
2 Asymptotic Killing vectors

Killing vectors generate isometries of metrics and preserve a given metric, in the
sense that the Lie variation along a Killing vector vanishes when acting on the
metric (see section 6.11 in Black Holes I). Killing vectors lead to conserved charges,
defined by Komar integrals (see section 8.4 in Black Holes I). The main purpose
of this section is to generalize this notion to situations where the metric is not
necessarily preserved, but only its asymptotic structure. We discuss general aspects
of asymptotic Killing vectors and consider also a few examples.

2.1 Definition of asymptotic Killing vectors

Asymptotic Killing vectors do not necessarily preserve any given metric, but they
preserve the asymptotic structure, so when acting with a Lie derivative along an
asymptotic Killing vector on a metric that obeys some specififed set of boundary
conditions the result is not necessarily zero, but rather can be a fluctuation allowed
by these boundary conditions. The defining equation for asymptotic Killing vectors

Lξgµν = O
(
δgµν

)
(1)

has on the left hand side the Lie derivative along the asymptotic Killing vector ξ
of a metric g compatible with some given set of boundary conditions, and on the
right hand side some metric fluctuation allowed by the boundary conditions.

Once the asymptotic Killing vectors are determined it is also of interest to check
their Lie brackets, since this will eventually lead to the asymptotic symmetry algebra
discussed in the next subsection.

In many practical applications one introduces a (partial) gauge fixing and then
requires additionally that the fluctuations δg also preserve the gauge conditions, for
instance a gauge fixing to Gaussian normal coordinates.

Example. Let us consider a baby-example to make the notion of asymptotic
Killing vectors in presence of partial gauge fixing more concrete. Take the two-
dimensional class of metrics defined near the asymptotic boundary at r →∞ by

gµν dxµ dxν =

∞∑
n=−1

gn(u)r−n du2 − 2 dudr (2)

where all coefficients gn are allowed to vary so that the allowed metric variations
are given by

δguu = O(r) +O(1) +O(1/r) + . . . δgur = δgrr = 0 . (3)

The allowed fluctuations (3) preserve Eddington–Finkelstein gauge to all orders in
the radial coordinate r (a condition which could be relaxed without changing the
physics) and lead to asymptotically flat metrics, in the sense that the Ricci-scalar
tends to zero as r tends to infinity (at least like 1/r3). Let us now construct the
associated asymptotic Killing vectors. The rr-component of (1) yields

ξµ∂µgrr + 2grµ∂rξ
µ = −2∂rξ

u = 0 (4)

from which we conclude that the u-component of ξ is r-independent. The ru-
component of (1) is more complicated,

ξµ∂µgru + grµ∂uξ
µ + guµ∂rξ

µ = −∂uξu − ∂rξr + guu∂rξ
u = 0 (5)
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and together with the previous condition (4) allows to deduce the following results
for the asymptotic Killing vectors,

ξ = ε(u) ∂u +
(
− ε′(u) r + η(u)

)
∂r (6)

where prime denotes derivative with respect to u. The uu-component of (1) does
not lead to any new constraint on the asymptotic Killing vectors,

ξµ∂µguu + 2guµ∂uξ
µ = O(r) +O(1) +O(1/r) + . . . . (7)

Since the asymptotic Killing vectors (6) of the metric (2) are parametrized by
two arbitrary functions, ε(u) and η(u), we have infinitely many asymptotic Killing
vectors for this example. As we shall see in the next subsection it is of interest to
calculate the algebra of Lie-brackets between the asymptotic Killing vectors; for the
present examples we obtain after a small calculation[

ξ(ε1, η1), ξ(ε2, η2)
]
Lie

= ξ
(
ε1ε
′
2 − ε2ε′1, (ε1η2 − ε2η1)′

)
. (8)

The result (8) shows that we have a linear algebra, the Lie-bracket algebra of the
asymptotic Killing vectors. This algebra generates the asymptotic symmetries for
our example.

2.2 Asymptotic symmetries

Noether’s theorem relates the conservation of the asymptotic structure of the metric
(and possibly other fields that might be present) to a set of symmetries known as
asymptotic symmetries.

It seems tempting to define asymptotic symmetries as the set of all transforma-
tions generated by the asymptotic Killing vectors. However, we have a lot of (gauge)
redundancy, and not every asymptotic Killing vector generates an interesting sym-
metry near the boundary; instead, some of the asymptotic Killing vectors may be
just pure gauge transformations that remain sufficiently small at the boundary so
that they have no physical effect other than changing the coordinate system. We
are going to be precise about what “sufficiently small” means in later sections. For
now we simply assume that there is a well-defined notion of “sufficiently small” so
that the asymptotic Killing vectors can be classified into “proper gauge transfor-
mations” (those which remain sufficiently small; they are also called “trivial gauge
transformations”) and “improper gauge transformations” (sometimes also called
“large gauge transformations; they are not pure gauge at the boundary).

The asymptotic symmetry algebra is the set of all boundary-condition
preserving transformations modulo trivial gauge transformations. The
asymptotic symmetry group is the group associated with the asymptotic symmetry
algebra. The asymptotic symmetries are generated by elements of the asymptotic
symmetry group.

Back to the example. Let us reconsider the baby-example above, but now take
instead of (2) the ansatz

ds2 =

∞∑
n=−1

gn(u)r−n du2 − 2 dudr
(

1 +

∞∑
n=1

fn(u)r−n
)

+

∞∑
n=1

hn(u)r−n dr2 (9)

where all functions gn, fn, hn are allowed to fluctuate. The Ricci scalar still vanishes
as r tends to infinity (albeit only with 1/r), so in this sense the metric is still
asymptotically flat. However, instead of the result (6) we find an infinitely larger
set of asymptotic Killing vectors,

ξ =
(
ε(u) +O(1/r)

)
∂u +

(
− ε′(u) r + η(u) +O(1/r)

)
∂r . (10)
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Since all we did in comparison to (2) was to drop the assumption of strict gauge-
fixing to Eddington–Finkelstein gauge, it is plausible that the additional Killing
vectors contained in (10), i.e., the terms of order O(1/r), generate trivial gauge
transformations associated with coordinate change to Eddington–Finkelstein. Ap-
plying the definition above the asymptotic symmetries are then generated by all
Killing vectors (10) where the O(1/r) part is modded out — this yields precisely
the set of asymptotic Killing vectors (6). Thus, we expect for this example that the
asymptotic symmetries are generated by (6) and hence the asymptotic symmetry
algebra is given by (8).

2.3 Asymptotically AdS3 as simple example

Let us investigate the asymptotic symmetries of AdS3, which is a slightly more
physical example than the baby-example considered above. In fact, we studied this
scenario already in section 11.4 of the lecture notes for Black Holes II. We found
there that the boundary (plus gauge) conditions

ds2 = dρ2 +
(
e2ρ/` γ(0)µν + γ(2)µν + . . .

)
dxµ dxν δγ(0)µν = 0 (11)

are preserved by the asymptotic Killing vectors

ξ = ε+(x+)∂+ + ε−(x−)∂− −
`

2

(
∂+ε

+ + ∂−ε
−)∂ρ +O

(
e−2ρ/`

)
(12)

where xµ = {x+, x−}. As we shall see later, the asymptotic symmetries are again
generated by theO(1) part of the asymptotic Killing vectors, whereas the subleading
terms generate trivial gauge symmetries. One consistency check you can perform is
to slightly relax our gauge-fixing to Gaussian normal coordinates in (11) by allowing
fluctuations gρρ ∼ O(e−2ρ/`) and gρ± ∼ O(e−2ρ/`). You should find the samy
asymptotic Killing vectors as given below, up to subleading corrections.

In this example the asymptotic symmetry algebra consists of two copies of the
Witt algebra

[ξ(ε±1 ), ξ(ε±2 )]Lie = ξ
(
ε±1 ε

±
2
′ − ε±2 ε

±
1
′) . (13)

If the theory is defined such that x± ∼ x± + 2π then introducing Fourier modes
ε±n = ieinx

±
∂± brings the Witt algebra (13) into a rather useful form,

[ε±n , ε
±
m] = (n−m) ε±n+m . (14)

From a purely algebraic perspective (and, as we shall se later, also for physical
reasons) it is of interest to ask whether a given asymptotic symmetry algebra has a
non-trivial central extension. In the present case the answer is yes, and the centrally
extended version of the Witt algebra (14) is known as Virasoro algebra with central
charge c.

[L±n , L
±
m] = (n−m)L±n+m +

c

12

(
n3 − n

)
δn+m, 0 . (15)

We shall see later that such central charges can arise when realizing canonically
an asymptotic symmetry algebra. The central extension from Witt to Virasoro
does indeed arise in three-dimensional gravity. The interpretation of the canonical
realization of the asymptotic symmetries is that the physical phase space (or in the
quantum theory the physical Hilbert space) falls into representations of two copies of
the Virasoro algebra. On the other hand, the defining property of a conformal field
theory (CFT) in two dimensions is that the physical phase space (or in the quantum
theory the physical Hilbert space) falls into representations of the two-dimensional
conformal algebra — which is precisely two copies of the Virasoro algebra. Thus,
this examples provide a glimpse into AdS/CFT and suggests that quantum gravity
on AdS3 (if it exists) is equivalent to some CFT2.

5



2.4 Asymptotically flat space as complicated example

You may wonder why we did not consider as baby-example (asymptotically) flat
space, since a natural guess is that the asymptotic symmetries of asymptotically
flat space are equivalent to the symmetries of Minkowski space and that overall
asymptotically flat space should provide the simplest example. However, depending
on the precise boundary conditions there can be a much larger set of asymptotic
symmetries than just the one given by the Poincaré group, and asymptotically flat
space can actually be intriguingly complicated.

Following the spirit of these lectures, let us consider asymptotically flat space
in three spacetime dimensions. Due to the null structure of asymptotic infinity in
Minkowski space (I ± are null hypersurfaces) it is convenient to focus on one half
of the asymptotic boundary (e.g. I +) and formulate the boundary conditions in a
gauge adapted to this situation, e.g. Eddington–Finkelstein or Bondi coordinates.

ds2 =
(
huu +O(1/r)

)
du2 − 2 dudr

(
1 +O(1/r)

)
+
(
huϕ +O(1/r)

)
dudϕ

+ r2 dϕ2
(
1 +O(1/r)

)
(16)

With some anticipation we fixed grr = grϕ = 0 by exploiting small diffeomorphisms;
it is not necessary to do this, but it makes our calculations shorter which is why
we made the choice (16). The functions huu and huϕ are allowed to vary and
to depend on retarded time u and angular coordinate ϕ ∼ ϕ + 2π, but not on the
radial coordinate r. You can convince yourself that the metric (16) is asymptotically
flat in the sense that the independent polynomial curvature invariants behave as
R ∼ O(1/r2), RµνR

µν ∼ O(1/r4), and RµνR
νλRµλ ∼ O(1/r6).

The boundary (plus gauge) conditions (16) are preserved by the asymptotic
Killing vectors

ξ =
(
M(ϕ) + uL′(ϕ)

)
∂u +

(
L(ϕ)− u

r
L′′(ϕ)− 1

r
M ′(ϕ)

)
∂ϕ−

(
rL′(ϕ) +O(1/r)

)
∂r .

(17)
The results above look quite complicated, but simplify if we restrict to leading
order in a large-r expansion and split the asymptotic Killing vectors (17) into L-
and M -dependent pieces,

ξL = uL′(ϕ) ∂u +
(
L(ϕ)− u

r
L′′(ϕ)

)
∂ϕ −

(
rL′(ϕ) +O(1/r)

)
∂r (18)

ξM = M(ϕ) ∂u +O(1/r) . (19)

Their Lie-bracket algebra has again infinitely many generators and reads

[ξL(L1), ξL(L2)]Lie = ξL
(
L1L

′
2 − L2L

′
1

)
+O(1/r) (20)

[ξL(L1), ξM (M2)]Lie = ξM
(
L1M

′
2 −M2L

′
1

)
+O(1/r) (21)

[ξM (M1), ξM (M2)]Lie = O(1/r) . (22)

Comparing the first line (20) with (13) we see that the Witt algebra is recovered as
subalgebra. Geometrically, this makes sense since to leading order the asymptotic
Killing vector ξL generates diffeomorphisms of the celestial S1. The last line (22)
shows that the asymptotic Killing vectors ξM commute with each other to leading
order. Since their zero mode, ξM0 = ∂u, generates time-translations (which are part
of Poincaré) the asymptotic Killing vectors ξM are known as “supertranslations”
(note: no relation to supersymmetry). To have suggestive names, sometimes the
Witt algebra generators ξL are called “superrotations”, as the zero mode ξL0 = ∂ϕ
generates rotations. Superrotations and supertranslations do not commute (21),
but instead yield something reminiscent of a Witt algebra.

All central extensions of the algebra (20)-(22) are known and will be discussed
once we address aspects of flat space holography in three bulk dimensions.
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