
5 Gravity in two spacetime dimensions

Two is the lowest dimensions that allows for black hole horizons, since you need
at least one coordinate with positive and one with negative signature. This pro-
vides the main motivation to consider two-dimensional toy-models of classical and
quantum gravity.

An additional motivation comes from extremal black holes. Typically, they have
an AdS2 factor, so it seems natural to try to apply holography to this factor, and
for this we need some two-dimensional model of gravity.

Finally, even classically it can be a technical expedient to consider dimensional
reductions of higher-dimensional gravity theories to two dimensions — for instance,
spherical reduction of D-dimensional Einstein gravity allows for a quick derivation
of the Schwarzschild–Tangherlini or Reissner–Nordsström–(A)dS solutions in a few
lines. So let us delve right into two-dimensional gravity.

At a technical level an important property/simplification of two-dimensional
gravity is that any metric is locally conformally flat (this is not true in three or
higher dimensions), so that locally one can employ conformal gauge

ds2 = e2Ω(xµ) ηµν dxµ dxν µ, ν ∈ {0, 1} (1)

where ηµν is the Minkowski metric. It is often convenient to use light-cone coordi-
nates for the Minkowski metric, η±∓ = 1, η±± = 0.

5.1 No Einstein gravity

Einstein gravity is the simplest theory of gravity, but it does not exist in two di-
mensions. There are several ways to see this. The simplest one is to observe that
the Einstein equations Rµν = 1

2 gµν R are purely kinematical in two dimensions and
hold for any metric, regardless of field equations. Equivalently, the Einstein–Hilbert
action (in presence of smooth boundaries)

κ

4π

∫
M

d2x
√
|g|R+

κ

2π

∫
∂M

dx
√
|γ|K = κχ(M) (2)

yields the Euler characteristic χ(M) and varies to zero. Finally, yet-another way
to see that Einstein gravity in two dimensions is not kosher is by extrapolating the
count of gravitational degrees of freedom, D(D − 3)/2, to two dimensions, which
yields −1. This last observation, while meaningless at face value, suggests at least a
possible resolution: if we want to have a theory similar to three dimensions — with
zero local degrees of freedom, but non-trivial equations of motion and potentially
globally non-trivial solutions — then we should add a degree of freedom. The
simplest way to do this is by adding a scalar field.

5.2 Various attempts

Given that Einstein gravity does not exist in two dimensions we have to look for
alternative theories of gravity, deviating as little as possible from Einstein gravity.
We describe now various ways to do this, all leading to the same type of theory.

5.2.1 Gravity as gauge theory

In three dimensions the reformulation of Einstein gravity as non-abelian gauge
theory of Chern–Simons type turned out to be quite useful. The key feature of
Chern–Simons theories is that the equations of motion imply gauge flatness. There
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is a similar theory in two dimensions, namely non-abelian BF-theory, with action

IBF =
k

2π

∫
〈B F 〉 (3)

where B is some coadjoint scalar, F = dA + A ∧ A the non-abelian field strength
associated with some gauge connection A, and 〈, 〉 denotes again the bilinear form.

The action (3) is meaningful since it is given by an integral over a gauge-invariant
2-form. The equations of motion obtained by varying with respect to B establish
gauge flatness, F = 0, as desired. So far so good — but BF-theories are not
generically gravity theories, in the same way that Chern–Simons theories are not
generically gravity theories. We need to choose a special gauge group and identify
the Cartan variables within the connection A.

By analogy to three dimensions we postulate the connection

A = ea Pa + ω J (4)

where we dualized the spin-connection (σ = ±1, depending on signature)

ωab = σεab ω . (5)

The translations Pa and boost J generators obey the commutation relations asso-
ciated with (A)dS2 or flat space, depending on the sign of Λ

[Pa, Pb] = −Λ εab J (6)

[Pa, J ] = εa
b Pb (7)

where the flat indices are raised and lowered with the Minkowski metric ηab. The
B-field expands similarly.

B = Xa Pa +X J (8)

The bilinear form is given by

〈Pa, Pb〉 = ηab 〈J, J〉 = 1 . (9)

Inserting (4)-(9) into the BF-action yields the Jackiw–Teitelboim (JT) model

I
(1)
JT [X, Xa, ω, ea] =

k

2π

∫ (
XaT

a +X (dω − Λ ε)
)

(10)

where T a = dea+σεabω∧eb is the torsion 2-form and ε = 1
2 εabe

a∧eb is the volume
2-form with ∗ε = ∗ ∗ 1 = σ.

Variation of the JT bulk action (10) with respect to the Lagrange multipliers
Xa establishes vanishing torsion on-shell, reminiscent of what happens in Einstein–
Hilbert–Palatini. Variation with respect to the so-called dilaton field X shows
that all solutions are of constant curvature, R = 2σ ∗ dω = 2σΛ ∗ ε = 2Λ.

Eliminating the connection by solving the condition of vanishing torsion (and
defining 1

2 εab e
a ∧ eb =: −σ d2x

√
σg) yields the second order formulation of the JT

model

I
(2)
JT [X, gµν ] = −σ k

4π

∫
d2x
√
σgX

(
R− 2Λ

)
(11)

where R is now the Ricci scalar. The only difference to the Einstein–Hilbert action
is the presence of an additional scalar field, the dilaton X. It can be interpreted as
a spacetime-dependent Newton constant or, alternatively, as a modification of the
volume-form. Such theories are known as scalar-tensor theories or dilaton gravity.
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5.2.2 Higher curvature theory and/or torsion

A few years after the JT model appeared, Katanaev and Volovich considered
gravity as Poincaré-gauge theory. To keep things simpler we study a simplified
version of their model where torsion is zero and use Minkowski signature. The key
idea is to introduce an extra degree of freedom by considering non-linearities in
curvature (and possibly torsion). The simplest such model has an action quadratic
in curvature

IR2 [gµν ] =
k

8π

∫
d2x
√
−g R2 . (12)

It is straightforward to convert this action into one that is more similar to (11):

I
(2)
R2 [X, gµν ] =

k

4π

∫
d2x
√
−g
(
XR− 1

2 X
2
)
. (13)

Again, we ended up with an action that contains a scalar field X in addition to the
metric gµµ.

The corresponding first order action reads

I
(1)
R2 [X, Xa, ω, ea] =

k

2π

∫ (
XaT

a +X dω − 1
4 X

2 ε
)
. (14)

The generalization to the Katanaev–Volovich model allows also for bilinear terms
in the Lagrange-multipliers for torsion and a cosmological constant,

I
(1)
KV [X, Xa, ω, ea] =

k

2π

∫ (
XaT

a +X dω +
(
λ+ αX2 + βXaX

a
)
ε
)
. (15)

5.2.3 Strings in two dimensions

We will be more sketchy in this section — for a slightly longer exposition see section
2.1.2 in the rveiew hep-th/0204253. (Bosonic) closed string theory can be defined
in terms of a non-linear σ-model worldsheet action, involving as background fields
the target-space metric gµν , the dilaton field Φ, and possibly a B-field, which we
set to zero for simplicity. Local scale invariance implies the vanishing of the β-
functions associated with this σ-model, which can be re-interpreted as equations of
motion descending from some target space action. For the special case when the
target space is 2-dimensional (which is an example of non-critical string theory) this
target space action reads

I(2)
target[Φ, gµν ] =

k

4π

∫
d2x
√
−g e−2Φ

(
R+ 4(∇Φ)2 − 4λ2

)
(16)

where λ2 ∝ 1/α′, with α′ being the string tension.
Redefining the dilaton field X = e−2Φ we have again an action similar to the

ones considered before, but now with kinetic term for the dilaton (again σ = ±1,
depending on signature),

I(2)[X, gµν ] = −σ k

4π

∫
d2x
√
σg
(
XR− σU(X)(∇X)2 − 2V (X)

)
(17)

with U(X) = −1/X and V (X) = 2λ2X. The corresponding first order action is
given by

I(1)[X, Xa, ω, ea] =
k

2π

∫ [
XaT

a +X dω −
(
V (X) + σ

2 X
aXaU(X)

)
ε
]
. (18)
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5.2.4 Symmetry reductions of higher-dimensional Einstein gravity

Let us start with the Einstein–Hilbert action in D dimensions and assume spherical
symmetry,

ds2 = g(D)
µν dxµ dxν = gαβ dxα dxβ +

1

λ
X2/(D−2) d2ΩSD−2 (19)

where α, β = 0, 1 while µ, ν range over the whole dimension, d2ΩSD−2 is the line-
element of the round SD−2, and the two-dimensional metric gαβ as well as the
surface radius X depend on xα only.

Inserting the ansatz (19) into the Einstein–Hilbert action and integrating out
the angular part yields a two-dimensional action (17) with the relevant functions
given by

U(X) = −D − 3

D − 2

1

X
V (X) = −λ

2
(D − 2)(D − 3)X

D−4
D−2 . (20)

This means that the s-wave sector of General Relativity in any spacetime dimension
greater than two can be described by a two-dimensional dilaton gravity theory.

There are two interesting special cases. In the limit of infinite dimension, D →
∞, the potentials (20) (upon suitably rescaling λ) tend to the ones of string theory
in two dimensions, see 1303.1995 for a discussion. In Weinberg’s limit of 2 + ε
dimensions after a trick that uses some duality the so-called Liouville action is
obtained, see 0712.3775.

I
(2)
Liouville =

k

4π

∫
d2x
√
−g
(
XR− (∇X)2 − λe−2X

)
(21)

As we shall see in the next section, the action (21) is the closest analogue of Einstein
gravity in two dimensions, as it is one of the few dilaton gravity theories that obeys
Wheeler’s dictum “matter tells geometry how to curve”.

5.3 Dilaton gravity

In the previous section we discussed five different attempts to come up with a gravity
model in two dimensions, and it turned out that all of them led to the same type
of action, namely dilaton gravity. Thus, it makes sense to focus on generic dilaton
gravity and discuss its main properties in a way that is as model-independent as
possible.

The full dilaton gravity action for Minkowski signature (σ = −1) is given by

Γ(2)[X, gµν ] =
k

4π

∫
M

d2x
√
−g
(
XR+ U(X)(∇X)2 − 2V (X)

)
+

k

2π

∫
∂M

dx
√
−γ
(
XK − S(X)

)
(22)

and is characterized by two arbitrary functions U(X) and V (X). The boundary
terms comprise a straightforward generalization of the GHY boundary term and a
holographic counterterm given by the so-called pre-potential

S(X) :=
(
− 2e−

∫X dyU(y)

∫ X

dy V (y) e
∫ y dzU(z)

)1/2

. (23)

Given some “natural” assumptions on the allowed variations of the dilaton field
(in particular 1

X δX = 0) the action (22) with (23) has a well-defined variational
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principle, see hep-th/0703230 for details. A relatively extensive list of models is
contained in table 1 of hep-th/0604049 (beware of conventions!).

Similar to Einstein gravity, the equations of motion are given by second order
partial differential equations:

R− U ′(∂X)2 − 2U�X − 2V ′ =
4π

k
T̂ (24a)

2U(∂µX)(∂νX)− gµνU(∂X)2 + 2gµνV − 2∇µ∂νX + 2gµν�X =
4π

k
Tµν (24b)

The right hand sides are non-zero in the presence of additional matter degrees of
freedom given by some matter action Imat.

Tµν :=
2√
−g

δImat

δgµν
T̂ :=

1√
−g

δImat

δX
(25)

Taking the trace of the second equation of motion yields 4V + 2�X = 4π
k T ,

which allows to express the first equation of motion as

R = U ′(∂X)2 − 4UV + 2V ′ +
4π

k

(
T̂ + UT

)
. (26)

Thus, for general dilaton gravity models spacetime can have curvature even in the
absence of matter, T = T̂ = 0. The only exceptions are dilaton gravity models
whose potentials obey the differential equation

U ′(∂X)2 − 4UV + 2V ′ = 0 (27)

and hence have the “Wheeler property” that “matter tells spacetime how to curve”.
Since X is in general spacetime-dependent, (27) yields two conditions, U ′ = 0 and
V ′ = 2UV . They are solved either by U = 0 and V = const. (known as CGHS
model, see hep-th/9111056) or by U = −α = const. and V ∝ e−2αX (Liouville
gravity, see end of section 5.2.4).

There is a lot more that we can and will say about the classical theory and its
solution space, but before doing so we introduce the gauge theoretic formulation of
two-dimensional dilaton gravity, in terms of which many of these statements are far
easier to obtain than in the metric formulation.

5.4 Poisson-σ model formulation

Like in three dimensions let us now switch gears for a while and consider a specific
topological gauge theory, namely a generalization of non-abelian BF-theory known
as Poisson-σ model (PSM), see hep-th/9312059 and hep-th/9405110. Its bulk
action is given by

IPSM[XI , AI ] =
k

2π

∫ (
XI dAI + 1

2 P
IJ(XK)AI ∧AJ

)
(28)

where XI are some co-adjoint scalars, AI is a connection 1-form and P IJ = −P JI
an anti-symmetric tensor called “Poisson tensor”, subject to the non-linear Jacobi
identity

P IL∂LP
JK + P JL∂LP

KI + PKL∂LP
IJ = 0 . (29)

Defining the Schouten–Nijenhuis bracket {XI , XJ} := P IJ the identity (29) is
literally the Jacobi identity for this bracket. One can interpret the scalars XI as
target space coordinates of a Poisson-manifold.1

1Poisson manifolds are generalizations of symplectic manifolds where the Poisson tensor need
not be invertible.
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The PSM action enjoys gauge invariance under non-linear gauge symmetries,

δλX
I = P IJ λJ (30)

δAI = −dλI −
(
∂IP

JK
)
AJ λK (31)

which reduce to abelian gauge symmetries if the Poisson tensor is constant and to
Yang–Mills type of gauge symmetries if the Poisson tensor is linear in the target
space coordinates.

The equations of motion

dXI + P IJ AJ = 0 (32)

dAI + 1
2

(
∂IP

JK
)
AJ ∧AK = 0 (33)

allow for two classes of solutions, which with hindsight we shall refer to as “constant
dilaton vacua” and “linear dilaton vacua”.

The constant dilaton vacua are solutions where the target space coordinates are
constant and the Poisson tensor vanishes,

XI = X̄I = const. P IJ(X̄K) = 0 (34)

In this case the first equation of motion (33) holds trivially, while the second one
(33) establishes gauge flatness of the connection. On constant dilaton vacua the
rank of the Poisson tensor is zero.

The linear dilaton vacua lead to less trivial solutions where the rank of the
Poisson tensor is non-zero in general. Rather than discussing them in full generality
we specify now the Poisson tensor such that we describe two-dimensional dilaton
gravity. We use suggestive notation and denote the target space coordinates as
XI = (X, Xa) and the connection 1-forms as AI = (ω, ea). Choosing the Poisson
tensor as

P aX = σεabX
b P ab = −εab

(
V (X) + σ

2 X
cXcU(X)

)
(35)

where we contract indices a, b with the Minkowski metric ηab for σ = −1 and with
the Euklidean metric δab for σ = 1, the PSM action (28) with the choices above is
equivalent to dilaton gravity in first order formulation (18).

Thus, in the same way that the Einstein–Hilbert–Palatini action is a special
case of a Chern–Simons action (with additional structure that allows us to identify
which part of the gauge connection is the metric), the first order action (18) is a
special case of a PSM (with additional structure that allows us to identify which
part of the gauge connection is the metric).

After these generalities let us start with some calculations. Our task is to find all
solutions to the equations of motion for generic dilaton gravity models. If you look
back at the second order equations (24) this seems like a daunting task, but actually
everything is going to be rather simple. To get going let us introduce light-cone
coordinates so that the Minkowski metric reads η+− = 1 and the epsilon-symbol is
given by ε±± = ±1. The first order action (18) [or equivalently, the PSM action
(28) with the Poisson tensor (35)] with σ = −1 then reads

I(1)[X, X±, ω, e±] =
k

2π

∫ [
X−
(

de+ − ω ∧ e+
)

+X+
(

de− + ω ∧ e−
)

+X dω

+
(
V (X)−X+X−U(X)

)
e+ ∧ e−

]
. (36)

It will be useful to introduce the following integrals of the potentials U, V :

Q(X) :=

∫ X

dy U(y) w(X) := 2

∫ X

dy V (y)eQ(y) (37)
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It is sometimes convenient to transform to a different, conformally related, the-
ory. Under dilaton-dependent Weyl rescalings, gµν → gµνe

2Ω(X),

Xa → Xae−Ω ea → eaeΩ ω → ω +Xaea Ω′ (38)

the action (36) is mapped to an action of the same type, but with new potentials

U → U + 2Ω′ V → V e−2Ω . (39)

The functions defined in (37) have simple transformation behavior,

Q→ Q+ 2Ω w → w . (40)

The function w is invariant under all dilaton-dependent Weyl rescalings.

5.5 All classical solutions

We exploit Weyl rescalings to map a dilaton gravity model with non-vanishing U to
another dilaton gravity model with vanishing U ,2 find all solutions for that model
and in the end do the inverse Weyl rescaling to get all solutions of the original
theory. Thus, we assume now U = 0.

The equations of motion for vanishing U are given by

dX −X−e+ +X+e− = 0 (41)

dX± ∓X±ω ∓ e± V = 0 (42)

dω + e+ ∧ e− V ′ = 0 (43)

de± ∓ ω ∧ e± = 0 . (44)

5.5.1 Linear dilaton vacua

Let us assume for the time being X+ 6= 0 in a given patch and define a new 1-form
Z by e+ = X+Z. Then (41) implies e− = X−Z−dX/X+. The upper sign equation
(42) yields the connection ω = dX+/X+ − V Z. The upper sign torsion constraint
(44) establishes that Z is closed, dZ = 0. Therefore, locally Z is exact.

Z = du (45)

So far we have used only half of the equations of motion. You can check that two
of the remaining three equations are redundant with the rest. Thus, we need to
consider only one additional equation. For instance, taking the linear combination
of X− times the upper sign equation (42) plus X+ times the lower sign equation
(42) and using (41) yields

d(X+X−)− V dX = 0 . (46)

Since V depends on X only we can integrate (46), calling the integration constant
(minus) M .

X+X− − 1

2
w(X) = −M (47)

Using as coordinates the dilaton field X and u the metric is then given by

ds2
U=0 = 2e+ ⊗ e− = 2X+ du (X− du− dX/X+) =

(
w(X)− 2M

)
du2 − 2 du dX .

(48)

2If you are familiar with the concept of an “Einstein frame” please note that in two dimensions
there is no such frame, i.e., unlike in higher dimensions it is impossible to find a Weyl rescaling
that maps the term

√
−g XR to

√
−g̃ R̃. This is so, because in two dimensions the volume form

has the same Weyl weight as the metric, implying Weyl-invariance of
√
−g gµν .
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Transforming back to the original conformal frame finally establishes the general
solution of all dilaton gravity models in an Eddington–Finkelstein patch,

ds2 = eQ(X)
(
w(X)− 2M

)
du2 − 2 du dr (49)

where we have redefined the radial coordinate as dr = eQ(X) dX. By inspection we
see that all solutions (49) have a Killing vector ∂u, which is a generalized Birkhoff
theorem (for spherically reduced gravity from four dimensions this statement is
equivalent to the Birkhoff theorem). The norm of this Killing vector vanishes when

Killing horizons: w(X) = 2M . (50)

Since the corresponding r = const. hypersurface is null, we have a Killing horizon
for each such zero.

The Ricci-scalar following from the metric (49) is given by

RLDV = 2e−Q(X) d

dX

(
eQ(X)V (X) + U(X)

(
M − 1

2 w(X)
))

(51)

where “LDV” stands for “linear dilaton vacuum”. Models with vanishing (constant
positive) [constant negative] Ricci scalar for M = 0 are called Minkowski/Rindler
(dS) [AdS] ground state models. The discrimination between Minkowski and Rindler
works as follows: if additionally to vanishing Ricci scalar for M = 0 we have the
relation eQw = const. then the model has a Minkowski ground state, otherwise a
Rindler ground state.

The Poisson-tensor associated with the generic solutions (49) has rank 2 and
thus a 1-dimensional kernel. The 1-dimensional kernel implies the existence of a
Casimir function, given by the left hand side of (47), which is constant on-shell,
∂uM = ∂rM = 0. This observation implies the existence of a conserved mass
denoted by M .

5.5.2 Constant dilaton vacua

Our solutions cease to be valid when X+ = 0. Therefore, we investigate now what
happens when X+ = 0. There are two possibilities: either X+ = 0 everywhere
or X+ = 0 on some co-dimension 1 hypersurface. In the first case the upper sign
equation (42) implies that X must be constant and a solution of V (X) = 0. Thus,
this case reduces to a constant dilaton vacuum. Equation (41) with X+ = 0 and
constant X yields X− = 0 so that the Poisson tensor vanishes identically. Equation
(43) then establishes that constant dilaton vacua have to be constant curvature
solutions, with Ricci scalar given by

RCDV = 2
dV

dX

∣∣∣
X=X0

V (X0) = 0 X± = 0 . (52)

5.5.3 Beyond basic Eddington–Finkelstein patches

In the second case, where X+ = 0 not in an open region but only on a codimension-
1 hypersurface, we can repeat the analysis of linear dilaton vacua starting with the
assumption X− 6= 0 instead of X+ 6= 0, mutatis mutandis. This will lead to linear
dilaton vacua valid in mirror-flipped Eddington–Finkelstein patches, swapping the
role of ingoing and outgoing horizons.

The only point that we cannot cover in this way is the bifurcation point X+ =
X− = 0, which fits well with our considerations about Eddingston–Finkelstein
patches and Penrose diagrams in Black Holes II. While they are not difficult to
treat, we shall ignore bifurcation points in these lectures.
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5.5.4 Example: the ab-family

An interesting two-parameter family of models is given by monomial potentials

U(X) = − a

X
V (X) ∝ Xa+b (53)

which (after a suitable choice of the proportionality constant and integration con-
stant in the definition of Q) leads to

eQ(X) = X−a w(X) = Xb+1 . (54)

The family of models defined by (53) comprises spherically reduced gravity from
any dimension (a = (D−3)/(D−2), b = −1/(D−2)), the Witten black hole (a = 1,
b = 0), the JT model (a = 0, b = 1) and numerous other dilaton gravity models
with different asymptotics and Penrose diagrams. The Schwarzschild black hole is
the special case a = 1/2 = −b.

Minkowski ground state models obey the linear relation a = 1 + b, while (A)dS
ground state models obey a = 1−b (whether the ground state is dS or AdS depends
on the sign of the proportionality constant in (53); if it is negative we have AdS).
Rindler ground state models obey b = 0. A “phase diagram” of Penrose diagrams
for all values of a, b is displayed in Fig. 3.12 of hep-th/0204253. Thermodynamic
properties of the ab-family are discussed in section 4.2 of hep-th/0703230.

More on global properties of all classical solutions to two-dimensional dilaton
gravity can be found in a series of papers by Klösch and Strobl.

5.6 Analogue of Brown–Henneaux boundary conditions?

Inspired by the gauge theoretic results in three dimensions we can propose Brown–
Henneaux like boundary conditions for the JT model, where the Poisson-σ model
reduces to a non-abelian BF theory with an sl(2, R) connection. Inspired guessing
leads to the ansatz

A = b−1
(

d+a) b X = b−1xb (55)

with the group element b = eρL0 and the connection 1-form

a =
(
L+1 − L(t)L−1

)
dt (56)

where L±1, L0 are again the usual sl(2, R) generators. The scalar field x is hard
to guess, but actually can be constructed with the data above — see section 3 in
1802.01562.

In the metric formulation these boundary conditions were found in section 6.2
of 1708.08471.

ds2 = dρ2 −
(

1
4 e

2ρ +O(1)
)

dt2 X = O(eρ) +O(e−ρ) (57)

A surprising aspect of these boundary conditions is that the dilaton is allowed to
fluctuate to leading order, a possibility considered first in 1311.7413 and 1509.08486.

Such boundary conditions turn out to be useful for the holographic correspon-
dence to the SYK model, see 1604.07818, 1606.01857 and references therein. We
shall come back to the SYK model later. In the next section we turn to grav-
ity/gauge theory tools of relevance for holography, namely the construction of
canonical boundary charges.

Gravity and holography in lower dimensions I, Daniel Grumiller, October 2018
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