Gravity, Astrophysics and Cosmology

Daniel Grumiller*

Institute for Theoretical Physics Vienna University of Technology

Seminar Doktorandenkolleg Fundamental Interactions, April 2011

Outline

Introduction

Cosmology

Astrophysics

Gravity

Black holes

How can we observe black holes?

Why are black holes interesting for quantum gravity?

Holography: An Introduction

3D gravity

Motivation

Topologically massive gravity

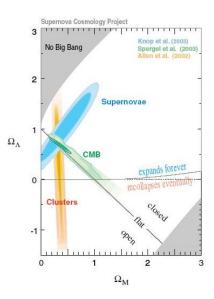
Research directions

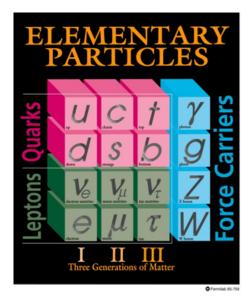
2/36

Outline

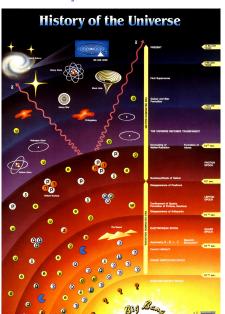
Introduction

Cosmology Astrophysics Gravity

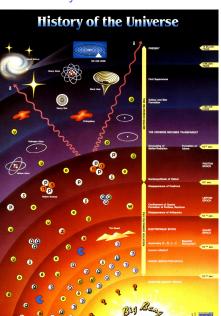

Black holes


How can we observe black holes? Why are black holes interesting for quantum gravity? Holography: An Introduction

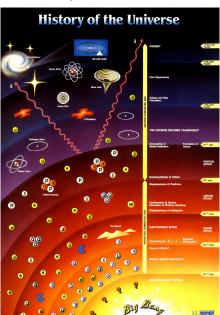
3D gravity


Topologically massive gravity
Research directions

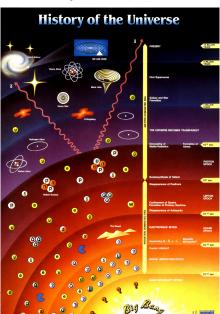
The Standard Models



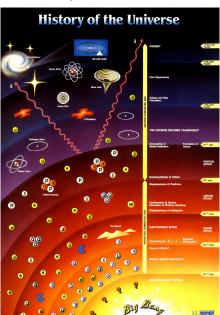
CMB:

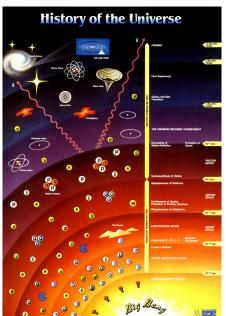


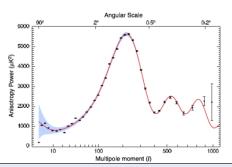
D. Grumiller — Gravity Introduction 5/36

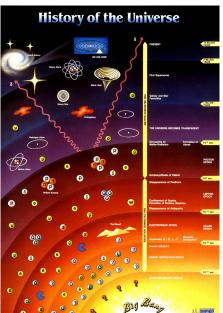


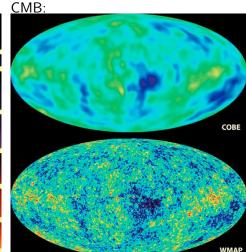
CMB:


▶ 370000 years: $3000K \approx 0.3 \text{eV}$

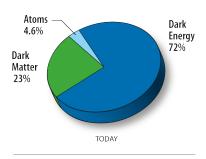

- ▶ 370000 years: $3000K \approx 0.3 \mathrm{eV}$
- ...that means no ions any more!

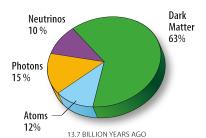

- ▶ 370000 years: $3000K \approx 0.3 \mathrm{eV}$
- ...that means no ions any more!
- ▶ Universe became transparent



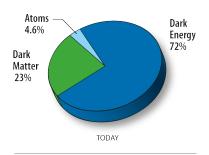

- ▶ 370000 years: $3000K \approx 0.3 \mathrm{eV}$
- …that means no ions any more!
- Universe became transparent
- Fluctuations: "echo" of Big Bang

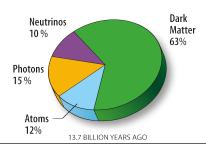
- ▶ 370000 years: $3000K \approx 0.3 \text{eV}$
- …that means no ions any more!
- Universe became transparent
- Fluctuations: "echo" of Big Bang
- ► COBE (1989-1993), WMAP (since 2001), Planck (since 2009)

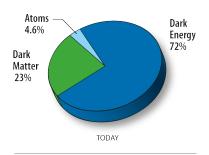


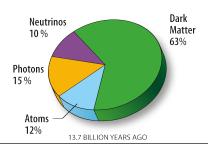


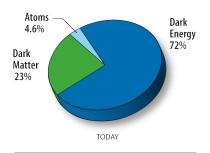
Above: COBE satellite (900km) Below: WMAP satellite at Lagrange

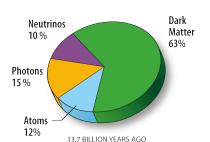

point L2 $(1.5 * 10^6 \text{km})$

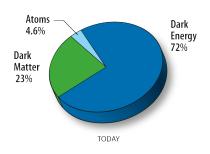


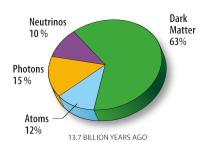

Building blocks of our Universe:

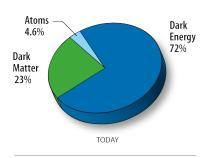

► Progress: we understand less than 5% of the Universe!

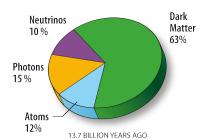


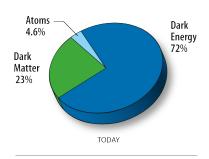

- Progress: we understand (see talks by Andre Hoang, Beatrix Hiesmayr, Claudia Wulz, Helmut Neufeld, Walter Grimus, Eberhard Widmann, Manfried Faber, Anton Rebhan, Helmut Leeb, Johann Marton, Johann Zmeskal) less than 5% of the Universe!
- Dark Matter: many indications, many candidates

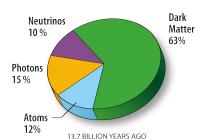


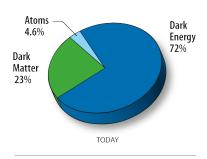

- Progress: we understand (see talks by Andre Hoang, Beatrix Hiesmayr, Claudia Wulz, Helmut Neufeld, Walter Grimus, Eberhard Widmann, Manfried Faber, Anton Rebhan, Helmut Leeb, Johann Marton, Johann Zmeskal) less than 5% of the Universe!
- Dark Matter: many indications, many candidates
- Plausible candidate: LSP

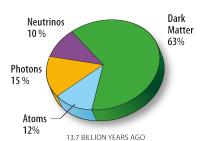


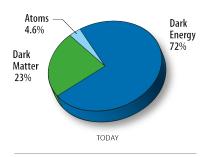

- ▶ Progress: we understand (see talks by Andre Hoang, Beatrix Hiesmayr, Claudia Wulz, Helmut Neufeld, Walter Grimus, Eberhard Widmann, Manfried Faber, Anton Rebhan, Helmut Leeb, Johann Marton, Johann Zmeskal) less than 5% of the Universe!
- Dark Matter: many indications, many candidates
- Plausible candidate: LSP
- Might be discovered at LHC (see talk by Robert Schöfbeck)

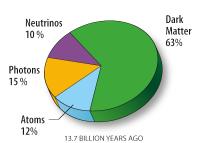


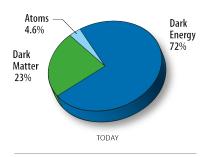

- Progress: we understand (see talks by Andre Hoang, Beatrix Hiesmayr, Claudia Wulz, Helmut Neufeld, Walter Grimus, Eberhard Widmann, Manfried Faber, Anton Rebhan, Helmut Leeb, Johann Marton, Johann Zmeskal) less than 5% of the Universe!
- Dark Matter: many indications, many candidates
- Plausible candidate: LSP
- Might be discovered at LHC (see talk by Robert Schöfbeck)
- Less plausible, but logically possible: dark matter is gravitational effect

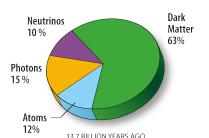



- ► Progress: we understand less than 5% of the Universe!
- ► More than 70% "Dark Energy"

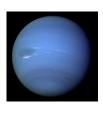



- ▶ Progress: we understand less than 5% of the Universe!
- More than 70% "Dark Energy"
- Simplest correct explanation: cosmological constant



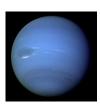

- ► Progress: we understand less than 5% of the Universe!
- ► More than 70% "Dark Energy"
- Simplest correct explanation: cosmological constant
- ▶ BUT: why so small??? 10^{-123}

- ► Progress: we understand less than 5% of the Universe!
- ► More than 70% "Dark Energy"
- Simplest correct explanation: cosmological constant
- ▶ BUT: why so small??? 10^{-123}
- Logical possibility: acceleration is gravitational effect

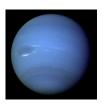

Building blocks of our Universe:

- ► Progress: we understand less than 5% of the Universe!
- ▶ More than 70% "Dark Energy"
- Simplest correct explanation: cosmological constant
- ▶ BUT: why so small??? 10^{-123}
- Logical possibility: acceleration is gravitational effect

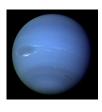
To address these issues we need to understand GRAVITY!


Dark Matter hypothesis: Early success...

Neptune:


▶ 1821: Alexis Bouvard published tables of orbit of Uranus

Dark Matter hypothesis: Early success...


- ▶ 1821: Alexis Bouvard published tables of orbit of Uranus
- Observations deviate from tables: gravitational anomalies!

Dark Matter hypothesis: Early success...


- ▶ 1821: Alexis Bouvard published tables of orbit of Uranus
- Observations deviate from tables: gravitational anomalies!
- Different explanations: change law of gravitation or predict Dark Matter to account for anomalies

Dark Matter hypothesis: Early success...

- ▶ 1821: Alexis Bouvard published tables of orbit of Uranus
- Observations deviate from tables: gravitational anomalies!
- Different explanations: change law of gravitation or predict Dark Matter to account for anomalies
- ▶ 1845: John Couch Adams and especially Urbain Le Verrier predict new planet and calculate its position


Dark Matter hypothesis: Early success...

- ▶ 1821: Alexis Bouvard published tables of orbit of Uranus
- Observations deviate from tables: gravitational anomalies!
- Different explanations: change law of gravitation or predict Dark Matter to account for anomalies
- ▶ 1845: John Couch Adams and especially Urbain Le Verrier predict new planet and calculate its position
- ► 1846: Observational confirmation by Johann Gottfried Galle and Heinrich Louis d'Arrest

Dark Matter hypothesis: Early success...

Neptune:

- ▶ 1821: Alexis Bouvard published tables of orbit of Uranus
- Observations deviate from tables: gravitational anomalies!
- Different explanations: change law of gravitation or predict Dark Matter to account for anomalies
- ▶ 1845: John Couch Adams and especially Urbain Le Verrier predict new planet and calculate its position
- ▶ 1846: Observational confirmation by Johann Gottfried Galle and Heinrich Louis d'Arrest

Discovery of Neptune was first success of the Dark Matter concept!

Dark Matter hypothesis: ...and early failure

Vulcan:

▶ 1840: François Arago suggests problem of Mercury orbit to Urbain Le Verrier

Dark Matter hypothesis: ...and early failure

- ▶ 1840: François Arago suggests problem of Mercury orbit to Urbain Le Verrier
- Observations deviate from tables: gravitational anomalies!

Dark Matter hypothesis: ...and early failure

- ▶ 1840: François Arago suggests problem of Mercury orbit to Urbain Le Verrier
- Observations deviate from tables: gravitational anomalies!
- Different explanations: change law of gravitation or predict Dark Matter to account for anomalies

Dark Matter hypothesis: ...and early failure

- ▶ 1840: François Arago suggests problem of Mercury orbit to Urbain Le Verrier
- Observations deviate from tables: gravitational anomalies!
- Different explanations: change law of gravitation or predict Dark Matter to account for anomalies
- ▶ 1859: Urbain Le Verrier predicts new planet and calculates its position

Dark Matter hypothesis: ...and early failure

- ▶ 1840: François Arago suggests problem of Mercury orbit to Urbain Le Verrier
- Observations deviate from tables: gravitational anomalies!
- Different explanations: change law of gravitation or predict Dark Matter to account for anomalies
- ▶ 1859: Urbain Le Verrier predicts new planet and calculates its position
- ▶ 1860: Observational 'confirmation' by Lescarbault

Dark Matter hypothesis: ...and early failure

- ▶ 1840: François Arago suggests problem of Mercury orbit to Urbain Le Verrier
- Observations deviate from tables: gravitational anomalies!
- Different explanations: change law of gravitation or predict Dark Matter to account for anomalies
- ▶ 1859: Urbain Le Verrier predicts new planet and calculates its position
- ▶ 1860: Observational 'confirmation' by Lescarbault
- ▶ 1915: Einstein explains perihelion shift of Mercury with General Relativity

Dark Matter hypothesis: ...and early failure

Vulcan:

- ▶ 1840: François Arago suggests problem of Mercury orbit to Urbain Le Verrier
- Observations deviate from tables: gravitational anomalies!
- Different explanations: change law of gravitation or predict Dark Matter to account for anomalies
- ▶ 1859: Urbain Le Verrier predicts new planet and calculates its position
- ▶ 1860: Observational 'confirmation' by Lescarbault
- ▶ 1915: Einstein explains perihelion shift of Mercury with General Relativity

Non-discovery of Vulcan was first failure of the Dark Matter concept!

What is Dark Matter?
Are we in a Neptune or a Vulcan scenario?

Some crucial facts about the Dark Side of life:

▶ Fact 1: Vulcan scenario is unlikely for Dark Matter

What is Dark Matter? Are we in a Neptune or a Vulcan scenario?

Some crucial facts about the Dark Side of life:

- ► Fact 1: Vulcan scenario is unlikely for Dark Matter
- ► Reason 1: experimental data!

Not only galactic rotations curves (see pictures), but also: galaxy clusters, gravitational lensing, velocity dispersion of galaxies, CMB data, structure formation, bullet cluster, sky surveys, Lyman α forest,

- Fact 1: Vulcan scenario is unlikely for Dark Matter
- ► Reason 1: experimental data!
- Reason 2: modified gravity usually does not work
 Constraints from solar system tests, astrophysical observations,
 Cosmology, Earth based precision experiments (see talk by Hartmut Abele)

- Fact 1: Vulcan scenario is unlikely for Dark Matter
- ▶ Reason 1: experimental data!
- Reason 2: modified gravity usually does not work
- ► Fact 2: Nevertheless crucial to understand gravity well in the deep IR

- Fact 1: Vulcan scenario is unlikely for Dark Matter
- ► Reason 1: experimental data!
- ▶ Reason 2: modified gravity usually does not work
- ► Fact 2: Nevertheless crucial to understand gravity well in the deep IR
- Reason 1: important for precision experiments Note: there are couple of tentative experimental anomalies in the deep IR besides Dark Matter and Dark Energy: Pioneer anomaly, fly-by anomaly, increase of astronomical units, ...

- Fact 1: Vulcan scenario is unlikely for Dark Matter
- ► Reason 1: experimental data!
- ▶ Reason 2: modified gravity usually does not work
- ► Fact 2: Nevertheless crucial to understand gravity well in the deep IR
- ▶ Reason 1: important for precision experiments
- ▶ Reason 2: relevant to test theories Some quantum theories of gravity predict modifications of GR in the deep IR, others do not — deep IR physics might be a useful (and unexpected) experimental window for quantum gravity

- ► Fact 1: Vulcan scenario is unlikely for Dark Matter
- ► Reason 1: experimental data!
- Reason 2: modified gravity usually does not work
- ► Fact 2: Nevertheless crucial to understand gravity well in the deep IR
- ▶ Reason 1: important for precision experiments
- Reason 2: relevant to test theories
- ► Fact 3: Even more challenging is to understand gravity in the deep UV

What is Dark Matter?

Are we in a Neptune or a Vulcan scenario?

Some crucial facts about the Dark Side of life:

- Fact 1: Vulcan scenario is unlikely for Dark Matter
- Reason 1: experimental data!
- Reason 2: modified gravity usually does not work
- ► Fact 2: Nevertheless crucial to understand gravity well in the deep IR
- ▶ Reason 1: important for precision experiments
- Reason 2: relevant to test theories
- ► Fact 3: Even more challenging is to understand gravity in the deep UV
- ▶ Reason 1: experimentally difficult to access

$$E_{\rm Planck} \sim 10^{19} {\rm GeV} \gg 10 {\rm TeV}$$

See Manfred Krammers talk for state of the art of particle detectors in high energy physics

- Fact 1: Vulcan scenario is unlikely for Dark Matter
- Reason 1: experimental data!
- ▶ Reason 2: modified gravity usually does not work
- ▶ Fact 2: Nevertheless crucial to understand gravity well in the deep IR
- ▶ Reason 1: important for precision experiments
- ▶ Reason 2: relevant to test theories
- ► Fact 3: Even more challenging is to understand gravity in the deep UV
- Reason 1: experimentally difficult to access
- Reason 2: need quantum gravity theory
 See also talk by Harald Skarke on string theory (currently the only quantum theory of gravity consistent with all experiments)

- ► Fact 1: Vulcan scenario is unlikely for Dark Matter
- ► Reason 1: experimental data!
- Reason 2: modified gravity usually does not work
- ▶ Fact 2: Nevertheless crucial to understand gravity well in the deep IR
- ▶ Reason 1: important for precision experiments
- Reason 2: relevant to test theories
- ► Fact 3: Even more challenging is to understand gravity in the deep UV
- Reason 1: experimentally difficult to access
- Reason 2: need quantum gravity theory
- ▶ Summary: we understand gravity above micro-meter scale and up to solar system scale. GR migth be correct at arbitrarily big length scales, but it is a logical possibility that there are IR modifications of GR.

Blackboard I Model for gravity at large distances

▶ We saw that the deep IR might contain new physics

- ▶ We saw that the deep IR might contain new physics
- ▶ We know that the deep UV *must* contain new physics!

- ▶ We saw that the deep IR might contain new physics
- ▶ We know that the deep UV *must* contain new physics!
 - ► Fact 1: QED has Landau pole
 - ▶ Fact 2: Standard Model cannot be valid at arbitrary high energies
 - ▶ Indication 1: Singularities in GR are signal of new physics
 - Indication 2: Dimensional analysis: expect new physics at Planck energy $10^{19}~{\rm GeV}$ (or below)
 - ▶ Indication 3: General Relativity unlikely correct at Planck scale non-renormalizable = typical sign of low-energy effective theories
 - Indication 4: Unification of forces below Planck scale (around $10^{16}~{\rm GeV}$) likely from experimental data

- ▶ We saw that the deep IR might contain new physics
- ▶ We know that the deep UV *must* contain new physics!
- ▶ Therefore, we need a UV completion of gravity (General Relativity)!

- ▶ We saw that the deep IR might contain new physics
- ▶ We know that the deep UV *must* contain new physics!
- Therefore, we need a UV completion of gravity (General Relativity)!
- lacktriangle Energy scale E_{QG} where quantum gravity effects kick in:

$$1 \text{ TeV} < E_{QG} < \text{a few } 10^{19} \text{ GeV}$$

- ▶ We saw that the deep IR might contain new physics
- ▶ We know that the deep UV *must* contain new physics!
- Therefore, we need a UV completion of gravity (General Relativity)!
- ightharpoonup Energy scale E_{QG} where quantum gravity effects kick in:

$$1 \text{ TeV} < E_{QG} < \text{a few } 10^{19} \text{ GeV}$$

The Holy Grail of Theoretical Physics

Construct UV completion of gravity aka Quantum Gravity

Within the landscape of Physics:

Theoretical Physics

- Condensed matter physics
- ► Fundamental interactions

Within the landscape of Physics:

Theoretical Physics

Fundamental interactions

- Condensed matter physics
- Fundamental interactions
- Strong interactions
- Weak interactions
- Electromagnetic interactions
- Gravitational interactions

Within the landscape of Physics:

Theoretical Physics

Fundamental interactions

Gravitational interactions

- Condensed matter physics
- Fundamental interactions
- Strong interactions
- Weak interactions
- Electromagnetic interactions
- Gravitational interactions
- Cosmology
- Astrophysics
- ► Gauge/gravity correspondence
- Quantum gravity
- ► Model building

Within the landscape of Physics:

Theoretical Physics

Fundamental interactions

Gravitational interactions

BLACK HOLES

- Primordial BHs
- Stellar&supermassive BHs
- Dual BHs
- BHs as "hydrogen atom"
- BHs as litmus test.

- Condensed matter physics
- Fundamental interactions
- Strong interactions
- Weak interactions
- Electromagnetic interactions
- Gravitational interactions
- Cosmology
- Astrophysics
- ► Gauge/gravity correspondence

12/36

- Quantum gravity
- Model building

Outline

Introduction

Cosmology Astrophysics Gravity

Black holes

How can we observe black holes? Why are black holes interesting for quantum gravity?

Holography: An Introduction

3D gravity

Motivation

Topologically massive gravity

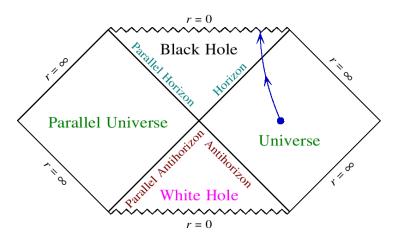
Research directions

What is a black hole?

Fishy analogy (Bill Unruh '81):

The real stuff:

Above: black hole (NASA picture) Left: Waterfall


Analogy: Infinity \leftrightarrow Lake

Horizon ↔ Point of no return

Singularity \leftrightarrow Waterfall

What is a black hole?

Example: causal structure of Schwarzschild black hole

Schwarzschild line-element:

$$ds^{2} = -\left(1 - \frac{2M}{r}\right) dt^{2} + \frac{dr^{2}}{1 - \frac{2M}{r}} + r^{2} d\theta^{2} + r^{2} \sin^{2}\theta d\phi^{2}$$

D. Grumiller — Gravity Black holes 15/36

Why Study Black Holes?

Depending whom you ask you'll hear:

- ▶ General Relativist: because they are unavoidable
- ▶ Mathematician: because they are interesting
- Science Fiction Writer: because they are cool
- Astrophysicist: because they explain the data
- ▶ String Theoretician: because they hold the key to quantum gravity
- Particle Physicist: because they might be produced at LHC
- Cosmologist: because they exist
- ▶ Numerical Relativist: because they present challenge for coding skills
- Nuclear Physicist: because they are dual to a strongly coupled plasma
- ► Condensed Matter Physicist: because we can produce them in the lab
- Gravitational Wave Experimentalist: because we need to understand black holes to provide templates for gravitational wave detection

Many reasons to study black holes in physics!

Have to understand the physics of this...

Black hole observations Confirmed stellar black holes in X-ray binaries

Objects whose mass is clearly beyond TOV limit $M>3M_{\odot}$:

System	D	f(M)	Donor	Classification	M_{x} †
System	P_{orb}			Classification	
	[days]	$[M_{\odot}]$	Spect. Type		$[M_{\odot}]$
GRS 1915+105 ^a	33.5	9.5 ± 3.0	K/M III	LMXB/Transient	14 ± 4
V404 Cyg	6.471	6.09 ± 0.04	K0 IV	**	12 ± 2
Cyg X-1	5.600	0.244 ± 0.005	09.7 lab	HMXB/Persistent	10 ± 3
LMC X-1	4.229	0.14 ± 0.05	07 III	**	> 4
XTE J1819-254	2.816	3.13 ± 0.13	B9 III	IMXB/Transient	7.1 ± 0.3
GRO J1655-40	2.620	2.73 ± 0.09	F3/5 IV	**	6.3 ± 0.3
BW Cir^b	2.545	5.74 ± 0.29	G5 IV	LMXB/Transient	> 7.8
GX 339-4	1.754	5.8 ± 0.5	_	,,,	
LMC X-3	1.704	2.3 ± 0.3	B3 V	HMXB/Persistent	7.6 ± 1.3
XTE J1550-564	1.542	6.86 ± 0.71	G8/K8 IV	LMXB/Transient	9.6 ± 1.2
4U 1543-475	1.125	0.25 ± 0.01	A2 V	IMXB/Transient	9.4 ± 1.0
H1705-250	0.520	4.86 ± 0.13	K3/7 V	LMXB/Transient	6 ± 2
GS 1124-684	0.433	3.01 ± 0.15	K3/5 V	**	7.0 ± 0.6
XTE J1859 $+226^{c}$	0.382	7.4 ± 1.1	_	,,	
GS2000+250	0.345	5.01 ± 0.12	K3/7 V	**	7.5 ± 0.3
A0620-003	0.325	2.72 ± 0.06	K4 V	**	11 ± 2
XTE J1650-500	0.321	2.73 ± 0.56	K4 V	**	
GRS 1009-45	0.283	3.17 ± 0.12	K7/M0 V	**	5.2 ± 0.6
GRO J0422+32	0.212	1.19 ± 0.02	M2 V	"	4 ± 1
XTE J1118+480	0.171	6.3 ± 0.2	K5/M0 V	**	6.8 ± 0.4
Source: L Casares astro-ph/0619219					

Source: J. Casares, astro-ph/0612312

Black holes in X-ray binaries particularly "simple" to detect

Recent milestones

- S. Dimopoulos and G.L. Landsberg; S.B. Giddings and S. Thomas (2001): Black holes at the LHC?
- ► Saggitarius A* (2002): Supermassive black hole in center of Milky Way
- R. Emparan and H. Reall (2002): Black rings in five dimensions
- S. Hawking (2004): concedes bet on information paradox end of "black hole wars"
- P. Kovtun, D. Son and A. Starinets (2004): Viscosity in strongly interacting Quantum Field Theories from black hole physics
- F. Pretorius (2005): Breakthrough in numerical treatment of binary problem
- C. Barcelo, S. Liberati, and M. Visser (2005): "Analogue gravity"
- ▶ J.E. McClintock et al. (2006): Measuring of spin of GRS1915+105 nearly extremal Kerr black hole!
- ► E. Witten (2007), W. Li, W. Song and A. Strominger (2008) and D. Grumiller, N. Johansson (2008): Quantum gravity in three dimensions?
- S. Gubser; S. Hartnoll, C. Herzog and G. Horowitz (2008): "Holographic superconductors"
- D. Son; K. Balasubramanian and J. McGreevy (2008): Black hole duals for cold atoms proposed
- O. Lahav, A. Itah, A. Blumkin, C. Gordon, and J. Steinhauer (2009): Sonic black hole in Bose-Einstein condensate

D. Grumiller — Gravity Black holes 19/36

Some properties of black holes (BHs):

- ▶ BHs are simple, much like elementary particles
- ▶ BHs are characterized by mass, spin and charges

Some properties of black holes (BHs):

- ▶ BHs are simple, much like elementary particles
- ▶ BHs are characterized by mass, spin and charges
- Classically BHs do not radiate

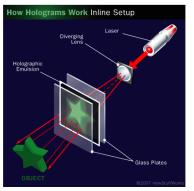
Some properties of black holes (BHs):

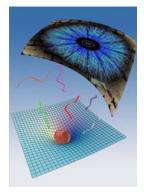
- BHs are simple, much like elementary particles
- ▶ BHs are characterized by mass, spin and charges
- Classically BHs do not radiate
- Semi-classically BHs emit Hawking radiation
- ▶ Thermodynamically BHs have entropy proportional to horizon area:

$$S_{\rm BH} = \frac{1}{4} A_h$$

Some properties of black holes (BHs):

- BHs are simple, much like elementary particles
- ▶ BHs are characterized by mass, spin and charges
- Classically BHs do not radiate
- Semi-classically BHs emit Hawking radiation
- ▶ Thermodynamically BHs have entropy proportional to horizon area:

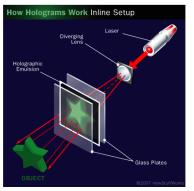

$$S_{\mathrm{BH}} = \frac{1}{4}A_h$$

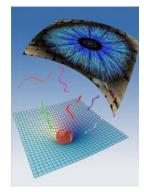

- Quantum-mechanically BH evaporation entails "information paradox"
- ▶ BHs are the simplest systems that allow to address conceptual problems of quantum gravity, for instance:

unitarity of quantum gravity, microscopic understanding of BH entropy, holographic principle, modelling of BH evaporation, ...

Understanding quantum black holes and holography is milestone on road to quantum gravity!

Holography — Main idea aka gauge/gravity duality, aka AdS/CFT correspondence

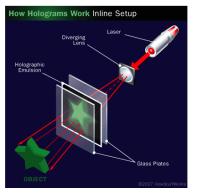


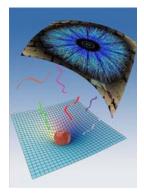


One of the most fruitful ideas in contemporary theoretical physics:

▶ The number of dimensions is a matter of perspective

Holography — Main idea aka gauge/gravity duality, aka AdS/CFT correspondence





One of the most fruitful ideas in contemporary theoretical physics:

- ▶ The number of dimensions is a matter of perspective
- ▶ We can choose to describe the same physical situation using two different formulations in two different dimensions

Holography — Main idea aka gauge/gravity duality, aka AdS/CFT correspondence

One of the most fruitful ideas in contemporary theoretical physics:

- ▶ The number of dimensions is a matter of perspective
- ▶ We can choose to describe the same physical situation using two different formulations in two different dimensions
- ▶ The formulation in higher dimensions is a theory with gravity

Why gravity?

The holographic principle in black hole physics

 ${\tt Boltzmann/Planck:}$ entropy of photon gas in d spatial dimensions

$$S_{\rm gauge} \propto {\rm volume} \propto L^d$$

Bekenstein/Hawking: entropy of black hole in d spatial dimensions

$$S_{\rm gravity} \propto {\rm area} \propto L^{d-1}$$

Why gravity?

The holographic principle in black hole physics

Boltzmann/Planck: entropy of photon gas in d spatial dimensions

$$S_{\rm gauge} \propto \text{volume} \propto L^d$$

Bekenstein/Hawking: entropy of black hole in d spatial dimensions

$$S_{\rm gravity} \propto {\rm area} \propto L^{d-1}$$

Daring idea by 't Hooft/Susskind (1990ies):

Any consistent quantum theory of gravity could/should have a holographic formulation in terms of a field theory in one dimension lower

Why gravity?

The holographic principle in black hole physics

Boltzmann/Planck: entropy of photon gas in d spatial dimensions

$$S_{\rm gauge} \propto \text{volume} \propto L^d$$

Bekenstein/Hawking: entropy of black hole in d spatial dimensions

$$S_{\rm gravity} \propto {\rm area} \propto L^{d-1}$$

Daring idea by 't Hooft/Susskind (1990ies):

Any consistent quantum theory of gravity could/should have a holographic formulation in terms of a field theory in one dimension lower

Ground-breaking discovery by Maldacena (1997):

Holographic principle is realized in string theory in specific way

Why gravity?

The holographic principle in black hole physics

 ${\tt Boltzmann/Planck:}$ entropy of photon gas in d spatial dimensions

$$S_{\rm gauge} \propto \text{volume} \propto L^d$$

Bekenstein/Hawking: entropy of black hole in d spatial dimensions

$$S_{\rm gravity} \propto {\rm area} \propto L^{d-1}$$

Daring idea by 't Hooft/Susskind (1990ies):

Any consistent quantum theory of gravity could/should have a holographic formulation in terms of a field theory in one dimension lower

Ground-breaking discovery by Maldacena (1997):

Holographic principle is realized in string theory in specific way

e.g.
$$\langle T_{\mu\nu} \rangle_{\text{gauge}} = T_{\mu\nu}^{BY}$$
 $\delta(\text{gravity action}) = \int d^d x \sqrt{|h|} T_{\mu\nu}^{BY} \delta h^{\mu\nu}$

D. Grumiller — Gravity Black holes 22/36

Blackboard II

Brown-York stress energy tensor and intro to holographic renormalization

 \ldots and why were there >7000 papers on holography in the past 13 years?

 \dots and why were there >7000 papers on holography in the past 13 years?

► Many applications!

 \dots and why were there >7000 papers on holography in the past 13 years?

- ► Many applications!
- ► Tool for calculations

 \ldots and why were there >7000 papers on holography in the past 13 years?

- Many applications!
- Tool for calculations
- Strongly coupled gauge theories (difficult) mapped to semi-cassical gravity (simple)

 \ldots and why were there >7000 papers on holography in the past 13 years?

- Many applications!
- Tool for calculations
- Strongly coupled gauge theories (difficult) mapped to semi-cassical gravity (simple)
- Quantum gravity (difficult) mapped to weakly coupled gauge theories (simple)

D. Grumiller — Gravity Black holes 24/36

 \ldots and why were there >7000 papers on holography in the past 13 years?

- Many applications!
- ► Tool for calculations
- Strongly coupled gauge theories (difficult) mapped to semi-cassical gravity (simple)
- Quantum gravity (difficult) mapped to weakly coupled gauge theories (simple)
- Examples of first type: heavy ion collisions at RHIC and LHC (see talk by Toni Rebhan), superfluidity, type II superconductors (?), cold atoms (?), ...

 \ldots and why were there >7000 papers on holography in the past 13 years?

- Many applications!
- ► Tool for calculations
- Strongly coupled gauge theories (difficult) mapped to semi-cassical gravity (simple)
- Quantum gravity (difficult) mapped to weakly coupled gauge theories (simple)
- Examples of first type: heavy ion collisions at RHIC and LHC (see talk by Toni Rebhan), superfluidity, type II superconductors (?), cold atoms (?), ...
- ► Examples of the second type: microscopic understanding of black holes, information paradox, Kerr/CFT (?), 3D quantum gravity (?), ...

 \ldots and why were there >7000 papers on holography in the past 13 years?

- Many applications!
- ► Tool for calculations
- Strongly coupled gauge theories (difficult) mapped to semi-cassical gravity (simple)
- Quantum gravity (difficult) mapped to weakly coupled gauge theories (simple)
- Examples of first type: heavy ion collisions at RHIC and LHC (see talk by Toni Rebhan), superfluidity, type II superconductors (?), cold atoms (?), ...
- ► Examples of the second type: microscopic understanding of black holes, information paradox, Kerr/CFT (?), 3D quantum gravity (?), ...

We can expect many new applications in the next decade!

D. Grumiller — Gravity Black holes 24/36

Outline

Introduction

Cosmology Astrophysics Gravity

Black holes

How can we observe black holes? Why are black holes interesting for quantum gravity? Holography: An Introduction

3D gravity

Motivation Topologically massive gravity Research directions

Gravity simpler in lower dimensions

11D: 1144 Weyl, 66 Ricci, 5D: 35 Weyl, 15 Ricci, 4D: 10 Weyl, 10 Ricci 3D: no Weyl, 6 Ricci, 2D: no Weyl, 1 Ricci

2D gravity: black holes!

Gravity simpler in lower dimensions

11D: 1144 Weyl, 66 Ricci, 5D: 35 Weyl, 15 Ricci, 4D: 10 Weyl, 10 Ricci 3D: no Weyl, 6 Ricci, 2D: no Weyl, 1 Ricci

3D gravity: black holes and gravitons!

Gravity simpler in lower dimensions

11D: 1144 Weyl, 66 Ricci, 5D: 35 Weyl, 15 Ricci, 4D: 10 Weyl, 10 Ricci 3D: no Weyl, 6 Ricci, 2D: no Weyl, 1 Ricci

3D gravity: black holes and gravitons!

Applications:

Solve conceptual problems of (quantum) gravity Black hole evaporation, information loss problem, gravity as emergent phenomenon, ...

Gravity simpler in lower dimensions

11D: 1144 Weyl, 66 Ricci, 5D: 35 Weyl, 15 Ricci, 4D: 10 Weyl, 10 Ricci 3D: no Weyl, 6 Ricci, 2D: no Weyl, 1 Ricci

3D gravity: black holes and gravitons!

Applications:

- Solve conceptual problems of (quantum) gravity
- ▶ Approximate geometry of cosmic strings/particles confined in plane

Gravity simpler in lower dimensions

11D: 1144 Weyl, 66 Ricci, 5D: 35 Weyl, 15 Ricci, 4D: 10 Weyl, 10 Ricci 3D: no Weyl, 6 Ricci, 2D: no Weyl, 1 Ricci

3D gravity: black holes and gravitons!

Applications:

- Solve conceptual problems of (quantum) gravity
- ► Approximate geometry of cosmic strings/particles confined in plane
- ▶ Holographic tool for 2D condensed matter systems

Gravity simpler in lower dimensions

11D: 1144 Weyl, 66 Ricci, 5D: 35 Weyl, 15 Ricci, 4D: 10 Weyl, 10 Ricci 3D: no Weyl, 6 Ricci, 2D: no Weyl, 1 Ricci

3D gravity: black holes and gravitons!

Applications:

- Solve conceptual problems of (quantum) gravity
- ► Approximate geometry of cosmic strings/particles confined in plane
- ► Holographic tool for 2D condensed matter systems

pioneering work by Deser, Jackiw and Templeton in 1980ies 2007 Witten rekindled interest in 3D gravity

Cosmological topologically massive gravity (CTMG)

Action!

$$I_{\text{CTMG}} = \frac{1}{16\pi G} \int d^3x \sqrt{-g} \left[R + \frac{2}{\ell^2} + \frac{1}{2\mu} \varepsilon^{\lambda\mu\nu} \Gamma^{\rho}{}_{\lambda\sigma} \left(\partial_{\mu} \Gamma^{\sigma}{}_{\nu\rho} + \frac{2}{3} \Gamma^{\sigma}{}_{\mu\tau} \Gamma^{\tau}{}_{\nu\rho} \right) \right]$$

Equations of motion:

$$G_{\mu\nu} + \frac{1}{\mu} C_{\mu\nu} = 0$$

Cosmological topologically massive gravity (CTMG)

Action!

$$I_{\text{CTMG}} = \frac{1}{16\pi G} \int d^3x \sqrt{-g} \left[R + \frac{2}{\ell^2} + \frac{1}{2\mu} \varepsilon^{\lambda\mu\nu} \Gamma^{\rho}{}_{\lambda\sigma} \left(\partial_{\mu} \Gamma^{\sigma}{}_{\nu\rho} + \frac{2}{3} \Gamma^{\sigma}{}_{\mu\tau} \Gamma^{\tau}{}_{\nu\rho} \right) \right]$$

Equations of motion:

$$G_{\mu\nu} + \frac{1}{\mu} C_{\mu\nu} = 0$$

Properties of CTMG

- Gravitons (topologically massive spin 2 excitations)
- Black holes (BTZ)
- Asymptotically anti-deSitter solutions (AdS/CFT!?)
- Higher derivative terms (third derivatives in EOM)
- Parity violating Chern–Simons term
- Related: new massive gravity (Bergshoeff, Hohm, Townsend 2009)

Linearization around AdS background

$$g_{\mu\nu} = \bar{g}_{\mu\nu} + h_{\mu\nu}$$

Linearization around AdS background

$$g_{\mu\nu} = \bar{g}_{\mu\nu} + h_{\mu\nu}$$

leads to linearized EOM that are third order PDE

$$G_{\mu\nu}^{(1)} + \frac{1}{\mu} C_{\mu\nu}^{(1)} = (\mathcal{D}^R \mathcal{D}^L \mathcal{D}^M h)_{\mu\nu} = 0$$
 (1)

with three mutually commuting first order operators

$$(\mathcal{D}^{L/R})_{\mu}{}^{\nu} = \delta^{\nu}_{\mu} \pm \ell \, \varepsilon_{\mu}{}^{\alpha\nu} \bar{\nabla}_{\alpha} \,, \qquad (\mathcal{D}^{M})_{\mu}{}^{\nu} = \delta^{\nu}_{\mu} + \frac{1}{\mu} \varepsilon_{\mu}{}^{\alpha\nu} \bar{\nabla}_{\alpha}$$

Linearization around AdS background

$$g_{\mu\nu} = \bar{g}_{\mu\nu} + h_{\mu\nu}$$

leads to linearized EOM that are third order PDE

$$G_{\mu\nu}^{(1)} + \frac{1}{\mu} C_{\mu\nu}^{(1)} = (\mathcal{D}^R \mathcal{D}^L \mathcal{D}^M h)_{\mu\nu} = 0$$
 (1)

with three mutually commuting first order operators

$$(\mathcal{D}^{L/R})_{\mu}{}^{\nu} = \delta^{\nu}_{\mu} \pm \ell \, \varepsilon_{\mu}{}^{\alpha\nu} \bar{\nabla}_{\alpha} \,, \qquad (\mathcal{D}^{M})_{\mu}{}^{\nu} = \delta^{\nu}_{\mu} + \frac{1}{\mu} \varepsilon_{\mu}{}^{\alpha\nu} \bar{\nabla}_{\alpha}$$

Three linearly independent solutions to (1):

$$\left(\mathcal{D}^L h^L\right)_{\mu\nu} = 0, \qquad \left(\mathcal{D}^R h^R\right)_{\mu\nu} = 0, \qquad \left(\mathcal{D}^M h^M\right)_{\mu\nu} = 0$$

Linearization around AdS background

$$g_{\mu\nu} = \bar{g}_{\mu\nu} + h_{\mu\nu}$$

leads to linearized EOM that are third order PDE

$$G_{\mu\nu}^{(1)} + \frac{1}{\mu} C_{\mu\nu}^{(1)} = (\mathcal{D}^R \mathcal{D}^L \mathcal{D}^M h)_{\mu\nu} = 0$$
 (1)

28/36

with three mutually commuting first order operators

$$(\mathcal{D}^{L/R})_{\mu}{}^{\nu} = \delta^{\nu}_{\mu} \pm \ell \, \varepsilon_{\mu}{}^{\alpha\nu} \bar{\nabla}_{\alpha} \,, \qquad (\mathcal{D}^{M})_{\mu}{}^{\nu} = \delta^{\nu}_{\mu} + \frac{1}{\mu} \varepsilon_{\mu}{}^{\alpha\nu} \bar{\nabla}_{\alpha}$$

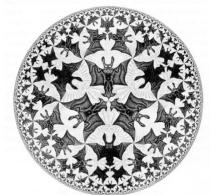
Three linearly independent solutions to (1):

$$\left(\mathcal{D}^L h^L\right)_{\mu\nu} = 0\,, \qquad \left(\mathcal{D}^R h^R\right)_{\mu\nu} = 0\,, \qquad \left(\mathcal{D}^M h^M\right)_{\mu\nu} = 0$$

Li, Song and Strominger (2008):

At chiral point left (L) and massive (M) branches coincide!

With Sachs: recently found and classified all soutions to linearized EOM


AdS/CFT – but which CFT?

Chiral versus logarithmic

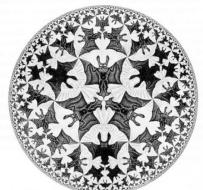
Pre-cursor of AdS/CFT: Brown–Henneaux 1986

3D quantum gravity on AdS dual to 2D CFT with $c_L=c_R=3\ell/2G_N$

Constant time slice of EAdS₃

► Boundary of AdS₃: cylinder

Open Universe Looking from inside, boundary at infinit


AdS/CFT – but which CFT?

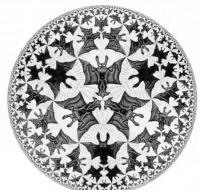
Chiral versus logarithmic

Pre-cursor of AdS/CFT: Brown–Henneaux 1986

3D quantum gravity on AdS dual to 2D CFT with $c_L=c_R=3\ell/2G_N$

Constant time slice of EAdS₃

- ▶ Boundary of AdS₃: cylinder
- Dual CFT on cylinder


Open Universe Looking from inside, boundary at infinity

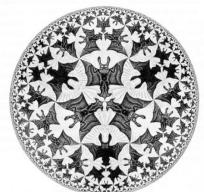
AdS/CFT – but which CFT? Chiral versus logarithmic

Pre-cursor of AdS/CFT: Brown-Henneaux 1986

3D quantum gravity on AdS dual to 2D CFT with $c_L=c_R=3\ell/2G_N$

Constant time slice of EAdS₃

- Boundary of AdS₃: cylinder
- Dual CFT on cylinder
- Characterized by central charges
- $c_L = c_R$ in Einstein gravity


AdS/CFT – but which CFT?

Chiral versus logarithmic

Pre-cursor of AdS/CFT: Brown–Henneaux 1986

3D quantum gravity on AdS dual to 2D CFT with $c_L=c_R=3\ell/2G_N$

Constant time slice of EAdS₃

- ▶ Boundary of AdS₃: cylinder
- Dual CFT on cylinder
- Characterized by central charges
- $ightharpoonup c_L = c_R$ in Einstein gravity
- $c_L \neq c_R$ in CTMG
- $c_L = (1 1/\mu \ell) \, 3\ell/2G_N$
- Chiral point: $\mu\ell=1$
- At chiral point $c_L = 0$

Open Universe Looking from inside, boundary at infinity

Observation:

At chiral point $c_L=0$

Chiral gravity conjecture (Li, Song, Strominger 2008):

CFT dual to CTMG exists and is chiral

Observation:

At chiral point $c_L = 0$

Chiral gravity conjecture (Li, Song, Strominger 2008):

CFT dual to CTMG exists and is chiral

Observation:

At chiral point $c_L = 0$

Chiral gravity conjecture (Li, Song, Strominger 2008):

CFT dual to CTMG exists and is chiral

Why would that be useful?

Nice toy model for quantum gravity without strings

Observation:

At chiral point $c_L = 0$

Chiral gravity conjecture (Li, Song, Strominger 2008):

CFT dual to CTMG exists and is chiral

- Nice toy model for quantum gravity without strings
- Entropy of BTZ black hole: microstate counting

Observation:

At chiral point $c_L = 0$

Chiral gravity conjecture (Li, Song, Strominger 2008):

CFT dual to CTMG exists and is chiral

- Nice toy model for quantum gravity without strings
- Entropy of BTZ black hole: microstate counting
- lacktriangle Partition function factorizes holomorphically: $Z=Z_RZ_L=Z_R$

Observation:

At chiral point $c_L = 0$

Chiral gravity conjecture (Li, Song, Strominger 2008):

CFT dual to CTMG exists and is chiral

- Nice toy model for quantum gravity without strings
- Entropy of BTZ black hole: microstate counting
- lacktriangle Partition function factorizes holomorphically: $Z=Z_RZ_L=Z_R$
- Partition function calculated already!

Observation:

At chiral point $c_L = 0$

Chiral gravity conjecture (Li, Song, Strominger 2008):

CFT dual to CTMG exists and is chiral

Why would that be useful?

- Nice toy model for quantum gravity without strings
- Entropy of BTZ black hole: microstate counting
- lacktriangle Partition function factorizes holomorphically: $Z=Z_RZ_L=Z_R$
- Partition function calculated already!

However...

Another tempting conjecture

Observation (E: energy, J: angular momentum):

$$\begin{split} (E+J) \left(\begin{array}{c} \log \\ \mathrm{left} \end{array} \right) &= \left(\begin{array}{cc} 2 & \frac{1}{2} \\ 0 & 2 \end{array} \right) \left(\begin{array}{c} \log \\ \mathrm{left} \end{array} \right) \,, \\ (E-J) \left(\begin{array}{c} \log \\ \mathrm{left} \end{array} \right) &= \left(\begin{array}{cc} 0 & \frac{1}{2} \\ 0 & 0 \end{array} \right) \left(\begin{array}{c} \log \\ \mathrm{left} \end{array} \right) \,. \end{split}$$

Another tempting conjecture

Observation (E: energy, J: angular momentum):

$$(E+J) \left(\begin{array}{c} \log \\ \mathrm{left} \end{array} \right) = \left(\begin{array}{c} 2 & \frac{1}{2} \\ 0 & 2 \end{array} \right) \left(\begin{array}{c} \log \\ \mathrm{left} \end{array} \right) \,,$$

$$(E-J) \left(\begin{array}{c} \log \\ \mathrm{left} \end{array} \right) = \left(\begin{array}{c} 0 & \frac{1}{2} \\ 0 & 0 \end{array} \right) \left(\begin{array}{c} \log \\ \mathrm{left} \end{array} \right) \,.$$

Such a Jordan form of $E\pm J$ is defining property of a logarithmic CFT! Logarithmic gravity conjecture (Grumiller, Johansson 2008):

CFT dual to CTMG exists and is logarithmic

Another tempting conjecture

Observation (E: energy, J: angular momentum):

$$\begin{split} (E+J) \left(\begin{array}{c} \log \\ \mathrm{left} \end{array} \right) &= \left(\begin{array}{cc} 2 & \frac{1}{2} \\ 0 & 2 \end{array} \right) \left(\begin{array}{c} \log \\ \mathrm{left} \end{array} \right) \,, \\ (E-J) \left(\begin{array}{c} \log \\ \mathrm{left} \end{array} \right) &= \left(\begin{array}{cc} 0 & \frac{1}{2} \\ 0 & 0 \end{array} \right) \left(\begin{array}{c} \log \\ \mathrm{left} \end{array} \right) \,. \end{split}$$

Such a Jordan form of $E\pm J$ is defining property of a logarithmic CFT! Logarithmic gravity conjecture (Grumiller, Johansson 2008):

CFT dual to CTMG exists and is logarithmic

► Logarithmic CFT: not unitary and not chiral!

Another tempting conjecture

Observation (E: energy, J: angular momentum):

$$(E+J) \left(\begin{array}{c} \log \\ \mathrm{left} \end{array} \right) = \left(\begin{array}{c} 2 & \frac{1}{2} \\ 0 & 2 \end{array} \right) \left(\begin{array}{c} \log \\ \mathrm{left} \end{array} \right) \,,$$

$$(E-J) \left(\begin{array}{c} \log \\ \mathrm{left} \end{array} \right) = \left(\begin{array}{c} 0 & \frac{1}{2} \\ 0 & 0 \end{array} \right) \left(\begin{array}{c} \log \\ \mathrm{left} \end{array} \right) \,.$$

Such a Jordan form of $E \pm J$ is defining property of a logarithmic CFT! Logarithmic gravity conjecture (Grumiller, Johansson 2008):

CFT dual to CTMG exists and is logarithmic

- ▶ Logarithmic CFT: not unitary and not chiral!
- ► Either logarithmic or chiral CFT dual (or none)

D. Grumiller — Gravity

Another tempting conjecture

Observation (E: energy, J: angular momentum):

$$\begin{split} (E+J) \left(\begin{array}{c} \log \\ \mathrm{left} \end{array} \right) &= \left(\begin{array}{cc} 2 & \frac{1}{2} \\ 0 & 2 \end{array} \right) \left(\begin{array}{c} \log \\ \mathrm{left} \end{array} \right) \,, \\ (E-J) \left(\begin{array}{c} \log \\ \mathrm{left} \end{array} \right) &= \left(\begin{array}{cc} 0 & \frac{1}{2} \\ 0 & 0 \end{array} \right) \left(\begin{array}{c} \log \\ \mathrm{left} \end{array} \right) \,. \end{split}$$

Such a Jordan form of $E\pm J$ is defining property of a logarithmic CFT! Logarithmic gravity conjecture (Grumiller, Johansson 2008):

CFT dual to CTMG exists and is logarithmic

- Logarithmic CFT: not unitary and not chiral!
- Either logarithmic or chiral CFT dual (or none)
- ▶ Until recently unknown which of these alternatives is realized!

▶ Performed various consistency checks with Niklas Johansson

- Performed various consistency checks with Niklas Johansson
- ► All of them pointed towards validity of logarithmic conjecture

- Performed various consistency checks with Niklas Johansson
- ► All of them pointed towards validity of logarithmic conjecture
- ▶ Recently: Skenderis, Taylor, van Rees calculated 2-point correlators

- Performed various consistency checks with Niklas Johansson
- ► All of them pointed towards validity of logarithmic conjecture
- ▶ Recently: Skenderis, Taylor, van Rees calculated 2-point correlators
- Calculation of 2- and 3-point correlators with Ivo Sachs

- Performed various consistency checks with Niklas Johansson
- ► All of them pointed towards validity of logarithmic conjecture
- ▶ Recently: Skenderis, Taylor, van Rees calculated 2-point correlators
- Calculation of 2- and 3-point correlators with Ivo Sachs

Results:

$$\langle \operatorname{right}(z,\bar{z})\operatorname{right}(0)\rangle = \frac{c_R}{2\bar{z}^4}$$
 (2)

$$\langle \operatorname{left}(z,\bar{z})\log(0)\rangle = -\frac{b}{2z^4}$$
 (3)

$$\langle \log(z,\bar{z})\log(0)\rangle = \frac{2b\,\ln\left(m^2|z|^2\right)}{z^4} \tag{4}$$

These are precisely the 2-point correlators of a logarithmic CFT!

3-point correlators also consistent with logarithmic CFT conjecture

- Cosmological topologically massive gravity at the chiral point is an intersting gravitational theory in three dimensions
- ▶ Its dual CFT was conjectured to be logarithmic in work with Niklas Johansson 2008
- Conjecture confirmed by calculations of correlators (Skenderis, Taylor and van Rees 2009, and Grumiller and Sachs 2009)

- ► Cosmological topologically massive gravity at the chiral point is an intersting gravitational theory in three dimensions
 - ▶ Its dual CFT was conjectured to be logarithmic in work with Niklas Johansson 2008
- Conjecture confirmed by calculations of correlators (Skenderis, Taylor and van Rees 2009, and Grumiller and Sachs 2009)
 - CTMG probably not good toy model for quantum gravity

- ► Cosmological topologically massive gravity at the chiral point is an intersting gravitational theory in three dimensions
 - ▶ Its dual CFT was conjectured to be logarithmic in work with Niklas Johansson 2008
- Conjecture confirmed by calculations of correlators (Skenderis, Taylor and van Rees 2009, and Grumiller and Sachs 2009)
 - CTMG probably not good toy model for quantum gravity Needs unitary completion or truncation

- ► Cosmological topologically massive gravity at the chiral point is an intersting gravitational theory in three dimensions
 - ▶ Its dual CFT was conjectured to be logarithmic in work with Niklas Johansson 2008
- Conjecture confirmed by calculations of correlators (Skenderis, Taylor and van Rees 2009, and Grumiller and Sachs 2009)
 - CTMG probably not good toy model for quantum gravity Needs unitary completion or truncation
 Exciting possibility: gravity duals to strongly coupled logarithmic CFTs in condensed matter physics

- Cosmological topologically massive gravity at the chiral point is an intersting gravitational theory in three dimensions
 - ▶ Its dual CFT was conjectured to be logarithmic in work with Niklas Johansson 2008
- ► Conjecture confirmed by calculations of correlators (Skenderis, Taylor and van Rees 2009, and Grumiller and Sachs 2009)
 - CTMG probably not good toy model for quantum gravity Needs unitary completion or truncation Exciting possibility: gravity duals to strongly coupled logarithmic CFTs in condensed matter physics Examples: turbulence, critical polymers, percolation, disordered systems, sandpile model, quantum Hall effect, ...

It seems we have uncovered yet-another interesting chapter in the epic AdS/CFT saga...

Collaborations with local postdocs, PhD students and undergraduates:

 Warped AdS holography: with Niklas Johansson, Sabine Ertl and Frederic Brünner

Collaborations with local postdocs, PhD students and undergraduates:

- Warped AdS holography: with Niklas Johansson, Sabine Ertl and Frederic Brünner
- ▶ New anomalies in logarithmic CFT dual to generalized massive gravity: with Niklas Johansson and Thomas Zojer

Collaborations with local postdocs, PhD students and undergraduates:

- Warped AdS holography: with Niklas Johansson, Sabine Ertl and Frederic Brünner
- New anomalies in logarithmic CFT dual to generalized massive gravity: with Niklas Johansson and Thomas Zojer
- ▶ Exact solutions in 3D gravity: with Niklas Johansson and Sabine Ertl

Collaborations with local postdocs, PhD students and undergraduates:

- Warped AdS holography: with Niklas Johansson, Sabine Ertl and Frederic Brünner
- New anomalies in logarithmic CFT dual to generalized massive gravity: with Niklas Johansson and Thomas Zojer
- ▶ Exact solutions in 3D gravity: with Niklas Johansson and Sabine Ertl

```
Supplemented by collaborations with MIT (Olaf Hohm, Roman Jackiw), LMU Munich/AEI (Ivo Sachs), Chicago U. (Robert McNees), Perimeter Institute (Robert Mann), McGill U. (Alejandra Castro), Princeton U. (Nicolas Yunes), Michigan U. (Finn Larsen), YITP Stony Brook (Peter van Nieuwenhuizen), etc.
```

Directions implied by topics addressed in this talk:

► Holography in 2D?

Directions implied by topics addressed in this talk:

- ► Holography in 2D?
- ightharpoonup AdS₃/(L)CFT₂: better understanding of holography

Directions implied by topics addressed in this talk:

- ► Holography in 2D?
- ightharpoonup AdS₃/(L)CFT₂: better understanding of holography
- ▶ 3D quantum gravity?

Directions implied by topics addressed in this talk:

- ▶ Holography in 2D?
- ightharpoonup AdS₃/(L)CFT₂: better understanding of holography
- ▶ 3D quantum gravity?
- Condensed matter applications of AdS₃/LCFT₂?

Directions implied by topics addressed in this talk:

- ► Holography in 2D?
- ightharpoonup AdS₃/(L)CFT₂: better understanding of holography
- ▶ 3D quantum gravity?
- Condensed matter applications of AdS₃/LCFT₂?

Directions related to topics addressed in this talk:

Numerical relativity (black hole collapse, numerical AdS/CFT)

Directions implied by topics addressed in this talk:

- ► Holography in 2D?
- ightharpoonup AdS₃/(L)CFT₂: better understanding of holography
- 3D quantum gravity?
- Condensed matter applications of AdS₃/LCFT₂?

Directions related to topics addressed in this talk:

- Numerical relativity (black hole collapse, numerical AdS/CFT)
- Black hole analogs in condensed matter systems

Directions implied by topics addressed in this talk:

- Holography in 2D?
- ightharpoonup AdS₃/(L)CFT₂: better understanding of holography
- 3D quantum gravity?
- Condensed matter applications of AdS₃/LCFT₂?

Directions related to topics addressed in this talk:

- ► Numerical relativity (black hole collapse, numerical AdS/CFT)
- Black hole analogs in condensed matter systems
- Applications to astrophysical black holes (near extremal Kerr)

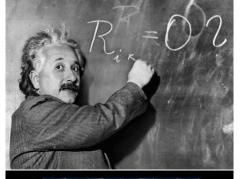
Directions implied by topics addressed in this talk:

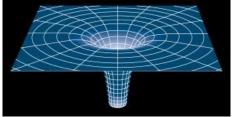
- ► Holography in 2D?
- ightharpoonup AdS₃/(L)CFT₂: better understanding of holography
- 3D quantum gravity?
- Condensed matter applications of AdS₃/LCFT₂?

Directions related to topics addressed in this talk:

- Numerical relativity (black hole collapse, numerical AdS/CFT)
- Black hole analogs in condensed matter systems
- Applications to astrophysical black holes (near extremal Kerr)
- Gravity aspects of the dark side of the Universe

Directions implied by topics addressed in this talk:


- ► Holography in 2D?
- ightharpoonup AdS₃/(L)CFT₂: better understanding of holography
- ► 3D quantum gravity?
- ► Condensed matter applications of AdS₃/LCFT₂?


Directions related to topics addressed in this talk:


- ► Numerical relativity (black hole collapse, numerical AdS/CFT)
- Black hole analogs in condensed matter systems
- ► Applications to astrophysical black holes (near extremal Kerr)
- Gravity aspects of the dark side of the Universe

Many interesting topics for PhDs!

Thank you for your attention! Black hole curves spacetime

