
4 Gravity in three spacetime dimensions

As discussed at the start of these lectures, one of the motivations to study gravity
in lower dimensions is that it provides simple toy models for classical and quantum
gravity that may allow to address key questions and open puzzles in quantum
gravity and holography, such as what are the black hole microstates responsible for
the Bekenstein–Hawking entropy, or what is the fate of an evaporating black hole
and how can it be reconciled with quantum mechanical unitarity, or how general is
holography?

In this section we focus specifically on gravity in three spacetime dimensions.
We provide now some additional motivations for this specific dimension.

4.1 Motivations

The lowest spacetime dimension where black holes and (at least off-shell) gravita-
tional degrees of freedom can exist is three. Black holes alone could exist also in
two spacetime dimension, since all we need for them is the concept of a horizon,
which in turn needs a lightcone, and for a lightcone we need at least one time
and at least one spatial dimension. Indeed, this argument will provide the main
motivation for the next section, where we shall focus on gravity in two spacetime
dimensions. However, gravitational degrees of freedom cannot possibly exist in two
spacetime dimensions, since in the York-decomposition of fluctuations hµν of the
metric around some background gµν ,

hµν = hTT

µν +∇(µξν) +
1

D
hgµν gµνhTT

µν = ∇µghTT

µν = 0 (1)

the transverse-traceless part hTT
µν vanishes in two spacetime dimensions (D = 2).

In three spacetime dimensions hTT
µν is not necessarily trivial, and even though

there are no classical gravitational waves in three-dimensional Einstein gravity, there
are two ways in which the transverse-traceless modes can enter our phenomenology:
they can contribute to 1-loop effects (even in Einstein gravity) and they can be
excited classically in generalization of Einstein gravity, like massive gravity theories.

Another motivation to focus on three spacetime dimensions comes directly from
Einstein gravity: the lowest integer dimension where Einstein gravity can be for-
mulated is three. In two spacetime dimensions the Einstein–Hilbert action does
not lead to any equations of motion (any metric in two spacetime dimensions obeys
Rµν = 1

2 gµνR for kinematical reasons) and in one dimension there is no notion of
intrinsic curvature. Thus, if we want to study specifically Einstein gravity in the
lowest possible dimension we have to pick three.

Yet-another motivation, closer in spirit to Black Holes I and II, comes from the
horizon of black holes. In two spacetime dimensions, while there do exist black holes,
the geometry transversal to the horizon is trivial, namely a point. By contrast, in
three spacetime dimensions the geometry transversal to the horizon is an S1, so that
one can imagine having non-trivial (quantum) structure located on the horizon.

Finally, practicalities of holography also often lead to gravity in three spacetime
dimensions. The main point of holography is that the dual quantum field theory, if
it exists, is formulated in one lower dimension than the gravity theory. Now, quan-
tum field theories in three or four spacetime dimensions are also often difficult to
deal with beyond perturbation theory. By contrast, quantum field theories in two
spacetime dimensions often lead to integrable structures and enhanced symmetries
that allow a more complete analytic control of the theory and powerful calculational
tools. Since progress in theory largely comes from being able to do certain calcula-
tions you can expect that the consideration of gravity in three spacetime dimensions
(and quantum field theory in two spacetime dimensions) is going to be helpful, at
least for conceptual questions.
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4.2 Einstein gravity

The three-dimensional Einstein–Hilbert action

IEH =
1

16πG

∫
d3x
√
−g
(
R− 2Λ

)
(2)

leads to a theory that has no local physical degree of freedom (see section 4.3 in the
Black Holes II lecture notes where we counted the number of independent graviton
polarizations, D(D − 3)/2), so a first impulse may be to dismiss the theory as
trivial. This local triviality extends to geometry: the Einstein equations determine
the Ricci-tensor in terms of the metric, and since there is no Weyl-tensor in three
dimensions also the Riemann-tensor is determined in terms of the metric. In fact,
all solutions to the Einstein equations

Rµν −
1

2
gµνR+ Λgµν = 0 (3)

are locally flat or (A)dS3, depending on the sign of the cosmological constant Λ.
Another, equally naive, line of thought comes to the opposite conclusion, namely

that the theory is so complicated that it does not even exist: The Newton constant
G has dimension of length, so like in higher spacetime dimensions three-dimensional
Einstein gravity is non-renormalizable by power counting.

Both considerations are too naive. Let us start dispelling the triviality argument.
While it is true that locally the theory is trivial, solutions can have non-trivial
global properties, such as black hole event horizons, and physical “charges” like
mass or angular momentum. Moreover, the physical phase space (or its quantum
mechanical Hilbert space version) can be non-trivial, despite of the absence of local
physical excitations. Soap bubbles provide an analogy: from the bulk perspective
soap bubbles are trivial and there is no interesting dynamics, but if you look at the
boundary of a soap bubble you get highly non-trivial dynamics (just look at the
flowmarks of a soap bubble).

The non-existence result is harder to dismiss completely — we do not know
for which values of the coupling constants Einstein gravity exists as a fully fledged
quantum theory — but it is at least possible to dismiss the naive argument above.
See for instance the top of page 2 in 0706.3359. The main point is that the Riemann
tensor (even off-shell) is determined by the Ricci-tensor, which in turn is (on-shell)
determined by the metric, so that any possible counterterm or divergence can be
absorbed by field redefinitions and a renormalization of the cosmological constant.

So for the time being let us stay agnostic about what we should expect from
three-dimensional Einstein gravity, and rather than using naive arguments in one
way or another let us focus on actual calculations in the remainder of this section.
To get going we use the Cartan formulation, and as a first step we dualize the
spin-connection to a vector-like quantity,

ωa :=
1

2
εabc ωbc (4)

which is a unique feature of three spacetime dimensions. This implies that dualized
spin-connection and dreibein have the same index structures, a fact that we are
going to exploit heavily in the next subsection. Similarly, we dualize the curvature
2-form Ra = 1

2 ε
abcRbc = dωa + 1

2 ε
a
bc ω

b ∧ ωc.
In terms of Cartan variables (with dualized connection) the Einstein–Hilbert–

Palatini action reads

IEHP[ea, ωa] =
1

8πG

∫ (
ea ∧Ra −

Λ

6
εabc e

a ∧ eb ∧ ec
)
. (5)

The field equations establish vanishing torsion and constant curvature.

T a = dea + εabcω
b ∧ ec = 0 Ra = dωa +

1

2
εabc ω

b ∧ωc =
Λ

2
εabc e

b ∧ ec (6)
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4.3 Chern–Simons formulation

We switch gears for a few moments and consider a three-dimensional gauge theory
that at first glance has nothing to do with gravity, namely Chern–Simons theory.
The field content consists of a gauge field 1-form A, with some associated (non-
abelian) gauge symmetry. Actually, this is all you need to know to construct the
action from first principles: again, we make a derivative expansion, keeping only
the terms with the lowest number of derivatives, while imposing all our required
symmetries as constraints.

So let us actually do this. We know that the action must be some integral over
a 3-form, and the only quantities available are the de-Rahm differential d and the
gauge connection 1-form A = Aµ dxµ = TIA

I
µ dxµ, where TI are generators in the

Lie-algebra associated with the gauge group (which is one of our inputs that we
need to provide). Thus, our first attempt for an action is

I[A] =

∫
M
〈α0A ∧A ∧A+ α1A ∧ dA〉 (7)

whereM denotes our three-dimensional manifold on which the theory is defined, αi
are coupling constants, and 〈〉 denotes the invariant bilinear form associated with
our postulated gauge group (more on this below). We included terms with zero and
one derivatives. Unless we introduce a Hodge-∗ (which would require additional
structure), there are actually no higher derivative terms that we could add, since
any term with two de-Rahm differentials is zero.

The action (7) certainly has all the correct properties regarding diffeomorphisms
(it is an integral over a 3-form), but the equations of motion descending from it

2α1

(
dA+

3α0

2α1
A ∧A

)
= 0 (8)

are not gauge covariant equations of motion since they depend explicitly on the
gauge connection, unless the coupling constants are finetuned.

In our improved second attempt we do such a finetuning, choosing

α0 =
2

3
α1 α1 :=

k

4π
. (9)

The second equality is just a conventional name and normalization for α1, but the
first equality is crucial. It guarantees that the field equations

dA+A ∧A = F = 0 (10)

are gauge covariant. The quantity F is the non-abelian field strength 2-form.
Thus, we conclude that to lowest order in a derivative expansion the (bulk)

action for a gauge field 1-form A in three dimensions is given by

ICS[A] =
k

4π

∫
M
〈A ∧ dA+

2

3
A ∧A ∧A〉 . (11)

This action is called “Chern–Simons action”.
Under gauge transformations generated by some group element g the connection

transforms as
A→ g−1

(
d+A

)
g (12)

the field equations (10) are invariant and the Chern–Simons action (11) transforms

ICS[A]→ ICS[A]− k

12π

∫
M
〈g−1 dg∧g−1 dg∧g−1 dg〉− k

4π

∫
∂M
〈(dg)g−1∧A〉 . (13)

For group elements continuously connected with the identity the additive terms in
(13) vanish so that not only the field equations but also the Chern–Simons action
is invariant under such (“small”) gauge transformations.
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To come back to gravity let us now pick a specific gauge connection,

A = eaPa + ωaJa (14)

where we used already suggestive notation. The generators Pa, Ja generate the Lie
algebra

[Pa, Pb] = −Λ εab
c Jc (15)

[Ja, Pb] = εab
c Pc (16)

[Ja, Jb] = εab
c Jc (17)

where the indices in the epsilon-symbol are raised with the Minkowski metric ηab.
For positive (vanishing) [negative] Λ the Lie algebra above is so(3, 1) (iso(2, 1))
[so(2, 2)], with invariant bilinear form

〈Ja, Pb〉 = ηab 〈Pa, Pb〉 = 0 = 〈Ja, Jb〉 . (18)

The key observation (see Achucarro–Townsend or Witten) is that the
Chern–Simons action (11) with the specifications (14)-(18) is equivalent to
the Einstein–Hilbert–Palatini action (5) provided we identify k = 1/(4G).
The Chern–Simons gauge flatness conditions (10) are equivalent to the
Einstein–Hilbert–Palatini equations of motion (6). Note that the Chern–
Simons connection (14) linearly combines dreibein and dualized spin-connection,
and that the gauge symmetries are local versions of the expected spacetime symme-
tries: either the de-Sitter group SO(3, 1) for positive Λ, or the anti-de Sitter group
SO(2, 2) for negative Λ or the Poincaré group ISO(2, 1) for vanishing Λ.

Thus, Einstein gravity in three dimensions is classically equivalent to a Chern–
Simons theory. Since gauge theories are slightly simpler than gravity theories this
reformulation is at the heart of many simplifications that we shall encounter in the
following.

We clarify now how gauge transformations (12) relate to diffeomorphisms, whose
action on the connection is given by

LξAα = ξµ∂µAα +Aµ∂αξ
µ . (19)

The infinitesimal version of (12) with g = 1l + ε reads

δεA = dε+ [A, ε] . (20)

At first glance, diffeomorphisms generated by a vector field ξµ cannot have anything
to do with gauge transformations generated by a Lie-algebra valued scalar field ε.
However, we can connect them using the connection,

ε = ξµAµ . (21)

Inserting the ansatz (21) into the gauge variation (20) yields

δξµAµ
Aα = (∂αξ

µ)Aµ + ξµ∂αAµ + ξµ[Aα, Aµ] = LξAα + ξµFµα . (22)

Thus, gauge variations (20) with gauge parameter (21) are on-shell equivalent with
(and off-shell inequivalent to) diffeomorphisms (19), since Fµν = 0 according to the
equations of motion (10).

Before focusing on AdS3 let us address briefly the variational principle in the
presence of a boundary ∂M. Variation of the Chern–Simons action (11) — besides
the bulk equations of motion — yields a boundary term, which is not obviously
zero. Thus, we have to impose suitable boundary conditions and potentially add
suitable boundary terms to the bulk action. We shall discuss this in more detail at
a later stage and consider now specifically AdS3.
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4.4 AdS3 Einstein gravity

As we just discussed, AdS3 Einstein gravity can be described by a Chern–Simons
action (11) with gauge group SO(2, 2). Before proceeding further it is convenient
to massage the action a bit, exploiting the algebraic relations so(2, 2) ' so(2, 1)⊕
so(2, 1) ' sl(2,R)⊕ sl(2,R). This split of the algebra can be implemented by a
change of basis,

T±a = 1
2

(
Ja ± `Pa

)
(23)

where Λ = −1/`2 defines the AdS3 radius. In terms of the new generators the gauge
algebra reads

[T±a , T
±
b ] = εab

c T±c [T+
a , T

−
b ] = 0 . (24)

An explicit realization of the generators T±a is given by

T+
a =

(
J+
a 0
0 0

)
T−a =

(
0 0
0 J−a

)
(25)

where J±a are generators of sl(2,R) algebras with invariant bilinear form

〈J±a , J±b 〉 = ± `
2 ηab . (26)

The full Chern–Simons connection in this basis is then given by

A =

((
ωa + 1

` e
a
)
J+
a 0

0
(
ωa − 1

` e
a
)
J−a

)
=

(
Aa+J+

a 0
0 Aa−J−a

)
(27)

where we introduced the sl(2) connections

Aa± = ωa ± 1

`
ea . (28)

Linearly combining dualized spin-connection and vielbein in this way is only possible
in three spacetime dimensions.

The Chern–Simons action (11) thus splits into a sum of two sl(2) Chern–Simons
actions for the connections A±. Since it is a bit cumbersome to have different
signs for the bilinear form (26) a common trick is to redefine the minus generators
J−a → J+

a and to correct this sign change by taking the difference of two Chern–
Simons actions (instead of their sum).

Putting all these ingredients together we end up with the following Chern–
Simons action for AdS3 Einstein gravity

IAdS3 =
k

4π

∫
M
〈A+∧A+ +

2

3
A+∧A+∧A+〉− k

4π

∫
M
〈A−∧A−+

2

3
A−∧A−∧A−〉

(29)
where A± = Aa±La and La are sl(2, R) generators (e.g. La = J+

a , but we can and
will choose a slightly different basis). The Chern–Simons level is a dimensionless
ratio of AdS-radius and Newton constant.

k =
`

4G
(30)

Above we worked with generators adapted to so(2, 1). In what follows we will
work instead with a convenient representation of the sl(2, R) algebra, given by the
commutation relations

[Ln, Lm] = (n−m)Ln+m n,m ∈ {−1, 0, 1} (31)

and with invariant bilinear form

〈L+1, L−1〉 = −1 〈L0, L0〉 =
1

2
. (32)

Finally, let us remind ourselves that the metric is bilinear in the vielbein.

gµν =
`2

2
〈
(
A+
µ −A−µ

)(
A+
ν −A−ν

)
〉 (33)
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4.5 Brown–Henneaux boundary conditions revisited

If the manifold M is topologically a filled cylinder or torus (as it happens to be for
AdS3) it is often convenient to split off the radial dependence from the connection
by defining

A = b−1(ρ)
(

d+a(xµ)
)
b(ρ) (34)

where b(ρ) is some suitably chosen group element and

a(xµ) = aν(xµ) dxν µ, ν ∈ {0, 1} (35)

is effectively a boundary connection, in the sense that it has no leg in the radial
direction and no dependence on the radius ρ. Decomposing gauge connection

Aρ = b−1∂ρb Aµ = b−1 aµ b (36)

and gauge curvature F with respect to the radial coordinate and the boundary co-
ordinates shows that two of the three gauge-flatness conditions (10) hold identically

Fρµ = ∂µAρ − ∂ρAµ + [Aµ, Aρ] = −
(
∂ρb
−1)aµb+ b−1aµ∂ρb+ [b−1aµb, b

−1∂ρb] = 0
(37)

whereas the third one reduces to gauge flatness of the boundary connection

Fµν = b−1
(
∂µaν − ∂νaµ + [aµ, aν ]

)
b = b−1 fµν b = 0 . (38)

We claim now that the Brown–Henneaux boundary conditions (discussed in
Black Holes II and reviewed in section 2.3) are recovered for connections of the
form

A± = e∓ρ/`L0
(

d+a±(x+, x−)
)
e±ρ/`L0 (39)

with the “boundary connection”

a+ =
(
L+1 − L+(x+)L−1

) dx+

`
⇒ δa+ = −δL+(x+)L−1

dx+

`
(40)

a− =
(
L−1 − L−(x−)L+1

) dx−

`
⇒ δa− = −δL−(x−)L+1

dx−

`
. (41)

Note that both connections A± obey the gauge flatness conditions (38) and hence
this configuration solves the Chern–Simons field equations (and thus provides solu-
tions of AdS3 Einstein gravity) for all functions L±(x±).

To check the claim above we insert the proposed connection (39) into the re-
sult for the metric (33) and test whether we get the expected Fefferman–Graham
expansion of the metric. In order to proceed we need to evaluate the expressions

e−ρ/`L0L±1e
ρ/`L0 = e±ρ/`L±1 eρ/`L0L±1e

−ρ/`L0 = e∓ρ/`L±1 (42)

using the Baker–Campbell–Hausdorff formula. We can then read off the metric and
find

ds2 = dρ2 + dx+ dx−
(
e2ρ/` + e−2ρ/`L+(x+)L−(x−)

)
+ L+(x+)

(
dx+

)2
+ L−(x−)

(
dx−

)2
. (43)

Defining γ
(0)
µν = ηµν with η±∓ = 1

2 , η±± = 0 and γ
(2)
±± = L±(x±), γ

(2)
±∓ = 0 the

metric (43) can be rewritten as

ds2 = dρ2 +
(
e2ρ/` γ(0)µν + γ(2)µν +O(e−2ρ/`)

)
dxµ dxν (44)

which is precisely the Fefferman–Graham expansion (11) in section 2.3. This proves
our claim above. The solutions (43) are also known as “Bañados geometries”, see
hep-th/9901148.
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4.6 BTZ black holes

We have just found an infinite set of solutions to AdS3 Einstein gravity in the Chern–
Simons formulation, parametrized by a holomorphic and an anti-holomorphic func-
tion. Here we focus on specific solutions obtained when both of these functions are
constants. Let us define two new parameters,

m = L+ + L− j = `
(
L+ − L−

)
(45)

and Schwarzschild-like coordinates (ϕ ∼ ϕ+ 2π)

t =
x+ − x−

2
ϕ =

x+ + x−

2`
r = f(ρ) (46)

where the function f(ρ) is determined such that the prefactor of the dϕ2-term in
the metric is r2, yielding

ds2 = −dt2
r4 − 2`2mr2 + `2j2

`2r2
+

`2r2 dr2

r4 − 2`2mr2 + `2j2
+ r2

(
dϕ+

`j

r2
dt
)2
. (47)

Introducing as variables the loci of the outer and inner Killing horizon r±

m =
r2+ + r2−

2`2
j = −r+r−

`
(48)

the metric (47) can be recast into a suggestive form

ds2BTZ = −
(r2 − r2+)(r2 − r2−)

`2r2
dt2 +

`2r2 dr2

(r2 − r2+)(r2 − r2−)
+ r2

(
dϕ− r+r−

`r2
dt
)2
(49)

For real r+ > r− this geometry is known as BTZ black hole, see hep-th/9204099

and gr-qc/9302012. At the time when it was discovered its existence was a big sur-
prise, since the community did not expect black holes to exist in three-dimensional
Einstein gravity.

Here are the top ten properties of BTZ black holes:

• Asymptotically AdS3. Since any Bañados geometry is asymptotically AdS3

also BTZ black holes are asymptotically AdS3 solutions.

• Locally AdS3. Any solution to the AdS3 Einstein equations is locally AdS3,
with Rµν = − 2

`2 gµν and R = − 6
`2 . Since BTZ is such a solution it must be

locally AdS3. Nevertheless, BTZ black holes are not globally equivalent to
AdS3 since they exhibit horizons.

• Event horizon at r = r+. The locus r = r+ is an event horizon, which can
be checked by constructing the Penrose diagram. It is also a Killing horizon
for the Killing vector ∂t+ Ω∂ϕ, with the angular rotation parameter Ω = r−

`r+
.

• Inner horizon at r = r−. Also the locus r = r− is a Killing horizon, which
you can verify with methods of Black Holes I.

• Rotation. For non-vanishing r− the horizon rotates (similar to the one of a
Kerr black hole) with angular rotation parameter Ω = r−

`r+
. For r− = 0 there

is no rotation and no inner horizon, similarly to the Schwarzschild black hole.

• Orbifolds of AdS3. An elegant way to understand BTZ black holes is as
orbifolds of global AdS3 along certain Killing directions (see gr-qc/9302012).
This means that we start with global AdS3 (which is formally BTZ for r2+ =
−1 and r− = 0) and identify points by a discrete subgroup of the isometry
group SO(2, 2). While orbifolding in this way generates singularities, for BTZ
black holes they are hidden behind a horizon as long as r+ > r− remain real.
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• Penrose diagram. See Fig. 1 below

Figure 1: Two-dimensional cut through Penrose diagram of rotating (left) and non-
rotating (right) BTZ black hole (Fig. by Hugo Ferreira, used with permission)

• Hawking temperature. It is also of interest to consider BTZ black hole
thermodynamics. In fact, we did this already in section 11.5 of Black Holes
II, where we found the following results for temperature and angular velocity:

T =
r2+ − r2−
2πr+`2

Ω =
r−
`r+

(50)

The result for mass M and angular momentum |J | differ both by a factor
of 1/(4G) from the mass parameter m and angular momentum parameter |j|
defined in (48).

• Bekenstein–Hawking entropy. Recall that the Bekenstein–Hawking en-
tropy of BTZ black holes is (see again section 11.5 of Black Holes II)

S =
2πr+
4G

= 2π

√
cL+

6
+ 2π

√
cL−

6
(51)

where c is the Brown–Henneaux central charge

c =
3`

2G
= 6k (52)

and L± = `L±/(4G). The last equality (51) is known as Cardy formula.

• Extremal BTZ. Finally, we may consider the limit r− → r+ 6= 0, which
requires that either L+ or L− vanishes, but not both. In this limit the two
horizons coalesce to a single extremal one, with vanishing surface gravity and
hence also vanishing Hawking temperature. Despite of having zero tempera-
ture, the extremal BTZ entropy is non-zero and can be macroscopically large.

We shall come back to BTZ black holes on numerous occasions in these lectures,
but for now we move on and consider generalizations of AdS3 Einstein gravity that
also feature BTZ black holes as part of their spectra.
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4.7 Massive gravity theories and conformal gravity

There is a whole zoo of gravity theories beyond Einstein gravity (see 1105.3735 for
a review of massive gravity). A large class of them introduces higher curvature cor-
rections to the action, which potentially is dangerous since higher curvature terms
tend to generate ghosts. In three spacetime dimension there is a unique1 possi-
bility, namely to add a gravitational Chern–Simons action IgCS for the Christoffel
connection to the Einstein Hilbert action. We focus on this possibility, introduced
by Deser, Jackiw and Templeton, dubbed topologically massive gravity (TMG).

The gravitational Chern–Simons term

IgCS[g] =
kg
4π

∫
M

(
Γ ∧ dΓ +

2

3
Γ ∧ Γ ∧ Γ

)
(53)

is a three-derivative action, since each Christoffel connection Γ features one deriva-
tive of the metric. Note that you are not supposed to vary the action (53) with
respect to the connection Γ, but rather with respect to the metric g.

There is again an Einstein–Hilbert–Palatini-like formulation (cf. Baekler, Mielke
and Hehl), where you replace Γ by the spin-connection ω, so that effectively you
have a Chern–Simons action for the spin-connection. The first order form of the
TMG action

ITMG[ea, ωa, λa] = IEHP[ea, ωa] +
kg
2π

∫
M

(
ωa ∧dωa +

1

3
εabc ω

a ∧ωb ∧ωc +λa ∧T a
)

(54)
contains the Einstein–Hilbert–Palatini action IEHP[ea, ωa] as defined in (5). The 1-
form λa plays the role of a Lagrange-multiplier ensuring vanishing torsion on-shell.

Since TMG has one additional derivative as compared to Einstein gravity, but
no additional symmetries, we need to specify more initial data to solve the field
equations. This means that we should expect one additional local physical degree
of freedom as compared to Einstein gravity. Since Einstein gravity has zero, we
expect that TMG propagates one physical degree of freedom. This expectation
turns out to be correct, as a canonical analysis reveals (see for instance 0806.4185).
The degree of freedom corresponds to a massive graviton with mass proportional
to 1/kg, hence the name of TMG (“topological” refers to the Chern–Simons term,
“massive” to the mass of the graviton and “gravity” to a theory of the metric).

Varying the action (54) leads to three equations of motion: varying with respect
to the Lagrange-multiplier λ establishes vanishing torsion, which can be solved for
the spin-connection; varying with respect to the spin-connection ω relates the cur-
vature 2-form Ra linearly to the 2-form εabc λ

b ∧ ec, which can be solved for the
Lagrange-multiplier; finally, varying with respect to the dreibein e yields some first
order equation for the Lagrange-multiplier. Inserting the solution for the Lagrange
multiplier (which has one derivative of the spin connection and hence two derivatives
of the metric) shows that λ is proportional to the so-called Schouten 1-form. Trans-
lating all these statements into metric formulation establishes third order partial
differential equations (1/µ := 8Gkg; the mass of the graviton is µ)

TMG: Rαβ −
1

2
gαβR+ Λgαβ +

1

µ
Cαβ = 0 (55)

that feature the so-called Cotton tensor (see e.g. gr-qc/0309008)

Cαβ = εα
µν ∇µ

(
Rνβ −

1

4
gνβR

)
= Cβα . (56)

An interesting special case (studied holographically in 1110.5644) arises in the
limit µ → 0, G → ∞, keeping finite kg. This theory is called conformal gravity
and, like Einstein gravity, has no local physical degree of freedom due to an extra
gauge symmetry, namely Weyl rescalings. In this case the equations of motion (55)
demand Cotton-flatness, which means that all solutions of conformal gravity are
locally conformally flat, since in three dimensions conformal flatness is equivalent
to vanishing Cotton tensor.

1Actually, a similar action can be introduced in seven and eleven dimensions.
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