Gravity and holography in low dimensions I (136.073)

Daniel Grumiller

Institute for Theoretical Physics TU Wien

http://quark.itp.tuwien.ac.at/~grumil/teaching.shtml

grumil@hep.itp.tuwien.ac.at

"Of these four forces, there's one we don't really understand." "Is it the weak force or the strong-" "It's gravity."

"Of these four forces, there's one we don't really understand." "Is it the weak force or the strong-" "It's gravity."

Newton-Einstein world: Gravity best understood force

"Of these four forces, there's one we don't really understand." "Is it the weak force or the strong-" "It's gravity."

- Newton-Einstein world: Gravity best understood force
- Bohr–Schrödinger world: Gravity least understood force

"Of these four forces, there's one we don't really understand." "Is it the weak force or the strong-" "It's gravity."

- ► Newton-Einstein world: Gravity best understood force
- Bohr–Schrödinger world: Gravity least understood force

Main goal: understand quantum gravity

 J. M. Maldacena, "The Large N limit of superconformal field theories and supergravity," Adv. Theor. Math. Phys. 2 (1998) 231, hep-th/9711200. 14023 citations

* roughly: astro-ph, gr-qc, hep-ex, hep-lat, hep-ph, hep-th, math-ph, nucl-ex, nucl-th

- 1. J. M. Maldacena, 14023 citations
- S. Weinberg, "A Model of Leptons," *Phys. Rev. Lett.* **19** (1967) 1264. **11338 citations**

* roughly: astro-ph, gr-qc, hep-ex, hep-lat, hep-ph, hep-th, math-ph, nucl-ex, nucl-th

- 1. J. M. Maldacena, 14023 citations
- 2. S. Weinberg, 11338 citations
- S. Perlmutter *et al.* [Supernova Cosmology Project Collaboration], "Measurements of Omega and Lambda from 42 high redshift supernovae," *Astrophys. J.* 517 (1999) 565, astro-ph/9812133.

11132 citations

A. G. Riess *et al.* [Supernova Search Team], "Observational evidence from supernovae for an accelerating universe and a cosmological constant," *Astron. J.* **116** (1998) 1009, astro-ph/9805201. **10965 citations**

- 1. J. M. Maldacena, 14023 citations
- 2. S. Weinberg, 11338 citations
- 3. S. Perlmutter *et al.* [Supernova Cosmology Project Collaboration], **11132** citations
 - A. G. Riess et al. [Supernova Search Team], 10965 citations
- T. Sjostrand, S. Mrenna and P. Z. Skands, "PYTHIA 6.4 Physics and Manual," JHEP 0605 (2006) 026, hep-ph/0603175.
 0713 citations

9713 citations

S. Agostinelli *et al.* [GEANT4 Collaboration], "GEANT4: A Simulation toolkit," *Nucl. Instrum. Meth.* **A506** (2003) 250. **9666 citations**

- 1. J. M. Maldacena, 14023 citations
- 2. S. Weinberg, 11338 citations
- 3. S. Perlmutter *et al.* [Supernova Cosmology Project Collaboration], **11132** citations
 - A. G. Riess et al. [Supernova Search Team], 10965 citations
- T. Sjostrand, S. Mrenna and P. Z. Skands, 9713 citations S. Agostinelli *et al.* [GEANT4 Collaboration], 9666 citations
- M. Kobayashi and T. Maskawa, "CP Violation in the Renormalizable Theory of Weak Interaction," *Prog. Theor. Phys.* **49** (1973) 652.
 9590 citations

 * roughly: astro-ph, gr-qc, hep-ex, hep-lat, hep-ph, hep-th, math-ph, nucl-ex, nucl-th

- 1. J. M. Maldacena, 14023 citations
- 2. S. Weinberg, 11338 citations
- 3. S. Perlmutter *et al.* [Supernova Cosmology Project Collaboration], **11132** citations
 - A. G. Riess et al. [Supernova Search Team], 10965 citations
- T. Sjostrand, S. Mrenna and P. Z. Skands, 9713 citations S. Agostinelli *et al.* [GEANT4 Collaboration], 9666 citations
- 7. M. Kobayashi and T. Maskawa, 9590 citations
- E. Witten, "Anti-de Sitter space and holography," Adv. Theor. Math. Phys. 2 (1998) 253, hep-th/9802150.
 9128 citations

* roughly: astro-ph, gr-qc, hep-ex, hep-lat, hep-ph, hep-th, math-ph, nucl-ex, nucl-th

- 1. J. M. Maldacena, 14023 citations
- 2. S. Weinberg, 11338 citations
- 3. S. Perlmutter *et al.* [Supernova Cosmology Project Collaboration], **11132** citations
 - A. G. Riess et al. [Supernova Search Team], 10965 citations
- T. Sjostrand, S. Mrenna and P. Z. Skands, 9713 citations S. Agostinelli *et al.* [GEANT4 Collaboration], 9666 citations
- 7. M. Kobayashi and T. Maskawa, 9590 citations
- 8. E. Witten, 9128 citations
- G. Aad *et al.* [ATLAS Collaboration], "Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC," *Phys. Lett.* B716 (2012) 1, arXiv:1207.7214.

8867 citations

S. Chatrchyan *et al.* [CMS Collaboration], "Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC," *Phys. Lett.* **B716** (2012) 30, arXiv:1207.7235.

8657 citations

 J. M. Maldacena, "The Large N limit of superconformal field theories and supergravity," Adv. Theor. Math. Phys. 2 (1998) 231, hep-th/9711200. 14023 citations

- E. Witten, "Anti-de Sitter space and holography," Adv. Theor. Math. Phys. 2 (1998) 253, hep-th/9802150.
 9128 citations
- S. S. Gubser, I. R. Klebanov and A. M. Polyakov, "Gauge theory correlators from noncritical string theory," *Phys. Lett.* B428 (1998) 105, hep-th/9802109. 7816 citations

Outline

Overview and goal of lectures

Modus and organizational issues

Literature

Exercises

Outline

Overview and goal of lectures

Modus and organizational issues

Literature

Exercises

 Holographic correspondences like AdS/CFT profound statements about Nature

- Holographic correspondences like AdS/CFT profound statements about Nature
- Theory with gravity can be equivalent to theory without gravity in another dimension

- Holographic correspondences like AdS/CFT profound statements about Nature
- Theory with gravity can be equivalent to theory without gravity in another dimension
- Holographic dualities often of weak/strong coupling type

- Holographic correspondences like AdS/CFT profound statements about Nature
- Theory with gravity can be equivalent to theory without gravity in another dimension
- Holographic dualities often of weak/strong coupling type
- Calculation on one side of correspondence can be hard, while on the other side it may be simple

- Holographic correspondences like AdS/CFT profound statements about Nature
- Theory with gravity can be equivalent to theory without gravity in another dimension
- Holographic dualities often of weak/strong coupling type
- Calculation on one side of correspondence can be hard, while on the other side it may be simple
- New practical tools for calculations

- Holographic correspondences like AdS/CFT profound statements about Nature
- Theory with gravity can be equivalent to theory without gravity in another dimension
- Holographic dualities often of weak/strong coupling type
- Calculation on one side of correspondence can be hard, while on the other side it may be simple
- New practical tools for calculations
- Possibility I: strongly coupled gauge theory (difficult) mapped to semi-classical gravity (simple)

- Holographic correspondences like AdS/CFT profound statements about Nature
- Theory with gravity can be equivalent to theory without gravity in another dimension
- Holographic dualities often of weak/strong coupling type
- Calculation on one side of correspondence can be hard, while on the other side it may be simple
- New practical tools for calculations
- Possibility I: strongly coupled gauge theory (difficult) mapped to semi-classical gravity (simple)
- Possibility II: quantum gravity (difficult) mapped to weakly coupled gauge theory (simple)

- Holographic correspondences like AdS/CFT profound statements about Nature
- Theory with gravity can be equivalent to theory without gravity in another dimension
- Holographic dualities often of weak/strong coupling type
- Calculation on one side of correspondence can be hard, while on the other side it may be simple
- New practical tools for calculations
- Possibility I: strongly coupled gauge theory (difficult) mapped to semi-classical gravity (simple)
- Possibility II: quantum gravity (difficult) mapped to weakly coupled gauge theory (simple)
- ► Examples I: heavy ion collisions at RHIC and LHC, superfluidity, strange metals, cold atoms, high *T_c* superconductors (?), ...

- Holographic correspondences like AdS/CFT profound statements about Nature
- Theory with gravity can be equivalent to theory without gravity in another dimension
- Holographic dualities often of weak/strong coupling type
- Calculation on one side of correspondence can be hard, while on the other side it may be simple
- New practical tools for calculations
- Possibility I: strongly coupled gauge theory (difficult) mapped to semi-classical gravity (simple)
- Possibility II: quantum gravity (difficult) mapped to weakly coupled gauge theory (simple)
- ► Examples I: heavy ion collisions at RHIC and LHC, superfluidity, strange metals, cold atoms, high T_c superconductors (?), ...
- Examples II: microsopic understanding of black holes, information paradox/firewalls, higher spin theories, flat space holography, quantum gravity in lower dimensions, ...

D. Grumiller — Gravity and holography I

Gravity is simpler in lower dimensions
 11D: 1144 Weyl, 66 Ricci

 5D: 35 Weyl, 15 Ricci
 4D: 10 Weyl, 10 Ricci
 3D: 0 Weyl, 6 Ricci
 2D: 0 Weyl, 1 Ricci

1D: 0 Weyl, 0 Ricci \Rightarrow too simple!

Gravity in two dimensions: black holes, but no gravitons

York-decomposition of metric: only trace part and gauge part, but no transverse-traceless part

Gravity is simpler in lower dimensions

11D: 1144 Weyl, 66 Ricci

5D: 35 Weyl, 15 Ricci

- 4D: 10 Weyl, 10 Ricci
- 3D: 0 Weyl, 6 Ricci
- 2D: 0 Weyl, 1 Ricci 1D: 0 Weyl, 0 Ricci \Rightarrow too simple!
- Gravity in two dimensions: black holes, but no gravitons
- Gravity in three dimensions: black holes and gravitons (at least off-shell)

Gravity is simpler in lower dimensions

11D: 1144 Weyl, 66 Ricci

. 5D: 35 Weyl, 15 Ricci

- 4D: 10 Weyl, 10 Ricci
- 3D: 0 Weyl, 6 Ricci
- 2D: 0 Weyl, 1 Ricci

1D: 0 Weyl, 0 Ricci \Rightarrow too simple!

- Gravity in two dimensions: black holes, but no gravitons
- Gravity in three dimensions: black holes and gravitons (at least off-shell)
- Solve conceptual problems of (quantum) gravity and holography

Gravity is simpler in lower dimensions

11D: 1144 Weyl, 66 Ricci

: 5D: 35 Weyl, 15 Ricci 4D: 10 Weyl, 10 Ricci 3D: 0 Weyl, 6 Ricci 2D: 0 Weyl, 1 Ricci 1D: 0 Weyl, 0 Ricci ⇒ too simple!

- Gravity in two dimensions: black holes, but no gravitons
- Gravity in three dimensions: black holes and gravitons (at least off-shell)
- Solve conceptual problems of (quantum) gravity and holography
- Approximate geometry of cosmic strings or particles confined in plane

• Gravity is simpler in lower dimensions

11D: 1144 Weyl, 66 Ricci

⋮
5D: 35 Weyl, 15 Ricci
4D: 10 Weyl, 10 Ricci
3D: 0 Weyl, 6 Ricci
2D: 0 Weyl, 1 Ricci
1D: 0 Weyl, 0 Ricci ⇒ too simple!

- Gravity in two dimensions: black holes, but no gravitons
- Gravity in three dimensions: black holes and gravitons (at least off-shell)
- Solve conceptual problems of (quantum) gravity and holography
- Approximate geometry of cosmic strings or particles confined in plane
- Holographic tools for 2D condensed matter systems

Prerequisites

Basic knowledge about black hole physics

Topics covered in Black Holes I and II of relevance for these lectures:

- 1. Metric and geodesic equation
- 2. Curvature and basics of differential geometry
- 3. Hilbert action and Einstein equations
- 4. Spherically symmetric black holes and Birkhoff theorem
- 5. Rotating black holes: the Kerr solution
- 6. Black hole thermodynamics
- 7. Hawking effect
- 8. Action principle and boundary issues
- 9. Holographic renormalization and Brown-York stress tensor
- 10. Asymptotic symmetries and black holes in AdS
- 11. Gravity aspects of AdS/CFT

Topics covered in this course:

1. Gravity with boundaries

Topics covered in this course:

- 1. Gravity with boundaries
- 2. Asymptotic Killing vectors

Topics covered in this course:

- 1. Gravity with boundaries
- 2. Asymptotic Killing vectors
- 3. Cartan formulation

Topics covered in this course:

- 1. Gravity with boundaries
- 2. Asymptotic Killing vectors
- 3. Cartan formulation
- 4. Gravity in two and three dimensions
- 1. Gravity with boundaries
- 2. Asymptotic Killing vectors
- 3. Cartan formulation
- 4. Gravity in two and three dimensions
- 5. Canonical boundary charges

- 1. Gravity with boundaries
- 2. Asymptotic Killing vectors
- 3. Cartan formulation
- 4. Gravity in two and three dimensions
- 5. Canonical boundary charges
- 6. Asymptotic symmetry algebras and central extensions

- 1. Gravity with boundaries
- 2. Asymptotic Killing vectors
- 3. Cartan formulation
- 4. Gravity in two and three dimensions
- 5. Canonical boundary charges
- 6. Asymptotic symmetry algebras and central extensions
- 7. Holographic renormalization and correlation functions

- 1. Gravity with boundaries
- 2. Asymptotic Killing vectors
- 3. Cartan formulation
- 4. Gravity in two and three dimensions
- 5. Canonical boundary charges
- 6. Asymptotic symmetry algebras and central extensions
- 7. Holographic renormalization and correlation functions
- 8. Holographic entanglement entropy

- 1. Gravity with boundaries
- 2. Asymptotic Killing vectors
- 3. Cartan formulation
- 4. Gravity in two and three dimensions
- 5. Canonical boundary charges
- 6. Asymptotic symmetry algebras and central extensions
- 7. Holographic renormalization and correlation functions
- 8. Holographic entanglement entropy
- 9. ... and possibly further selected recent research topics

Related lectures this semester (ordered alphabetically by lecturer)

- ▶ VO Geometrie und Gravitation II (136.008), Herbert Balasin
- ▶ PA Black Hole Physics (136.025), Daniel Grumiller
- SV Thermal field theory (135.006), Anton Rebhan
- SV Literaturseminar Mathematische Physik 1 (135.046), Anton Rebhan et al.
- PR Seminar on Fundamental Interactions 1 (132.071), Anton Rebhan et al.
- ► UV: VO+UE Relativity and Cosmology I (260038), Piotr Chrusciel
- UV: SE Relativistic field theories and supersymmetry (260053), Stefan Fredenhagen
- UV: VU Non-perturbative effects in quantum field theory (260044), Johanna Knapp

Outline

Overview and goal of lectures

Modus and organizational issues

Literature

Exercises

► Each Tuesday, 9:00am-11:00am, seminar room on 3rd floor

- ► Each Tuesday, 9:00am-11:00am, seminar room on 3rd floor
- about 2 hours lecture + time for discussion of exercises + 5 minutes break — 10 full lectures in total

- ► Each Tuesday, 9:00am-11:00am, seminar room on 3rd floor
- about 2 hours lecture + time for discussion of exercises + 5 minutes break — 10 full lectures in total
- ▶ 3.0 ECTS

- ► Each Tuesday, 9:00am-11:00am, seminar room on 3rd floor
- about 2 hours lecture + time for discussion of exercises + 5 minutes break — 10 full lectures in total
- ▶ 3.0 ECTS
- ► Credits: by completing at least 66% of the exercises or by oral exam

- ► Each Tuesday, 9:00am-11:00am, seminar room on 3rd floor
- about 2 hours lecture + time for discussion of exercises + 5 minutes break — 10 full lectures in total
- ▶ 3.0 ECTS
- ► Credits: by completing at least 66% of the exercises or by oral exam
- Optional: oral exam for better grade or if you have questions

- ► Each Tuesday, 9:00am-11:00am, seminar room on 3rd floor
- about 2 hours lecture + time for discussion of exercises + 5 minutes break — 10 full lectures in total
- ▶ 3.0 ECTS
- ► Credits: by completing at least 66% of the exercises or by oral exam
- Optional: oral exam for better grade or if you have questions
- Outlook: Projektarbeit Black Hole Physics, Master, PhD

- ► Each Tuesday, 9:00am-11:00am, seminar room on 3rd floor
- about 2 hours lecture + time for discussion of exercises + 5 minutes break — 10 full lectures in total
- ► 3.0 ECTS
- ► Credits: by completing at least 66% of the exercises or by oral exam
- Optional: oral exam for better grade or if you have questions
- Outlook: Projektarbeit Black Hole Physics, Master, PhD
- PA's for preparation of lecture notes in case of interest meet me after the lectures until end of March

Outline

Overview and goal of lectures

Modus and organizational issues

Literature

Exercises

Textbooks and Lecture Notes

- Lecture sheets (in preparation)
- Dilaton gravity in two dimensions (D. Grumiller, W. Kummer and D. Vassilevich), 2002, hep-th/0204253
- How general is holography? (Max Riegler) PhD thesis, 2016, arXiv:1609.02733
- Menagerie of AdS₂ boundary conditions (D. Grumiller, R. McNees, J. Salzer, C. Valcárcel, D. Vassilevich), 2017, arXiv:1708.08471
- Canonical charges in flatland (M. Riegler, C. Zwikel), 2017 arXiv:1709.09871

Increasingly relevant resource: arXiv.org

Outline

Overview and goal of lectures

Modus and organizational issues

Literature

Exercises

Get copies at the end of lecture (essentially now) or download PDF from http://quark.itp.tuwien.ac.at/~grumil/teaching.shtml

Get copies at the end of lecture (essentially now) or download PDF from http://quark.itp.tuwien.ac.at/~grumil/teaching.shtml Next week we review quickly gravity with boundaries:

