
Gravity, Astrophysics and Cosmology

Daniel Grumiller∗

Institute for Theoretical Physics
Vienna University of Technology

Seminar Doktorandenkolleg Fundamental Interactions, May 2010

∗supported by START prize



Outline

Introduction
Cosmology
Astrophysics
Gravity

Black holes
How can we observe black holes?
Why are black holes interesting for quantum gravity?
Holography: An Introduction

3D gravity
Motivation
Topologically massive gravity
Research directions

D. Grumiller — Gravity 2/34



Outline

Introduction
Cosmology
Astrophysics
Gravity

Black holes
How can we observe black holes?
Why are black holes interesting for quantum gravity?
Holography: An Introduction

3D gravity
Motivation
Topologically massive gravity
Research directions

D. Grumiller — Gravity Introduction 3/34



The Standard Models
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Brief history of the Universe
CMB:
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Brief history of the Universe
CMB:

I 370000 years: 3000K ≈ 0.3eV

I ...that means no ions any more!

I Universe became transparent

I Fluctuations: “echo” of Big Bang

I COBE (1989-1993), WMAP
(since 2001), Planck (since 2009)
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Brief history of the Universe
CMB:

Above: COBE satellite (900km)
Below: WMAP satellite at Lagrange
point L2 (1.5 ∗ 106km)

D. Grumiller — Gravity Introduction 5/34



What is the Universe made of?

Building blocks of our Universe:
I Progress: we understand less

than 5% of the Universe!
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talks by Claudia Wulz, Helmut
Neufeld, Walter Grimus, Eberhard
Widmann, Manfried Faber, Anton
Rebhan, Helmut Leeb, Johann
Marton, Johann Zmeskal) less
than 5% of the Universe!

I Dark Matter: many indications,
many candidates

I Plausible candidate: LSP (see
talk by Helmut Eberl)

I Might be discovered at LHC

I Less plausible, but logically
possible: dark matter is
gravitational effect
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What is the Universe made of?

Building blocks of our Universe:
I Progress: we understand less

than 5% of the Universe!

I More than 70% “Dark Energy”

I Simplest correct explanation:
cosmological constant

I BUT: why so small??? 10−123

I Logical possibility: acceleration is
gravitational effect
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What is the Universe made of?

Building blocks of our Universe:
I Progress: we understand less

than 5% of the Universe!

I More than 70% “Dark Energy”

I Simplest correct explanation:
cosmological constant

I BUT: why so small??? 10−123

I Logical possibility: acceleration is
gravitational effect

To address these issues we need to
understand GRAVITY!
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Astrophysics
Dark Matter hypothesis: Early success...

Neptune:
I 1821: Alexis Bouvard published tables of orbit of

Uranus

I Observations deviate from tables: gravitational
anomalies!

I Different explanations: change law of gravitation or
predict Dark Matter to account for anomalies

I 1845: John Couch Adams and especially Urbain Le
Verrier predict new planet and calculate its position

I 1846: Observational confirmation by Johann Gottfried
Galle and Heinrich Louis d’Arrest

Discovery of Neptune was first success of the
Dark Matter concept!
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Astrophysics
Dark Matter hypothesis: ...and early failure

Vulcan:
I 1840: François Arago suggests problem of Mercury

orbit to Urbain Le Verrier

I Observations deviate from tables: gravitational
anomalies!

I Different explanations: change law of gravitation or
predict Dark Matter to account for anomalies

I 1859: Urbain Le Verrier predicts new planet and
calculates its position

I 1860: Observational ‘confirmation’ by Lescarbault

I 1915: Einstein explains perihelion shift of Mercury
with General Relativity

Non-discovery of Vulcan was first failure of
the Dark Matter concept!
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What is Dark Matter?
Are we in a Neptune or a Vulcan scenario?

Some crucial facts about the Dark Side of life:

I Fact 1: Vulcan scenario is unlikely for Dark Matter

I Reason 1: experimental data!

I Reason 2: modified gravity usually does not work

I Fact 2: Nevertheless crucial to understand gravity well in the deep IR

I Reason 1: important for precision experiments

I Reason 2: relevant to test theories

I Fact 3: Even more challenging is to understand gravity in the deep UV

I Reason 1: experimentally difficult to access

I Reason 2: need quantum gravity theory

I Summary: we understand gravity above micro-meter scale and up to
solar system scale. GR migth be correct at arbitrarily big length scales,
but it is a logical possibility that there are IR modifications of GR.
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I Reason 1: experimental data!
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I Reason 1: experimental data!
I Reason 2: modified gravity usually does not work

Constraints from solar system tests, astrophysical observations,
Cosmology, Earth based precision experiments (see talk by Hartmut
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I Fact 1: Vulcan scenario is unlikely for Dark Matter
I Reason 1: experimental data!
I Reason 2: modified gravity usually does not work
I Fact 2: Nevertheless crucial to understand gravity well in the deep IR
I Reason 1: important for precision experiments

Note: there are couple of tentative experimental anomalies in the
deep IR besides Dark Matter and Dark Energy: Pioneer anomaly,
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I Reason 1: experimental data!
I Reason 2: modified gravity usually does not work
I Fact 2: Nevertheless crucial to understand gravity well in the deep IR
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I Reason 2: relevant to test theories

Some quantum theories of gravity predict modifications of GR in the
deep IR, others do not — deep IR physics might be a useful (and
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Some crucial facts about the Dark Side of life:
I Fact 1: Vulcan scenario is unlikely for Dark Matter
I Reason 1: experimental data!
I Reason 2: modified gravity usually does not work
I Fact 2: Nevertheless crucial to understand gravity well in the deep IR
I Reason 1: important for precision experiments
I Reason 2: relevant to test theories
I Fact 3: Even more challenging is to understand gravity in the deep UV
I Reason 1: experimentally difficult to access

EPlanck ∼ 1019GeV� 10TeV

See Manfred Krammers talk for state of the art of particle detectors
in high energy physics
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I Fact 3: Even more challenging is to understand gravity in the deep UV
I Reason 1: experimentally difficult to access
I Reason 2: need quantum gravity theory
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quantum theory of gravity consistent with all experiments)
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Gravity in the deep UV
aka quantum gravity

I We saw that the deep IR might contain new physics

I We know that the deep UV must contain new physics!
I Therefore, we need a UV completion of gravity (General Relativity)!
I Energy scale EQG where quantum gravity effects kick in:

1 TeV < EQG < a few 1019 GeV

The Holy Grail of Theoretical Physics

Construct UV completion of gravity
aka Quantum Gravity

.
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Gravity in the deep UV
aka quantum gravity

I We saw that the deep IR might contain new physics
I We know that the deep UV must contain new physics!

I Fact 1: QED has Landau pole
I Fact 2: Standard Model cannot be valid at arbitrary high energies
I Indication 1: Singularities in GR are signal of new physics
I Indication 2: Dimensional analysis: expect new physics at Planck

energy 1019 GeV (or below)
I Indication 3: General Relativity unlikely correct at Planck scale —

non-renormalizable = typical sign of low-energy effective theories
I Indication 4: Unification of forces below Planck scale (around

1016 GeV) likely from experimental data
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Gravity

Within the landscape of Physics:

Theoretical Physics

Fundamental interactions

Gravitational interactions

BLACK HOLES

I Primordial BHs

I Stellar&supermassive BHs

I Dual BHs

I BHs as “hydrogen atom”

I BHs as litmus test

I Condensed matter physics

I Fundamental interactions
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What is a black hole?

Fishy analogy (Bill Unruh ’81): The real stuff:

Above: black hole
(NASA picture)
Left: Waterfall

Analogy:
Infinity↔ Lake

Horizon↔ Point of no return

Singularity↔ Waterfall
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What is a black hole?
Example: causal structure of Schwarzschild black hole

Schwarzschild line-element:

ds2 = −
(

1− 2M
r

)
dt2 +

dr2

1− 2M
r

+ r2 dθ2 + r2 sin2θ dφ2
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Why Study Black Holes?

Depending whom you ask you’ll hear:
I General Relativist: because they are unavoidable
I Mathematician: because they are interesting
I Science Fiction Writer: because they are cool
I Astrophysicist: because they explain the data
I String Theoretician: because they hold the key to quantum gravity
I Particle Physicist: because they might be produced at LHC
I Cosmologist: because they exist
I Numerical Relativist: because they present challenge for coding skills
I Nuclear Physicist: because they are dual to a strongly coupled plasma
I Condensed Matter Physicist: because we can produce them in the lab
I Gravitational Wave Experimentalist: because we need to understand

black holes to provide templates for gravitational wave detection

Many reasons to study black holes in physics!
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Have to understand the physics of this...
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Black hole observations
Confirmed stellar black holes in X-ray binaries

Objects whose mass is clearly beyond TOV limit M > 3M�:

System Porb f(M) Donor Classification Mx
†

[days] [M�] Spect. Type [M�]
GRS 1915+105a 33.5 9.5 ± 3.0 K/M III LMXB/Transient 14 ± 4
V404 Cyg 6.471 6.09 ± 0.04 K0 IV ,, 12 ± 2
Cyg X-1 5.600 0.244 ± 0.005 09.7 Iab HMXB/Persistent 10 ± 3
LMC X-1 4.229 0.14 ± 0.05 07 III ,, > 4
XTE J1819-254 2.816 3.13 ± 0.13 B9 III IMXB/Transient 7.1 ± 0.3
GRO J1655-40 2.620 2.73 ± 0.09 F3/5 IV ,, 6.3 ± 0.3

BW Cirb 2.545 5.74 ± 0.29 G5 IV LMXB/Transient > 7.8
GX 339-4 1.754 5.8 ± 0.5 – ,,
LMC X-3 1.704 2.3 ± 0.3 B3 V HMXB/Persistent 7.6 ± 1.3
XTE J1550-564 1.542 6.86 ± 0.71 G8/K8 IV LMXB/Transient 9.6 ± 1.2
4U 1543-475 1.125 0.25 ± 0.01 A2 V IMXB/Transient 9.4 ± 1.0
H1705-250 0.520 4.86 ± 0.13 K3/7 V LMXB/Transient 6 ± 2
GS 1124-684 0.433 3.01 ± 0.15 K3/5 V ,, 7.0 ± 0.6
XTE J1859+226c 0.382 7.4 ± 1.1 – ,,
GS2000+250 0.345 5.01 ± 0.12 K3/7 V ,, 7.5 ± 0.3
A0620-003 0.325 2.72 ± 0.06 K4 V ,, 11 ± 2
XTE J1650-500 0.321 2.73 ± 0.56 K4 V ,,
GRS 1009-45 0.283 3.17 ± 0.12 K7/M0 V ,, 5.2 ± 0.6
GRO J0422+32 0.212 1.19 ± 0.02 M2 V ,, 4 ± 1
XTE J1118+480 0.171 6.3 ± 0.2 K5/M0 V ,, 6.8 ± 0.4

Source: J. Casares, astro-ph/0612312

Black holes in X-ray binaries particularly “simple” to detect
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Recent milestones

I S. Dimopoulos and G.L. Landsberg; S.B. Giddings and S. Thomas (2001): Black
holes at the LHC?

I Saggitarius A∗ (2002): Supermassive black hole in center of Milky Way
I R. Emparan and H. Reall (2002): Black rings in five dimensions
I S. Hawking (2004): concedes bet on information paradox — end of “black hole

wars”
I P. Kovtun, D. Son and A. Starinets (2004): Viscosity in strongly interacting

Quantum Field Theories from black hole physics
I F. Pretorius (2005): Breakthrough in numerical treatment of binary problem
I C. Barcelo, S. Liberati, and M. Visser (2005): “Analogue gravity”
I J.E. McClintock et al. (2006): Measuring of spin of GRS1915+105 — nearly

extremal Kerr black hole!
I E. Witten (2007), W. Li, W. Song and A. Strominger (2008) and D. Grumiller,

N. Johansson (2008): Quantum gravity in three dimensions?
I S. Gubser; S. Hartnoll, C. Herzog and G. Horowitz (2008): “Holographic

superconductors”
I D. Son; K. Balasubramanian and J. McGreevy (2008): Black hole duals for cold

atoms proposed
I O. Lahav, A. Itah, A. Blumkin, C. Gordon, and J. Steinhauer (2009): Sonic black

hole in Bose-Einstein condensate
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Why are black holes interesting for quantum gravity?
Black holes as the hydrogen atom of quantum gravity

Some properties of black holes (BHs):
I BHs are simple, much like elementary particles
I BHs are characterized by mass, spin and charges

I Classically BHs do not radiate
I Semi-classically BHs emit Hawking radiation
I Thermodynamically BHs have entropy proportional to horizon area:

SBH =
1
4
Ah

I Quantum-mechanically BH evaporation entails “information paradox”
I BHs are the simplest systems that allow to address conceptual

problems of quantum gravity, for instance:
unitarity of quantum gravity, microscopic understanding of BH
entropy, holographic principle, modelling of BH evaporation, ...

Understanding quantum black holes and holography
is milestone on road to quantum gravity!
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Holography — Main idea
aka gauge/gravity duality, aka AdS/CFT correspondence

One of the most fruitful ideas in contemporary theoretical physics:
I The number of dimensions is a matter of perspective

I We can choose to describe the same physical situation using two
different formulations in two different dimensions

I The formulation in higher dimensions is a theory with gravity
I The formulation in lower dimensions is a theory without gravity
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Why gravity?
The holographic principle in black hole physics

Boltzmann/Planck: entropy of photon gas in d spatial dimensions

Sgauge ∝ volume ∝ Ld

Bekenstein/Hawking: entropy of black hole in d spatial dimensions

Sgravity ∝ area ∝ Ld−1

Daring idea by ’t Hooft/Susskind (1990ies):

Any consistent quantum theory of gravity could/should have a holo-
graphic formulation in terms of a field theory in one dimension lower

Ground-breaking discovery by Maldacena (1997):

Holographic principle is realized in string theory in specific way

e.g. 〈Tµν〉gauge = TBYµν δ(gravity action) =
∫

ddx
√
|h|TBYµν δhµν

D. Grumiller — Gravity Black holes 21/34



Why gravity?
The holographic principle in black hole physics

Boltzmann/Planck: entropy of photon gas in d spatial dimensions

Sgauge ∝ volume ∝ Ld

Bekenstein/Hawking: entropy of black hole in d spatial dimensions

Sgravity ∝ area ∝ Ld−1

Daring idea by ’t Hooft/Susskind (1990ies):

Any consistent quantum theory of gravity could/should have a holo-
graphic formulation in terms of a field theory in one dimension lower

Ground-breaking discovery by Maldacena (1997):

Holographic principle is realized in string theory in specific way

e.g. 〈Tµν〉gauge = TBYµν δ(gravity action) =
∫

ddx
√
|h|TBYµν δhµν

D. Grumiller — Gravity Black holes 21/34



Why gravity?
The holographic principle in black hole physics

Boltzmann/Planck: entropy of photon gas in d spatial dimensions

Sgauge ∝ volume ∝ Ld

Bekenstein/Hawking: entropy of black hole in d spatial dimensions

Sgravity ∝ area ∝ Ld−1

Daring idea by ’t Hooft/Susskind (1990ies):

Any consistent quantum theory of gravity could/should have a holo-
graphic formulation in terms of a field theory in one dimension lower

Ground-breaking discovery by Maldacena (1997):

Holographic principle is realized in string theory in specific way

e.g. 〈Tµν〉gauge = TBYµν δ(gravity action) =
∫

ddx
√
|h|TBYµν δhµν

D. Grumiller — Gravity Black holes 21/34



Why gravity?
The holographic principle in black hole physics

Boltzmann/Planck: entropy of photon gas in d spatial dimensions

Sgauge ∝ volume ∝ Ld

Bekenstein/Hawking: entropy of black hole in d spatial dimensions

Sgravity ∝ area ∝ Ld−1

Daring idea by ’t Hooft/Susskind (1990ies):

Any consistent quantum theory of gravity could/should have a holo-
graphic formulation in terms of a field theory in one dimension lower

Ground-breaking discovery by Maldacena (1997):

Holographic principle is realized in string theory in specific way

e.g. 〈Tµν〉gauge = TBYµν δ(gravity action) =
∫

ddx
√
|h|TBYµν δhµν

D. Grumiller — Gravity Black holes 21/34



Why should I care?
...and why were there > 6700 papers on holography in the past 12 years?

I Many applications!

I Tool for calculations

I Strongly coupled gauge theories (difficult) mapped to semi-cassical
gravity (simple)

I Quantum gravity (difficult) mapped to weakly coupled gauge theories
(simple)

I Examples of first type: heavy ion collisions at RHIC and LHC (see
talk by Toni Rebhan), superfluidity, type II superconductors (?), cold
atoms (?), ...

I Examples of the second type: microscopic understanding of black
holes, information paradox, Kerr/CFT (?), 3D quantum gravity (?), ...

We can expect many new applications in the next decade!
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Why gravity in three dimensions?
“As simple as possible, but not simpler”

Gravity simpler in lower dimensions

11D: 1144 Weyl, 66 Ricci, 5D: 35 Weyl, 15 Ricci, 4D: 10 Weyl, 10 Ricci
3D: no Weyl, 6 Ricci, 2D: no Weyl, 1 Ricci

2D gravity: black holes!

Applications:
I Solve conceptual problems of (quantum) gravity

I Approximate geometry of cosmic strings/particles confined in plane

I Holographic tool for 2D condensed matter systems

pioneering work by Deser, Jackiw and Templeton in 1980ies
2007 Witten rekindled interest in 3D gravity
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Cosmological topologically massive gravity (CTMG)

Action!

ICTMG =
1

16πG

∫
d3x
√
−g
[
R+

2
`2

+
1

2µ
ελµν Γρλσ

(
∂µΓσνρ +

2
3

ΓσµτΓτ νρ
)]

Equations of motion:

Gµν +
1
µ
Cµν = 0

I Gravitons (topologically massive spin 2 excitations)

I Black holes (BTZ)

I Asymptotically anti-deSitter solutions (AdS/CFT!?)

I Higher derivative terms (third derivatives in EOM)

I Parity violating Chern–Simons term

I Related: new massive gravity (Bergshoeff, Hohm, Townsend 2009)

Properties of CTMG
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Linearized equations of motion

Linearization around AdS background

gµν = ḡµν + hµν

leads to linearized EOM that are third order PDE

G(1)
µν +

1
µ
C(1)
µν = (DRDLDMh)µν = 0 (1)

with three mutually commuting first order operators

(DL/R)µν = δνµ ± ` εµαν∇̄α , (DM )µν = δνµ +
1
µ
εµ
αν∇̄α

Three linearly independent solutions to (1):(
DLhL

)
µν

= 0 ,
(
DRhR

)
µν

= 0 ,
(
DMhM

)
µν

= 0

Li, Song and Strominger (2008):

At chiral point left (L) and massive (M) branches coincide!

With Sachs: recently found and classified all soutions to linearized EOM
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AdS/CFT – but which CFT?
Chiral versus logarithmic

Pre-cursor of AdS/CFT: Brown–Henneaux 1986

3D quantum gravity on AdS dual to 2D CFT with cL = cR = 3`/2GN

Constant time slice of EAdS3

I Boundary of AdS3: cylinder

I Dual CFT on cylinder

I Characterized by central charges

I cL = cR in Einstein gravity

I cL 6= cR in CTMG

I cL = (1− 1/µ`) 3`/2GN
I Chiral point: µ` = 1
I At chiral point cL = 0
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I cL = (1− 1/µ`) 3`/2GN
I Chiral point: µ` = 1
I At chiral point cL = 0

D. Grumiller — Gravity 3D gravity 27/34



A tempting conjecture

Observation:

At chiral point cL = 0

Chiral gravity conjecture (Li, Song, Strominger 2008):

CFT dual to CTMG exists and is chiral

Why would that be useful?

I Nice toy model for quantum gravity without strings

I Entropy of BTZ black hole: microstate counting

I Partition function factorizes holomorphically: Z = ZRZL = ZR
I Partition function calculated already!

However...
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Another tempting conjecture

Observation (E: energy, J : angular momentum):

(E + J)
(

log
left

)
=
(

2 1
2

0 2

)(
log
left

)
,

(E − J)
(

log
left

)
=
(

0 1
2

0 0

)(
log
left

)
.

Such a Jordan form of E ± J is defining property of a logarithmic CFT!
Logarithmic gravity conjecture (Grumiller, Johansson 2008):

CFT dual to CTMG exists and is logarithmic

I Logarithmic CFT: not unitary and not chiral!

I Either logarithmic or chiral CFT dual (or none)

I Until recently unknown which of these alternatives is realized!
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Consistency checks

I Performed various consistency checks with Niklas Johansson

I All of them pointed towards validity of logarithmic conjecture

I Recently: Skenderis, Taylor, van Rees calculated 2-point correlators

I Calculation of 2- and 3-point correlators with Ivo Sachs

Results:

〈right(z, z̄) right(0)〉 =
cR
2z̄4

(2)

〈left(z, z̄) log(0)〉 = − b

2z4
(3)

〈log(z, z̄) log(0)〉 =
2b ln (m2|z|2)

z4
(4)

These are precisely the 2-point correlators of a logarithmic CFT!

3-point correlators also consistent with logarithmic CFT conjecture
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3D gravity summary

I Cosmological topologically massive gravity at the chiral point is an
intersting gravitational theory in three dimensions

I Its dual CFT was conjectured to be logarithmic in work with Niklas
Johansson 2008

I Conjecture confirmed by calculations of correlators (Skenderis, Taylor
and van Rees 2009, and Grumiller and Sachs 2009)

I CTMG probably not good toy model for quantum gravity
Needs unitary completion or truncation
Exciting possibility: gravity duals to strongly coupled
logarithmic CFTs in condensed matter physics
Examples: turbulence, critical polymers, percolation, disordered
systems, sandpile model, quantum Hall effect, ...

It seems we have uncovered yet-another interesting chapter in the epic
AdS/CFT saga...
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Current projects

Collaborations with local postdocs, PhD students and undergraduates:

I I II Warped AdS holography: with Niklas Johansson, Sabine Ertl and
Frederic Brünner

I New anomalies in logarithmic CFT dual to generalized massive
gravity: with Niklas Johansson and Thomas Zojer

I Exact solutions in 3D gravity: with Niklas Johansson and Sabine Ertl

Supplemented by collaborations with
MIT (Olaf Hohm, Roman Jackiw),
LMU Munich/AEI (Ivo Sachs),
Chicago U. (Robert McNees),
Perimeter Institute (Robert Mann),
McGill U. (Alejandra Castro),
Princeton U. (Nicolas Yunes),
Michigan U. (Finn Larsen),
YITP Stony Brook (Peter van Nieuwenhuizen),
etc.
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Future directions

Directions implied by topics addressed in this talk:

I Holography in 2D?

I AdS3/(L)CFT2: better understanding of holography

I 3D quantum gravity?

I Condensed matter applications of AdS3/LCFT2?

Directions related to topics addressed in this talk:

I Numerical relativity (black hole collapse, numerical AdS/CFT)

I Black hole analogs in condensed matter systems

I Applications to astrophysical black holes (near extremal Kerr)

I Gravity aspects of the dark side of the Universe

Many interesting topics for PhDs!
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Thank you for your attention!
Black hole curves spacetime Simple black hole analog

Thank you for your attention!

Thanks to Bob McNees for providing the LATEX beamerclass!
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