Killing horizons kill horizon degrees

hep-th/0512230

Phase space reduction through horizon constraints

Daniel Grumiller

Institute for Theoretical Physics, University of Leipzig
and
Center for Theoretical Physics, MIT

DFG project GR-3157-1/1
Marie-Curie OIF FP6-2004-Mobility-6 Nr. 021421

11th Marcel Grossmann meeting, Berlin 2006
Outline

1. Motivation
 - Universality of black hole entropy
 - Carlip’s approach

2. Horizons and generic boundaries
 - First order action
 - Constraints, symmetries and classical phase space
 - Killing horizons kill horizon degrees
Outline

1 Motivation
 - Universality of black hole entropy
 - Carlip’s approach

2 Horizons and generic boundaries
 - First order action
 - Constraints, symmetries and classical phase space
 - Killing horizons kill horizon degrees
Bekenstein-Hawking entropy
The closest thing to “Experimental Data” in Quantum Gravity...

Many independent derivations of

\[S_{BH} = \frac{1}{4} A \]

Microstates from

- D-branes
- spin network states
- ...

Daniel Grumiller
Killing horizons kill horizon degrees hep-th/0512230
Many competing “quantum gravity” models
Why do they all agree?

- possible explanation: symmetry!
- near horizon dynamics: effectively 2D
- stationary black hole: conformal Killing vector
- Cardy formula: entropy from central charge

Entropy from “Goldstone degrees of freedom”

Gauge-to-physics conversion
Many competing “quantum gravity” models
Why do they all agree?

- possible explanation: symmetry!
- near horizon dynamics: effectively 2D
- stationary black hole: conformal Killing vector
- Cardy formula: entropy from central charge

Entropy from “Goldstone degrees of freedom”
Gauge-to-physics conversion
Many competing “quantum gravity” models
Why do they all agree?

- possible explanation: symmetry!
- near horizon dynamics: effectively 2D
- stationary black hole: conformal Killing vector
- Cardy formula: entropy from central charge

Entropy from “Goldstone degrees of freedom”

Gauge-to-physics conversion
Many competing “quantum gravity” models
Why do they all agree?

- possible explanation: symmetry!
- near horizon dynamics: effectively 2D
- stationary black hole: conformal Killing vector
- Cardy formula: entropy from central charge

Entropy from “Goldstone degrees of freedom”

Gauge-to-physics conversion
Outline

1 Motivation
 - Universality of black hole entropy
 - Carlip’s approach

2 Horizons and generic boundaries
 - First order action
 - Constraints, symmetries and classical phase space
 - Killing horizons kill horizon degrees
2D dilaton gravity
Universality: Black Holes “essentially” 2D...

Second order action:

\[S_{2DG} = \int d^2 x \sqrt{-g} \left[XR + U(X)(\nabla X)^2 - 2V(X) \right] \] (2)

- 2D scalar-tensor theory (dilaton X, metric g)
- Spherical reduction: Schwarzschild BH
- Strings in 2D: Witten BH
- Many intrinsically 2D toy models
2D dilaton gravity

Universality: Black Holes “essentially” 2D...

Second order action:

\[S_{2DG} = \int d^2x \sqrt{-g} \left[XR + U(X)(\nabla X)^2 - 2V(X) \right] \] \hspace{1cm} (2)

- 2D scalar-tensor theory (dilaton \(X \), metric \(g \))
- Spherical reduction: Schwarzschild BH
- Strings in 2D: Witten BH
- Many intrinsically 2D toy models
Near horizon constraints

S. Carlip, gr-qc/0601041

- Structure of phase space changed due to constraints
 - Carlip: “stretched horizon”
 - Virasoro algebra with (classical) central charge
 - recovers Bekenstein-Hawking

Problems:
- result valid for generic boundary, not just black holes
- technically challenging to impose sharp horizon constraints
Near horizon constraints
S. Carlip, gr-qc/0601041

- Structure of phase space changed due to constraints
- Carlip: “stretched horizon”
- Virasoro algebra with (classical) central charge
- recovers Bekenstein-Hawking

Problems:
- result valid for generic boundary, not just black holes
- technically challenging to impose sharp horizon constraints
Near horizon constraints
S. Carlip, gr-qc/0601041

- Structure of phase space changed due to constraints
- Carlip: “stretched horizon”
- Virasoro algebra with (classical) central charge
- recovers Bekenstein-Hawking

Problems:
- result valid for generic boundary, not just black holes
- technically challenging to impose sharp horizon constraints
Outline

1 Motivation
 - Universality of black hole entropy
 - Carlip’s approach

2 Horizons and generic boundaries
 - First order action
 - Constraints, symmetries and classical phase space
 - Killing horizons kill horizon degrees
Vienna School Approach
Gravity as non-linear gauge theory

Classically equivalent reformulation:

\[S_1 = - \int \left[X_a T^a + XR + \epsilon \left(X^+ X^- U(X) + V(X) \right) \right] + S_B \] (3)

- Classically integrable
- Semi-classical analysis + Thermodynamics: OK
- Path integral quantization with matter: possible

Talk by R. Meyer, session QG2 (Tuesday)
Horizons and generic boundaries

First order action
Constraints, symmetries and classical phase space
Killing horizons kill horizon degrees

Vienna School Approach
Gravity as non-linear gauge theory

Classically equivalent reformulation:

\[S_1 = -\int \left[X_a T^a + X R + \epsilon \left(X^+ X^- U(X) + V(X) \right) \right] + S_B \tag{3} \]

\[T^\pm = (De)^\pm = (d \pm \omega) \wedge e^\pm, \quad R = d\omega, \quad \epsilon = e^+ \wedge e^- \]

- Classically integrable
- Semi-classical analysis + Thermodynamics: OK
- Path integral quantization with matter: possible

Talk by R. Meyer, session QG2 (Tuesday)
Boundary action
York-Gibbons-Hawking term in first order formulation

\[S_B = \int_{\partial M} [X \omega + X d\gamma] \]

Variational principle:
- Dilaton \(X = \text{const.} \) at boundary
- \(X^\pm \delta e^\mp = 0 \)

<table>
<thead>
<tr>
<th>generic boundary</th>
<th>horizon</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\delta e^\mp = 0)</td>
<td>(X^- = \delta e_-^\mp = 0)</td>
</tr>
</tbody>
</table>

Note: for SUGRA and matter \(S_B = 0 \) perhaps preferable
Boundary action
York-Gibbons-Hawking term in first order formulation

\[S_B = \int_{\partial M} \left[X\omega + Xd\gamma \right] \]

Variational principle:
- Dilaton \(X = \text{const. at boundary} \)
- \(X^{\pm} \delta e^{\mp} = 0 \)

generic boundary

\[\delta e^{\mp} = 0 \]

horizon

\(X^{-} = \delta e^{-} = 0 \)

Note: for SUGRA and matter \(S_B = 0 \) perhaps preferable
Boundary action
York-Gibbons-Hawking term in first order formulation

\[S_B = \int_{\partial M} [X\omega + Xd\gamma] \]

Variational principle:
- Dilaton \(X = \text{const. at boundary} \)
- \(X^\pm \delta e^\mp = 0 \)

generic boundary
\(\delta e^\mp = 0 \)

horizon
\(X^- = \delta e^- = 0 \)

Note: for SUGRA and matter \(S_B = 0 \) perhaps preferable
Outline

1 Motivation
 - Universality of black hole entropy
 - Carlip’s approach

2 Horizons and generic boundaries
 - First order action
 - Constraints, symmetries and classical phase space
 - Killing horizons kill horizon degrees

Daniel Grumiller
Killing horizons kill horizon degrees
hep-th/0512230
Constraint analysis
Bulk and boundary constraints

- Hamiltonian: sum over (bulk) constraints
- Impose additionally boundary constraints

generic boundary
- $B_1 = X - X_b$
- $B_2 = e^- - E^-$
- $B_3 = e^+ - E^+$
- All boundary constraints second class
- (Almost) all bulk constraints second class at boundary

horizon
- $B_1 = X - X_h$
- $B_2 = e^-$
- $B_3 = X^-$
- Two boundary constraints remain first class
- Most of the bulk constraints first class at boundary
Constraint analysis

Bulk and boundary constraints

- Hamiltonian: sum over (bulk) constraints
- Impose additionally boundary constraints

generic boundary

- $B_1 = X - X_b,$
- $B_2 = e^- - E^-,$
- $B_3 = e^+ - E^+$

- **All** boundary constraints second class
- (Almost) all bulk constraints second class at boundary

horizon

- $B_1 = X - X_h,$
- $B_2 = e^-,$
- $B_3 = X^-$

- Two boundary constraints remain first class
- Most of the bulk constraints first class at boundary
Constraint analysis

Bulk and boundary constraints

- Hamiltonian: sum over (bulk) constraints
- Impose additionally boundary constraints

Generic boundary

\[
B_1 = X - X_b, \\
B_2 = e^- - E^-, \\
B_3 = e^+ - E^+
\]

- All boundary constraints second class
- (Almost) all bulk constraints second class at boundary

Horizon

\[
B_1 = X - X_h, \\
B_2 = e^- , \\
B_3 = X^-
\]

- Two boundary constraints remain first class
- Most of the bulk constraints first class at boundary

Daniel Grumiller
Boundary conditions on Symmetry Parameters

generic boundary
- All symmetry parameters must obey Dirichlet boundary conditions
- Half of the symmetry content is broken by the boundary

horizon
- Horizons are surfaces of enhanced symmetry
- Local Lorentz and diffeomorphisms along the boundary unconstrained
Boundary conditions on Symmetry Parameters

- **generic boundary**
 - All symmetry parameters must obey Dirichlet boundary conditions.
 - Half of the symmetry content is broken by the boundary.

- **horizon**
 - Horizons are surfaces of enhanced symmetry.
 - Local Lorentz and diffeomorphisms along the boundary unconstrained.
Classical phase space
Solve all classical equations of motion globally

generic boundary
- One constant of motion remains (ADM mass)

horizon
- No free constant remains
Classical phase space
Solve all classical equations of motion globally

- **generic boundary**
 - One constant of motion remains (ADM mass)

- **horizon**
 - No free constant remains
1 Motivation
- Universality of black hole entropy
- Carlip’s approach

2 Horizons and generic boundaries
- First order action
- Constraints, symmetries and classical phase space
- Killing horizons kill horizon degrees
Collecting evidence...

generic boundary
- One constant of motion
- All symmetry parameters Dirichlet
- Almost all constraints second class at boundary

horizon
- No constant of motion
- Not all symmetry parameters Dirichlet
- Few constraints second class at boundary

Symmetry enhancement at horizon:
Construct reduced phase space!
Motivation
Horizons and generic boundaries
Summary

Collecting evidence...

generic boundary

- One constant of motion
- All symmetry parameters Dirichlet
- Almost all constraints second class at boundary

horizon

- No constant of motion
- Not all symmetry parameters Dirichlet
- Few constraints second class at boundary

Symmetry enhancement at horizon:

Construct reduced phase space!

Daniel Grumiller
hep-th/0512230
Collecting evidence...

generic boundary
- One constant of motion
- All symmetry parameters Dirichlet
- Almost all constraints second class at boundary

horizon
- No constant of motion
- Not all symmetry parameters Dirichlet
- Few constraints second class at boundary

Symmetry enhancement at horizon:
Construct reduced phase space!
Collecting evidence...

generic boundary
- One constant of motion
- All symmetry parameters Dirichlet
- Almost all constraints second class at boundary

horizon
- No constant of motion
- Not all symmetry parameters Dirichlet
- Few constraints second class at boundary

Symmetry enhancement at horizon: Construct reduced phase space!
Motivation

Horizons and generic boundaries

Summary

First order action

Constraints, symmetries and classical phase space

Killing horizons kill horizon degrees

Collecting evidence...

<table>
<thead>
<tr>
<th>generic boundary</th>
<th>horizon</th>
</tr>
</thead>
<tbody>
<tr>
<td>One constant of motion</td>
<td>No constant of motion</td>
</tr>
<tr>
<td>All symmetry parameters Dirichlet</td>
<td>Not all symmetry parameters Dirichlet</td>
</tr>
<tr>
<td>Almost all constraints second class at boundary</td>
<td>Few constraints second class at boundary</td>
</tr>
</tbody>
</table>

Symmetry enhancement at horizon:

Construct reduced phase space!

Daniel Grumiller

daniel.grumiller@univie.ac.at

hep-th/0512230
Collecting evidence...

generic boundary
- One constant of motion
- All symmetry parameters Dirichlet
- Almost all constraints second class at boundary

horizon
- No constant of motion
- Not all symmetry parameters Dirichlet
- Few constraints second class at boundary

Symmetry enhancement at horizon:
- Construct reduced phase space!

Daniel Grumiller
hep-th/0512230
Reduced phase space constructed by solving all constraints

generic boundary
- Zero bulk degrees
- One boundary degree (consistent with K. Kuchar gr-qc/9403003)

horizon
- Zero bulk degrees
- Zero boundary degrees

Killing horizons kill horizon degrees

Physics-to-gauge conversion through horizon constraints!
...establishes the main result

Reduced phase space constructed by solving all constraints

generic boundary
- Zero bulk degrees
- One boundary degree (consistent with K. Kuchar, gr-qc/9403003)

horizon
- Zero bulk degrees
- Zero boundary degrees

Killing horizons kill horizon degrees

Physics-to-gauge conversion through horizon constraints!
...establishes the main result

Reduced phase space constructed by solving all constraints

generic boundary
- Zero bulk degrees
- One boundary degree (consistent with K. Kuchar gr-qc/9403003)

horizon
- Zero bulk degrees
- Zero boundary degrees

Killing horizons kill horizon degrees

Physics-to-gauge conversion through horizon constraints!
Motivation
Horizons and generic boundaries
Summary

First order action
Constraints, symmetries and classical phase space
Killing horizons kill horizon degrees

...estimates the main result

Reduced phase space constructed by solving all constraints

generic boundary
- Zero bulk degrees
- One boundary degree (consistent with *K. Kuchar* gr-qc/9403003)

horizon
- Zero bulk degrees
- Zero boundary degrees

Killing horizons kill horizon degrees

Physics-to-gauge conversion through horizon constraints!
Existence of a horizon imposes constraints on phase space

Physical degrees at generic boundary converted into gauge degrees at horizon

Outlook:

- Include matter (in collaboration with R. Meyer)
- Extend to SUGRA (L. Bergamin)
- Entropy?

Talk by L. Bergamin, session BHT4 (Friday)!
Summary

- Existence of a horizon imposes constraints on phase space
- Physical degrees at generic boundary converted into gauge degrees at horizon

Outlook:
- Include matter (in collaboration with R. Meyer)
- Extend to SUGRA (L. Bergamin)
- Entropy?
- Talk by L. Bergamin, session BHT4 (Friday)!
Summary

- Existence of a horizon imposes constraints on phase space
- Physical degrees at generic boundary converted into gauge degrees at horizon

Outlook:
- Include matter (in collaboration with R. Meyer)
- Extend to SUGRA (L. Bergamin)
- Entropy?

- Talk by L. Bergamin, session BHT4 (Friday)!

Results of the present talk have been obtained in: