right) \int \mathcal{D}\delta g \mathcal{D}\delta X \exp \left(-\delta I_E[\bar{g}_i, \bar{X}_i] - \delta^2 I_E[\bar{g}_i, \bar{X}_i] + ... \right) \]

- saddle-point approximation well-defined if:
 - On-shell action \(I_E[\bar{g}_i, \bar{X}_i] \) finite
 - \(\delta I_E = 0 \) for all variations compatible with boundary conditions
 - For thermodynamical stability: one-loop contribution positive definite

- most dilaton gravity models violate these conditions

holographic renormalization \(\Rightarrow \) add a holographic counterterm

Jakob Salzer
Aspects of Holography in 2d Dilaton Gravity
UB, Nov 27th 26 / 26
Euclidean Path Integral – the need for renormalization

\[Z = \int \mathcal{D}g \mathcal{D}X \, e^{-I_E[g,X]} \]

- choose boundary conditions (\(\Leftrightarrow \) choose ensemble for thermodynamics)
- saddle-point approximation
- find classical solutions \(\bar{g}, \bar{X} \)
- expand Euclidean path integral around classical solution

\[Z = \sum_i \exp (- l_E[\bar{g}_i, \bar{X}_i]) \int \mathcal{D}\delta g \mathcal{D}\delta X \exp \left(- \delta l_E[\bar{g}_i, \bar{X}_i] - \delta^2 l_E[\bar{g}_i, \bar{X}_i] + ... \right) \]

- saddle-point approximation well-defined if:
 - On-shell action \(I_E[\bar{g}_i, \bar{X}_i] \) finite
 - \(\delta I_E = 0 \) for all variations compatible with boundary conditions
 - For thermodynamical stability: one-loop contribution positive definite

- most dilaton gravity models violate these conditions
- holographic renormalization \(\Rightarrow \) add a holographic counterterm
Consider the model: $U = f = 0$, $V(X) = \frac{1}{\ell^2} X$ (again, Jackiw-Teitelboim)

$$I = \int_M d^2x \sqrt{|g|} X \left(R + \frac{1}{\ell^2} \right) + \int_{\partial M} dx \sqrt{\gamma} X K$$
Holographic renormalization: an example

Consider the model: \(U = f = 0, \ V(X) = \frac{1}{\ell^2} X \) (again, Jackiw-Teitelboim)

\[
I = \int_{\mathcal{M}} d^2x \sqrt{|g|} X \left(R + \frac{1}{\ell^2} \right) + \int_{\partial \mathcal{M}} dx \sqrt{\gamma} XK
\]

- exact solution: \(X = r, \ ds^2 = \left(\frac{r^2}{\ell^2} - M \right) d\tau^2 + \left(\frac{r^2}{\ell^2} - M \right)^{-1} dr^2 \)
Holographic renormalization: an example

Consider the model: $U = f = 0, V(X) = \frac{1}{\ell^2} X$ (again, Jackiw-Teitelboim)

$$I = \int_{\mathcal{M}} \! d^2 x \sqrt{|g|} X \left(R + \frac{1}{\ell^2} \right) + \int_{\partial \mathcal{M}} \! d x \sqrt{\gamma} X K$$

- exact solution: $X = r, \; ds^2 = (\frac{r^2}{\ell^2} - M) \, d\tau^2 + (\frac{r^2}{\ell^2} - M)^{-1} \, dr^2$
- for thermodynamics: fix periodicity β in Euclidean time \Rightarrow solutions have topology of a disc with thermal circle being boundary at $r \to \infty$
Holographic renormalization: an example

Consider the model: \(U = f = 0, \ V(X) = \frac{1}{\ell^2} X \) (again, Jackiw-Teitelboim)

\[
l = \int_{\mathcal{M}} d^2 x \sqrt{|g|} X \left(R + \frac{1}{\ell^2} \right) + \int_{\partial \mathcal{M}} d x \sqrt{\gamma} X K
\]

- exact solution: \(X = r, \ ds^2 = \left(\frac{r^2}{\ell^2} - M \right) d\tau^2 + \left(\frac{r^2}{\ell^2} - M \right)^{-1} dr^2 \)
- for thermodynamics: fix periodicity \(\beta \) in Euclidean time \(\Rightarrow \) solutions have topology of a disc with thermal circle being boundary at \(r \to \infty \)
- introduce cut-off \(r = r_0 \) to evaluate boundary integrals
Holographic renormalization: an example

Consider the model: $U = f = 0$, $V(X) = \frac{1}{\ell^2} X$ (again, Jackiw-Teitelboim)

$$I = \int_{\mathcal{M}} d^2x \sqrt{|g|} X \left(R + \frac{1}{\ell^2} \right) + \int_{\partial \mathcal{M}} dx \sqrt{\gamma} X K$$

- exact solution: $X = r$, $ds^2 = (\frac{r^2}{\ell^2} - M) d\tau^2 + (\frac{r^2}{\ell^2} - M)^{-1} dr^2$
- for thermodynamics: fix periodicity β in Euclidean time \Rightarrow solutions have topology of a disc with thermal circle being boundary at $r \to \infty$
- introduce cut-off $r = r_0$ to evaluate boundary integrals
- boundary conditions $g_{\tau\tau} = \frac{r^2}{\ell^2} + \mathcal{O}(1)$
Holographic renormalization: an example

Consider the model: $U = f = 0$, $V(X) = \frac{1}{\ell^2} X$ (again, Jackiw-Teitelboim)

$$I = \int_{\mathcal{M}} d^2x \sqrt{|g|} X \left(R + \frac{1}{\ell^2} \right) + \int_{\partial \mathcal{M}} dx \sqrt{\gamma} X K$$

- exact solution: $X = r$, $ds^2 = \left(\frac{r^2}{\ell^2} - M \right) d\tau^2 + \left(\frac{r^2}{\ell^2} - M \right)^{-1} dr^2$
- for thermodynamics: fix periodicity β in Euclidean time \Rightarrow solutions have topology of a disc with thermal circle being boundary at $r \to \infty$
- introduce cut-off $r = r_0$ to evaluate boundary integrals
- boundary conditions $g_{\tau\tau} = \frac{r^2}{\ell^2} + O(1)$
- first variation of the action evaluated on-shell

$$\delta I_{\text{reg}} \big|_{\text{e.o.m.}} \propto \int d\tau \delta \gamma_{\tau\tau}$$
Holographic renormalization: an example

Consider the model: \(U = f = 0, \ V(X) = \frac{1}{\ell^2} X \) (again, Jackiw-Teitelboim)

\[
I = \int_{\mathcal{M}} d^2x \sqrt{|g|} X \left(R + \frac{1}{\ell^2} \right) + \int_{\partial \mathcal{M}} dx \sqrt{\gamma} XK
\]

- exact solution: \(X = r, \ ds^2 = (\frac{r^2}{\ell^2} - M) d\tau^2 + (\frac{r^2}{\ell^2} - M)^{-1} dr^2 \)
- for thermodynamics: fix periodicity \(\beta \) in Euclidean time \(\Rightarrow \) solutions have topology of a disc with thermal circle being boundary at \(r \to \infty \)
- introduce cut-off \(r = r_0 \) to evaluate boundary integrals
- boundary conditions \(g_{\tau\tau} = \frac{r^2}{\ell^2} + \mathcal{O}(1) \)
- first variation of the action evaluated on-shell

\[
\delta I_{\text{reg}}|_{\text{e.o.m}} \propto \int d\tau \delta \gamma_{\tau\tau}
\]

- but with our bc's \(\delta g_{\tau\tau} \) finite \(\Rightarrow \delta I|_{\text{e.o.m}} \neq 0 \)
Holographic renormalization: an example

Consider the model: \(U = f = 0, \, V(X) = \frac{1}{\ell^2} X \) (again, Jackiw-Teitelboim)

\[
l = \int_{\mathcal{M}} d^2x \sqrt{|g|} X \left(R + \frac{1}{\ell^2} \right) + \int_{\partial \mathcal{M}} dx \sqrt{\gamma} X K
\]

- exact solution: \(X = r, \, ds^2 = \left(\frac{r^2}{\ell^2} - M \right) d\tau^2 + \left(\frac{r^2}{\ell^2} - M \right)^{-1} dr^2 \)
- for thermodynamics: fix periodicity \(\beta \) in Euclidean time \(\Rightarrow \) solutions have topology of a disc with thermal circle being boundary at \(r \to \infty \)
- introduce cut-off \(r = r_0 \) to evaluate boundary integrals
- boundary conditions \(g_{\tau\tau} = \frac{r^2}{\ell^2} + O(1) \)
- first variation of the action evaluated on-shell

\[
\delta l_{\text{reg}}|_{\text{e.o.m}} \propto \int d\tau \delta g_{\tau\tau}
\]

- but with our bc’s \(\delta g_{\tau\tau} \) finite \(\Rightarrow \delta l|_{\text{e.o.m}} \neq 0 \)
- above solution does not extremize the action under variations compatible with the bc’s \(\rightarrow \) no saddle-point
Holographic renormalization: an example

Consider the model: \(U = f = 0, \ V(X) = \frac{1}{\ell^2} X \) (again, Jackiw-Teitelboim)

\[
I = \int_\mathcal{M} d^2x \sqrt{|g|} X \left(R + \frac{1}{\ell^2} \right) + \int_{\partial\mathcal{M}} dx \sqrt{\gamma} X K
\]

- exact solution: \(X = r \), \(ds^2 = \left(\frac{r^2}{\ell^2} - M \right) d\tau^2 + \left(\frac{r^2}{\ell^2} - M \right)^{-1} dr^2 \)
- for thermodynamics: fix periodicity \(\beta \) in Euclidean time \(\Rightarrow \) solutions have topology of a disc with thermal circle being boundary at \(r \to \infty \)
- introduce cut-off \(r = r_0 \) to evaluate boundary integrals
- boundary conditions \(g_{\tau\tau} = \frac{r^2}{\ell^2} + \mathcal{O}(1) \)
- first variation of the action evaluated on-shell

\[
\delta I_{\text{reg}} \big|_{\text{e.o.m}} \propto \int d\tau \delta \gamma_{\tau\tau}
\]

- but with our bc’s \(\delta g_{\tau\tau} \) finite \(\Rightarrow \delta I \big|_{\text{e.o.m}} \neq 0 \)
- above solution does not extremize the action under variations compatible with the bc’s \(\rightarrow \) no saddle-point
- Solution: add a boundary counter-term that on-shell subtracts \(\int d\tau \delta \gamma_{\tau\tau} \)
Holographic renormalization: an example

Consider the model: \(U = f = 0, \ V(X) = \frac{1}{\ell^2} X \) (again, Jackiw-Teitelboim)

\[
I = \int_M d^2x \sqrt{|g|} X \left(R + \frac{1}{\ell^2} \right) + \int_{\partial M} dx \sqrt{\gamma} X K
\]

- exact solution: \(X = r \), \(ds^2 = \left(\frac{r^2}{\ell^2} - M \right) d\tau^2 + \left(\frac{r^2}{\ell^2} - M \right)^{-1} dr^2 \)
- for thermodynamics: fix periodicity \(\beta \) in Euclidean time \(\Rightarrow \) solutions have topology of a disc with thermal circle being boundary at \(r \to \infty \)
- introduce cut-off \(r = r_0 \) to evaluate boundary integrals
- boundary conditions \(g_{\tau\tau} = \frac{r^2}{\ell^2} + O(1) \)
- first variation of the action evaluated on-shell
 \[
 \delta I_{\text{reg}}|_{\text{e.o.m}} \propto \int d\tau \delta g_{\tau\tau}
 \]
 but with our bc’s \(\delta g_{\tau\tau} \) finite \(\Rightarrow \delta I|_{\text{e.o.m}} \neq 0 \)
 above solution does not extremize the action under variations compatible with the bc’s \(\Rightarrow \) no saddle-point
- Solution: add a boundary counter-term that on-shell subtracts \(\int d\tau \delta g_{\tau\tau} \)
 in this case \(I_{\text{ct}} = \int_{\partial M} d\tau \sqrt{\gamma} \frac{X}{\ell} \) (compare with AdS\(_3\))
Holographic renormalization: an example

Consider the model: $U = f = 0$, $V(X) = \frac{1}{\ell^2} X$ (again, Jackiw-Teitelboim)

\[I = \int_{\mathcal{M}} d^2x \sqrt{|g|} X \left(R + \frac{1}{\ell^2} \right) + \int_{\partial \mathcal{M}} dx \sqrt{\gamma} X K \]

- exact solution: $X = r$, $ds^2 = (\frac{r^2}{\ell^2} - M) d\tau^2 + (\frac{r^2}{\ell^2} - M)^{-1} dr^2$
- for thermodynamics: fix periodicity β in Euclidean time \Rightarrow solutions have topology of a disc with thermal circle being boundary at $r \to \infty$
- introduce cut-off $r = r_0$ to evaluate boundary integrals
- boundary conditions $g_{\tau\tau} = \frac{r^2}{\ell^2} + O(1)$
- first variation of the action evaluated on-shell

\[\delta I_{\text{reg}}|_{\text{e.o.m.}} \propto \int d\tau \delta \gamma_{\tau\tau} \]

- but with our bc’s $\delta g_{\tau\tau}$ finite $\Rightarrow \delta I|_{\text{e.o.m.}} \neq 0$
- above solution does not extremize the action under variations compatible with the bc’s \rightarrow no saddle-point
- Solution: add a boundary counter-term that on-shell subtracts $\int d\tau \delta \gamma_{\tau\tau}$
- in this case $I_{ct} = \int_{\partial \mathcal{M}} d\tau \sqrt{\gamma} \frac{X}{\ell}$ (compare with AdS$_3$)
- counter-term depends on the specific class of dilaton models
Renormalized Action—Class 1

For a large class of models:
For a large class of models:

<table>
<thead>
<tr>
<th>Model</th>
<th>$U(X)$</th>
<th>$V(X)$</th>
<th>$f(X)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>4D-Schwarzschild</td>
<td>$-\frac{1}{2X}$</td>
<td>$-\frac{1}{2G_4}$</td>
<td>0</td>
</tr>
<tr>
<td>Jackiw-Teitelboim</td>
<td>0</td>
<td>$-\Lambda X$</td>
<td>0</td>
</tr>
<tr>
<td>Witten BH</td>
<td>$-\frac{1}{X}$</td>
<td>$-\frac{\lambda^2}{2} X$</td>
<td>0</td>
</tr>
<tr>
<td>CGHS</td>
<td>0</td>
<td>$-\frac{\lambda}{2}$</td>
<td>0</td>
</tr>
<tr>
<td>4D-Reissner-Nordström</td>
<td>$-\frac{1}{2X}$</td>
<td>$-\frac{1}{2G_4}$</td>
<td>X</td>
</tr>
</tbody>
</table>
Renormalized Action—Class 1

For a large class of models:

<table>
<thead>
<tr>
<th>Model</th>
<th>$U(X)$</th>
<th>$V(X)$</th>
<th>$f(X)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>4D-Schwarzschild</td>
<td>$-\frac{1}{2X}$</td>
<td>$-\frac{1}{2G_4}$</td>
<td>0</td>
</tr>
<tr>
<td>Jackiw-Teitelboim</td>
<td>0</td>
<td>$-\Lambda X$</td>
<td>0</td>
</tr>
<tr>
<td>Witten BH</td>
<td>$-\frac{1}{X}$</td>
<td>$-\frac{\lambda^2}{2} X$</td>
<td>0</td>
</tr>
<tr>
<td>CGHS</td>
<td>0</td>
<td>$-\frac{\lambda}{2}$</td>
<td>0</td>
</tr>
<tr>
<td>4D-Reissner-Nordström</td>
<td>$-\frac{1}{2X}$</td>
<td>$-\frac{1}{2G_4}$</td>
<td>X</td>
</tr>
</tbody>
</table>

Improved action (Grumiller, McNees (2007))

$$\Gamma = I + I_{ct} = I + \int_{\partial M} d\gamma \sqrt{e^{-Q(X)} w(X)}$$
Renormalized Action—Class 1

For a large class of models:

\[
\begin{array}{|c|ccc|}
\hline
\text{Model} & U(X) & V(X) & f(X) \\
\hline
4D-Schwarzchild & -\frac{1}{2X} & -\frac{1}{2G_4} & 0 \\
\text{Jackiw-Teitelboim} & 0 & -\Lambda X & 0 \\
\text{Witten BH} & -\frac{1}{X} & -\frac{\lambda^2}{2} X & 0 \\
\text{CGHS} & 0 & -\frac{\lambda}{2} & 0 \\
4D-Reissner-Nordström & -\frac{1}{2X} & -\frac{1}{2G_4} & X \\
\hline
\end{array}
\]

Improved action (Grumiller, McNees (2007))

\[
\Gamma = I + I_{ct} = I + \int_{\partial \mathcal{M}} d\mathcal{x} \sqrt{\gamma} \sqrt{e^{-Q(X)} w(X)}
\]

Thermodynamics well-defined
Renormalized Action– models with confining potential

\[\lim_{X \to \infty} A_\mu \to \infty \Rightarrow \text{confining potential, asymptotically gauge field dominates} \]
Renormalized Action– models with confining potential

\(\lim_{X \to \infty} A_\mu \to \infty \Rightarrow \) confining potential, asymptotically gauge field dominates

Improved action

\[
\Gamma = I + I_{ct} = I + \int_{\partial \mathcal{M}} dx \sqrt{\gamma} \sqrt{\epsilon^{-Q}} (w + 2f_{\mu \nu}f^{\mu \nu}F^2h)
\]
Renormalized Action– models with confining potential

\[\lim_{X \to \infty} A_\mu \to \infty \Rightarrow \text{confining potential, asymptotically gauge field dominates} \]

Improved action

\[\Gamma = I + l_{ct} = I + \int_{\partial \mathcal{M}} dx \sqrt{\gamma} \sqrt{e^{-Q} \left(w + 2f_{\mu \nu} f^{\mu \nu} F^2 h \right)} \]

Need a Born-Infeld-like counterterm
Renormalized Action– models with confining potential

$$\lim_{X \to \infty} A_\mu \to \infty \Rightarrow \text{confining potential, asymptotically gauge field dominates}$$

Improved action

$$\Gamma = I + I_{ct} = I + \int_{\partial \mathcal{M}} d\mathbf{x} \sqrt{\gamma} \sqrt{e^{-Q} \left(w + 2f_{\mu\nu}f^{\mu\nu}F^2h \right)}$$

Need a Born-Infeld-like counterterm

Interesting example:

Add a U(1) field with specific coupling to gravity

$$F(X) = X - 1$$: charge q acts as cosmological constant!

Works in dimension D with rank D-antisymmetric tensor field (Henneaux, Teitelboim (1984))

First law of BH thermodynamics with variable Λ:

$$dM = T dS - h(X,h) d\Lambda$$

$h(X,h)$ equals proposed volume of 2D black holes c.c. and $h(X,h)$ form $p-V$ pair

BH thermodynamics in extended phase space (“black hole chemistry”) (Dolan, Kubiznak, Kastor, Mann, Traschen...)
Renormalized Action— models with confining potential

\[\lim_{X \to \infty} A_\mu \to \infty \Rightarrow \text{confining potential, asymptotically gauge field dominates} \]

Improved action

\[
\Gamma = \mathcal{I} + \mathcal{I}_{ct} = \mathcal{I} + \int_{\partial \mathcal{M}} d\mathbf{x} \sqrt{\gamma} \sqrt{e^{-Q} (w + 2 f_{\mu\nu} f^{\mu\nu} F^2 h)}
\]

Need a Born-Infeld-like counterterm

Interesting example:

- Add a U(1) field with specific coupling to gravity \(F(X) = X^{-1} \): charge \(q \) acts as cosmological constant!
Renormalized Action– models with confining potential

\[\lim_{X \to \infty} A_\mu \to \infty \Rightarrow \text{confining potential, asymptotically gauge field dominates} \]

Improved action

\[\Gamma = I + I_{ct} = I + \int_{\partial \mathcal{M}} dx \sqrt{\gamma} \sqrt{e^{-Q}(w + 2f_{\mu\nu}f^{\mu\nu}F^2h)} \]

Need a Born-Infeld-like counterterm

Interesting example:

- Add a U(1) field with specific coupling to gravity \(F(X) = X^{-1} \): charge \(q \) acts as cosmological constant!
- Works in dimension \(D \) with rank \(D \)-antisymmetric tensor field (Henneaux, Teitelboim (1984))
Renormalized Action– models with confining potential

\[\lim_{X \to \infty} A_\mu \to \infty \Rightarrow \text{confining potential, asymptotically gauge field dominates} \]

Improved action

\[
\Gamma = I + I_{ct} = I + \int_{\partial M} \text{d}x \sqrt{\gamma} \sqrt{e^{-Q}} \left(w + 2f_{\mu\nu} f^{\mu\nu} F^2 h \right)
\]

Need a Born-Infeld-like counterterm

Interesting example:
- Add a U(1) field with specific coupling to gravity \(F(X) = X^{-1} \): charge \(q \) acts as cosmological constant!
- Works in dimension D with rank D-antisymmetric tensor field (Henneaux, Teitelboim (1984))
- First law of BH thermodynamics with variable \(\Lambda \):

\[
dM = T \, dS - h(X_h) \, d\Lambda
\]
Renormalized Action– models with confining potential

\[
\lim_{X \to \infty} A_\mu \to \infty \Rightarrow \text{confining potential, asymptotically gauge field dominates}
\]

Improved action

\[
\Gamma = I + I_{ct} = I + \int_{\partial \mathcal{M}} d\mathbf{x} \sqrt{\gamma} \sqrt{e^{-Q}} (w + 2f_{\mu\nu} f^{\mu\nu} F^2 h)
\]

Need a Born-Infeld-like counterterm

Interesting example:

- Add a U(1) field with specific coupling to gravity \(F(X) = X^{-1} \): charge \(q \) acts as cosmological constant!
- Works in dimension \(D \) with rank \(D \)-antisymmetric tensor field (Henneaux, Teitelboim (1984))
- First law of BH thermodynamics with variable \(\Lambda \):
 \[
dM = T \, dS - h(X_h) \, d\Lambda
\]
- \(h(X_h) \) equals proposed volume of 2D black holes
Renormalized Action—models with confining potential

\[\lim_{X \to \infty} A_\mu \to \infty \Rightarrow \text{confining potential, asymptotically gauge field dominates} \]

Improved action

\[
\Gamma = I + I_{ct} = I + \int_{\partial M} \sqrt{\gamma} \sqrt{e^{-Q}} (w + 2f_{\mu\nu}f^{\mu\nu}F^2h)
\]

Need a Born-Infeld-like counterterm

Interesting example:

- Add a U(1) field with specific coupling to gravity \(F(X) = X^{-1} \): charge \(q \) acts as cosmological constant!
- Works in dimension D with rank D-antisymmetric tensor field (Henneaux, Teitelboim (1984))
- First law of BH thermodynamics with variable \(\Lambda \):
 \[
 dM = T dS - h(X_h) d\Lambda
 \]
- \(h(X_h) \) equals proposed volume of 2D black holes
- c.c. and \(h(X_h) \) form \(p - V \) pair
Renormalized Action– models with confining potential

\[\lim_{X \to \infty} A_\mu \to \infty \Rightarrow \text{confining potential, asymptotically gauge field dominates} \]

Improved action

\[
\Gamma = I + I_{ct} = I + \int_{\partial M} d\gamma \sqrt{\gamma} \sqrt{e^{-Q}(w + 2f_{\mu\nu}f^{\mu\nu}F^2h)}
\]

Need a Born-Infeld-like counterterm

Interesting example:

- Add a U(1) field with specific coupling to gravity \(F(X) = X^{-1} \): charge \(q \) acts as cosmological constant!
- Works in dimension \(D \) with rank \(D \)-antisymmetric tensor field (Henneaux, Teitelboim (1984))
- First law of BH thermodynamics with variable \(\Lambda \):
 \[
dM = T dS - h(X_h) d\Lambda
\]
- \(h(X_h) \) equals proposed volume of 2D black holes
- c.c. and \(h(X_h) \) form \(p - V \) pair
- BH thermodynamics in extended phase space ("black hole chemistry") (Dolan, Kubiznak, Kastor, Mann, Traschen...)
Saddle-point contribution to Euclidean path integral comes from geometry compatible with periodicity β of Euclidean time

Holonomy around time cycle must be trivial

$$\mathcal{P} \exp \oint A = -1$$

equivalently: β fixed such that linearly independent solutions ψ_1, ψ_2 to Hill's equation

$$\psi'' + \mathcal{T} \psi = 0 \quad \mathcal{T} = \mathcal{T}(\mathcal{L}^+, \mathcal{L}^-, \mathcal{L}^0)$$

have (minus) unit monodromy matrix M up to conjugation

$$\begin{pmatrix} y_1(\varphi + \beta) \\ y_2(\varphi + \beta) \end{pmatrix} = M \begin{pmatrix} y_1(\varphi) \\ y_2(\varphi) \end{pmatrix}$$

Conjugcy classes: $\text{tr} M < 2$ elliptic; $\text{tr} M = 2$ parabolic; $\text{tr} M > 2$ hyperbolic
Correct choice of β possible for elliptic case (finite temperature black hole)
Not possible for parabolic case (infinite throat geometry) or hyperbolic case (global AdS \simeq hyperbolic cylinder) unless unwrapped
under infinitesimal reparametrizations of φ:

$$\delta \epsilon T = \epsilon T' + 2 \epsilon' T + \frac{1}{2} \epsilon''' \quad \delta Y = \epsilon Y' - \epsilon' Y$$

Transformation of T under finite reparametrizations $\varphi \mapsto f(\varphi)$

$$\tilde{T}(f(\varphi)) = \frac{1}{(f'(\varphi))^2} \left[T(\varphi) - \frac{1}{2} S[f](\varphi) \right] \quad S[f](\varphi) = \frac{1}{2} \left(\frac{f''}{f'} \right)' - \frac{1}{2} \left(\frac{f''}{f'} \right)^2$$

Equation of motion for Y

$$Y T' + 2 Y' T' + \frac{1}{2} Y''' = 0.$$
• In generic elliptic case, possible to transform T to \textit{constant representative} T_0

\[
T_0 \propto - \left(\oint \frac{1}{Y} \right)^2
\]

is orbit invariant \Rightarrow fixing this quantity fixes orbit and therefore constant representative

• T_0 fixes temperature \rightarrow variational

• $\oint \frac{1}{Y}$ was fixed in variational principle \Rightarrow temperature fixed