

Wolfgang Kummer's pioneering approach to 2d dilaton gravity

Daniel Grumiller

Institute for Theoretical Physics
TU Wien

3rd Austro-Ukrainian Seminar, July 2025

word cloud generated using INSPIRE data of Wolfgang Kummer's scientific publications (titles + coauthors)

Outline

Motivations (2d or not 2d?)

2d geometry

2d quantum gravity

2d holography

Outline

Motivations (2d or not 2d?)

2d geometry

2d quantum gravity

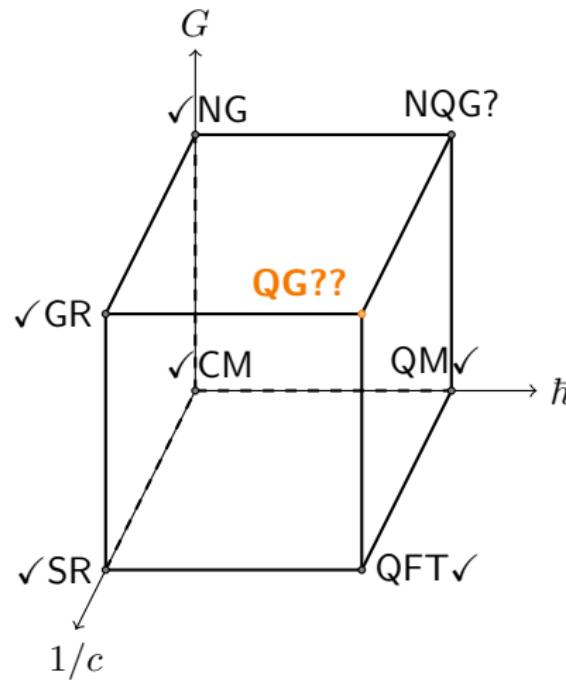
2d holography

Motivations for studying gravity in 2d

- ▶ As simple as possible...

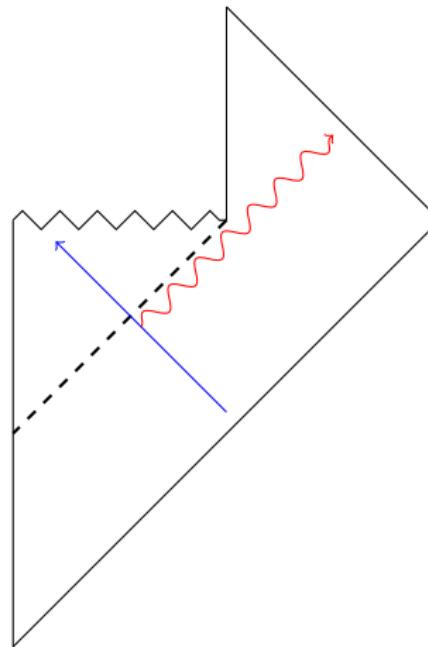
Motivations for studying gravity in 2d

- As simple as possible...
 - quantum gravity?



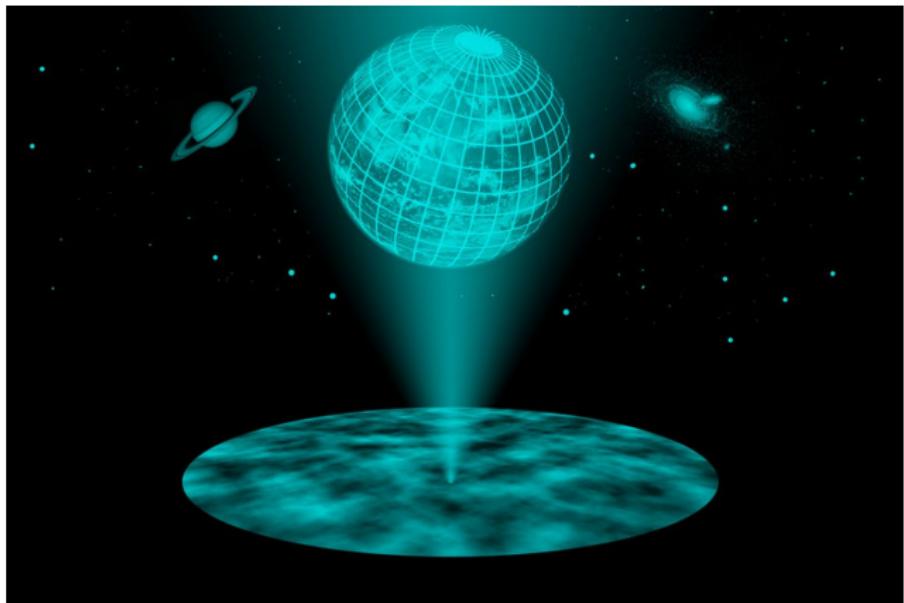
Motivations for studying gravity in 2d

- ▶ As simple as possible...
 - ▶ quantum gravity?
 - ▶ evaporating black holes/information loss?



Motivations for studying gravity in 2d

- ▶ As simple as possible...
 - ▶ quantum gravity?
 - ▶ evaporating black holes/information loss?
 - ▶ holographic principle (beyond AdS/CFT)?



Motivations for studying gravity in 2d

- ▶ As simple as possible...
 - ▶ quantum gravity?
 - ▶ evaporating black holes/information loss?
 - ▶ holographic principle (beyond AdS/CFT)?
- ▶ ...but not simpler

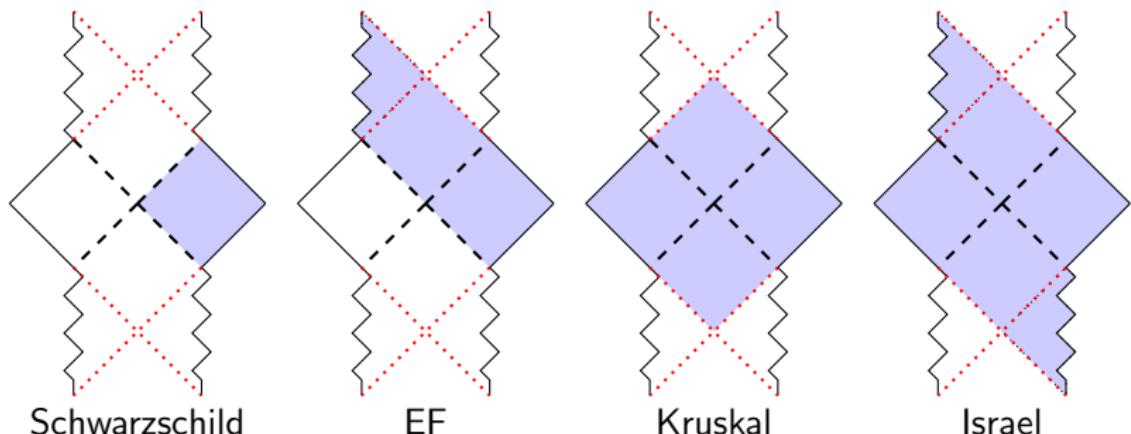
Motivations for studying gravity in 2d

- ▶ As simple as possible...
 - ▶ quantum gravity?
 - ▶ evaporating black holes/information loss?
 - ▶ holographic principle (beyond AdS/CFT)?
- ▶ ...but not simpler
 - ▶ 2: lowest dimension with Riemann curvature and notable topology

$$R_{\mu\nu\lambda\sigma} = \frac{1}{2} R (g_{\mu\lambda}g_{\nu\sigma} - g_{\mu\sigma}g_{\nu\lambda}) \quad R_{\mu\nu} = \frac{1}{2} R g_{\mu\nu}$$

Motivations for studying gravity in 2d

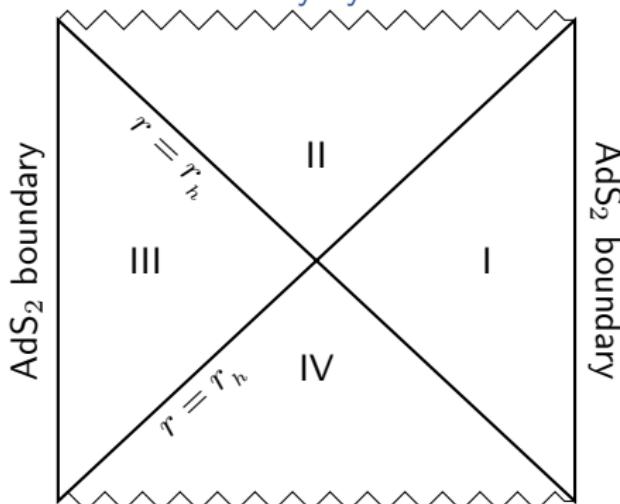
- ▶ As simple as possible...
 - ▶ quantum gravity?
 - ▶ evaporating black holes/information loss?
 - ▶ holographic principle (beyond AdS/CFT)?
- ▶ ...but not simpler
 - ▶ 2: lowest dimension with Riemann curvature and notable topology
 - ▶ 1+1: lowest dimension with lightcones/black holes



2d sections of Reissner–Nordström black hole Penrose diagram, different coordinate patches

Motivations for studying gravity in 2d

- ▶ As simple as possible...
 - ▶ quantum gravity?
 - ▶ evaporating black holes/information loss?
 - ▶ holographic principle (beyond AdS/CFT)?
- ▶ ...but not simpler
 - ▶ 2: lowest dimension with Riemann curvature and notable topology
 - ▶ 1+1: lowest dimension with lightcones/black holes
 - ▶ 2: lowest dimension with boundary dynamics



Motivations for studying gravity in 2d

- ▶ As simple as possible...
 - ▶ quantum gravity?
 - ▶ evaporating black holes/information loss?
 - ▶ holographic principle (beyond AdS/CFT)?
- ▶ ...but not simpler
 - ▶ 2: lowest dimension with Riemann curvature and notable topology
 - ▶ 1+1: lowest dimension with lightcones/black holes
 - ▶ 2: lowest dimension with boundary dynamics
- ▶ Caveats:

Motivations for studying gravity in 2d

- ▶ As simple as possible...
 - ▶ quantum gravity?
 - ▶ evaporating black holes/information loss?
 - ▶ holographic principle (beyond AdS/CFT)?
- ▶ ...but not simpler
 - ▶ 2: lowest dimension with Riemann curvature and notable topology
 - ▶ 1+1: lowest dimension with lightcones/black holes
 - ▶ 2: lowest dimension with boundary dynamics
- ▶ Caveats:
 - ▶ no transverse-traceless part in fluctuations \Rightarrow no gravitational waves

$$\underbrace{h_{\mu\nu}}_3 = \underbrace{\nabla_{(\mu}\xi_{\nu)}}_2 + \underbrace{\frac{1}{2} h \bar{g}_{\mu\nu}}_1$$

Motivations for studying gravity in 2d

- ▶ As simple as possible...
 - ▶ quantum gravity?
 - ▶ evaporating black holes/information loss?
 - ▶ holographic principle (beyond AdS/CFT)?
- ▶ ...but not simpler
 - ▶ 2: lowest dimension with Riemann curvature and notable topology
 - ▶ 1+1: lowest dimension with lightcones/black holes
 - ▶ 2: lowest dimension with boundary dynamics
- ▶ Caveats:
 - ▶ no transverse-traceless part in fluctuations \Rightarrow no gravitational waves
 - ▶ no EOM from EH action

Einstein equations hold trivially for any 2d metric:

$$R_{\mu\nu} = \underbrace{\frac{1}{2} g_{\mu\nu} R}_{\text{true off-shell}}$$

formally: in $d = 2$ we have $d(d - 3)/2 = -1$ graviton polarizations

Motivations for studying gravity in 2d

- ▶ As simple as possible...
 - ▶ quantum gravity?
 - ▶ evaporating black holes/information loss?
 - ▶ holographic principle (beyond AdS/CFT)?
- ▶ ...but not simpler
 - ▶ 2: lowest dimension with Riemann curvature and notable topology
 - ▶ 1+1: lowest dimension with lightcones/black holes
 - ▶ 2: lowest dimension with boundary dynamics
- ▶ Caveats:
 - ▶ no transverse-traceless part in fluctuations \Rightarrow no gravitational waves
 - ▶ no EOM from EH action
 - ▶ 2d metrics locally conformally flat

$$ds^2 = e^{2\Omega(x^+, x^-)} dx^+ dx^-$$

Caveat 1: Ω singular at singularities, horizons, asymptotic boundaries

Caveat 2: EF gauge simpler for many purposes

Caveat 3: may need non-proper trafo to achieve conformal gauge

Motivations for studying gravity in 2d

- ▶ As simple as possible...
 - ▶ quantum gravity?
 - ▶ evaporating black holes/information loss?
 - ▶ holographic principle (beyond AdS/CFT)?
- ▶ ...but not simpler
 - ▶ 2: lowest dimension with Riemann curvature and notable topology
 - ▶ 1+1: lowest dimension with lightcones/black holes
 - ▶ 2: lowest dimension with boundary dynamics
- ▶ Caveats:
 - ▶ no transverse-traceless part in fluctuations \Rightarrow no gravitational waves
 - ▶ no EOM from EH action
 - ▶ 2d metrics locally conformally flat but beware of premature gauge-fixing

Gravity in 2d provides (often soluble) toy models for quantum gravity, black hole evaporation and holography

Outline

Motivations (2d or not 2d?)

2d geometry

2d quantum gravity

2d holography

Local geometry

- ▶ Often useful: Eddington–Finkelstein (EF) gauge

$$ds^2 = g_{\mu\nu} dx^\mu dx^\nu = -2 du dr - K(u, r) du^2$$

used this gauge for classical, semiclassical, and quantum 2d dilaton gravity

analogous to temporal/axial gauge used by Wolfgang for nonabelian gauge theories

Local geometry

- ▶ Often useful: Eddington–Finkelstein (EF) gauge

$$ds^2 = g_{\mu\nu} dx^\mu dx^\nu = -2 du dr - K(u, r) du^2$$

- ▶ u : retarded time; r : radial coordinate; $K(u, r)$: local geometry

$K = 1$: Minkowski spacetime ($u = t - r$)

Local geometry

- ▶ Often useful: Eddington–Finkelstein (EF) gauge

$$ds^2 = g_{\mu\nu} dx^\mu dx^\nu = -2 du dr - K(u, r) du^2$$

- ▶ u : retarded time; r : radial coordinate; $K(u, r)$: local geometry
- ▶ $u = \text{const.}$ lines null; $r = \text{const.}$ lines null if $K = 0$

Local geometry

- ▶ Often useful: Eddington–Finkelstein (EF) gauge

$$ds^2 = g_{\mu\nu} dx^\mu dx^\nu = -2 du dr - K(u, r) du^2$$

- ▶ u : retarded time; r : radial coordinate; $K(u, r)$: local geometry
- ▶ $u = \text{const.}$ lines null; $r = \text{const.}$ lines null if $K = 0$
- ▶ only scalar curvature invariant: Ricci scalar

$$R = -\frac{\partial^2 K(u, r)}{\partial r^2}$$

Local geometry

- ▶ Often useful: Eddington–Finkelstein (EF) gauge

$$ds^2 = g_{\mu\nu} dx^\mu dx^\nu = -2 du dr - K(u, r) du^2$$

- ▶ u : retarded time; r : radial coordinate; $K(u, r)$: local geometry
- ▶ $u = \text{const.}$ lines null; $r = \text{const.}$ lines null if $K = 0$
- ▶ only scalar curvature invariant: Ricci scalar

$$R = -\frac{\partial^2 K(u, r)}{\partial r^2}$$

- ▶ special case $K = K(r)$: Killing vector $\xi = \xi^\alpha \partial_\alpha = \partial_u$

$$(\mathcal{L}_\xi g)_{\mu\nu} = \xi^\alpha \partial_\alpha g_{\mu\nu} + g_{\alpha\mu} \partial_\nu \xi^\alpha + g_{\alpha\nu} \partial_\mu \xi^\alpha = \partial_u g_{\mu\nu} = 0$$

Local geometry

- ▶ Often useful: Eddington–Finkelstein (EF) gauge

$$ds^2 = g_{\mu\nu} dx^\mu dx^\nu = -2 du dr - K(u, r) du^2$$

- ▶ u : retarded time; r : radial coordinate; $K(u, r)$: local geometry
- ▶ $u = \text{const.}$ lines null; $r = \text{const.}$ lines null if $K = 0$
- ▶ only scalar curvature invariant: Ricci scalar

$$R = -\frac{\partial^2 K(u, r)}{\partial r^2}$$

- ▶ special case $K = K(r)$: Killing vector $\xi = \xi^\alpha \partial_\alpha = \partial_u$

$$(\mathcal{L}_\xi g)_{\mu\nu} = \xi^\alpha \partial_\alpha g_{\mu\nu} + g_{\alpha\mu} \partial_\nu \xi^\alpha + g_{\alpha\nu} \partial_\mu \xi^\alpha = \partial_u g_{\mu\nu} = 0$$

- ▶ norm of Killing vector: $\xi^2 = \xi^\mu \xi^\nu g_{\mu\nu} = g_{uu} = -K(r)$

Local geometry

- ▶ Often useful: Eddington–Finkelstein (EF) gauge

$$ds^2 = g_{\mu\nu} dx^\mu dx^\nu = -2 du dr - K(u, r) du^2$$

- ▶ u : retarded time; r : radial coordinate; $K(u, r)$: local geometry
- ▶ $u = \text{const.}$ lines null; $r = \text{const.}$ lines null if $K = 0$
- ▶ only scalar curvature invariant: Ricci scalar

$$R = -\frac{\partial^2 K(u, r)}{\partial r^2}$$

- ▶ special case $K = K(r)$: Killing vector $\xi = \xi^\alpha \partial_\alpha = \partial_u$

$$(\mathcal{L}_\xi g)_{\mu\nu} = \xi^\alpha \partial_\alpha g_{\mu\nu} + g_{\alpha\mu} \partial_\nu \xi^\alpha + g_{\alpha\nu} \partial_\mu \xi^\alpha = \partial_u g_{\mu\nu} = 0$$

- ▶ norm of Killing vector: $\xi^2 = \xi^\mu \xi^\nu g_{\mu\nu} = g_{uu} = -K(r)$
- ▶ zeros of $K(r)$ are Killing horizons ($r = \text{const.}$ null hypersurfaces whose normal vector is Killing vector ∂_u)

Local geometry

- ▶ Often useful: Eddington–Finkelstein (EF) gauge

$$ds^2 = g_{\mu\nu} dx^\mu dx^\nu = -2 du dr - K(u, r) du^2$$

- ▶ u : retarded time; r : radial coordinate; $K(u, r)$: local geometry
- ▶ $u = \text{const.}$ lines null; $r = \text{const.}$ lines null if $K = 0$
- ▶ only scalar curvature invariant: Ricci scalar

$$R = -\frac{\partial^2 K(u, r)}{\partial r^2}$$

- ▶ special case $K = K(r)$: Killing vector $\xi = \xi^\alpha \partial_\alpha = \partial_u$

$$(\mathcal{L}_\xi g)_{\mu\nu} = \xi^\alpha \partial_\alpha g_{\mu\nu} + g_{\alpha\mu} \partial_\nu \xi^\alpha + g_{\alpha\nu} \partial_\mu \xi^\alpha = \partial_u g_{\mu\nu} = 0$$

- ▶ norm of Killing vector: $\xi^2 = \xi^\mu \xi^\nu g_{\mu\nu} = g_{uu} = -K(r)$
- ▶ zeros of $K(r)$ are Killing horizons
- ▶ get as many Killing horizons as there are zeros of $K(r)$

Local geometry

- ▶ Often useful: Eddington–Finkelstein (EF) gauge

$$ds^2 = g_{\mu\nu} dx^\mu dx^\nu = -2 du dr - K(u, r) du^2$$

- ▶ u : retarded time; r : radial coordinate; $K(u, r)$: local geometry
- ▶ $u = \text{const.}$ lines null; $r = \text{const.}$ lines null if $K = 0$
- ▶ only scalar curvature invariant: Ricci scalar

$$R = -\frac{\partial^2 K(u, r)}{\partial r^2}$$

- ▶ special case $K = K(r)$: Killing vector $\xi = \xi^\alpha \partial_\alpha = \partial_u$

$$(\mathcal{L}_\xi g)_{\mu\nu} = \xi^\alpha \partial_\alpha g_{\mu\nu} + g_{\alpha\mu} \partial_\nu \xi^\alpha + g_{\alpha\nu} \partial_\mu \xi^\alpha = \partial_u g_{\mu\nu} = 0$$

- ▶ norm of Killing vector: $\xi^2 = \xi^\mu \xi^\nu g_{\mu\nu} = g_{uu} = -K(r)$
- ▶ zeros of $K(r)$ are Killing horizons
- ▶ get as many Killing horizons as there are zeros of $K(r)$

Local properties (curvature, Killing horizons) captured by $K(u, r)$

Global geometry

- ▶ EF gauge also useful for uncovering **global** properties

used this gauge to find all global solutions of $R^2 + T^2$ gravity

Global geometry

- ▶ EF gauge also useful for uncovering **global properties**
- ▶ focus on metrics with Killing vector ∂_u (why? see later!)

$$ds^2 = g_{\mu\nu} dx^\mu dx^\nu = -2 du dr - K(r) du^2$$

as example consider $K(r) = 1 - \frac{2M}{r} + \frac{Q^2}{r^2}$ with $r \in (0, \infty)$

Global geometry

- ▶ EF gauge also useful for uncovering **global properties**
- ▶ focus on metrics with Killing vector ∂_u (why? see later!)

$$ds^2 = g_{\mu\nu} dx^\mu dx^\nu = -2 du dr - K(r) du^2$$

as example consider $K(r) = 1 - \frac{2M}{r} + \frac{Q^2}{r^2}$ with $r \in (0, \infty)$

- ▶ simple algorithm: determine first all curvature singularities

Global geometry

- ▶ EF gauge also useful for uncovering **global properties**
- ▶ focus on metrics with Killing vector ∂_u (why? see later!)

$$ds^2 = g_{\mu\nu} dx^\mu dx^\nu = -2 du dr - K(r) du^2$$

as example consider $K(r) = 1 - \frac{2M}{r} + \frac{Q^2}{r^2}$ with $r \in (0, \infty)$

- ▶ simple algorithm: determine first all curvature singularities
in example: $R = \frac{4M}{r^3} - \frac{6Q^2}{r^4}$, so singular at $r = 0$

Global geometry

- ▶ EF gauge also useful for uncovering **global properties**
- ▶ focus on metrics with Killing vector ∂_u (why? see later!)

$$ds^2 = g_{\mu\nu} dx^\mu dx^\nu = -2 du dr - K(r) du^2$$

as example consider $K(r) = 1 - \frac{2M}{r} + \frac{Q^2}{r^2}$ with $r \in (0, \infty)$

- ▶ simple algorithm: determine first all curvature singularities
- ▶ deduce all zeros of Killing norm, $K(r) = 0$

Global geometry

- ▶ EF gauge also useful for uncovering **global properties**
- ▶ focus on metrics with Killing vector ∂_u (why? see later!)

$$ds^2 = g_{\mu\nu} dx^\mu dx^\nu = -2 du dr - K(r) du^2$$

as example consider $K(r) = 1 - \frac{2M}{r} + \frac{Q^2}{r^2}$ with $r \in (0, \infty)$

- ▶ simple algorithm: determine first all curvature singularities
- ▶ deduce all zeros of Killing norm, $K(r) = 0$

in example: $r_{\pm} = M \pm \sqrt{M^2 - Q^2}$

Global geometry

- ▶ EF gauge also useful for uncovering **global properties**
- ▶ focus on metrics with Killing vector ∂_u (why? see later!)

$$ds^2 = g_{\mu\nu} dx^\mu dx^\nu = -2 du dr - K(r) du^2$$

as example consider $K(r) = 1 - \frac{2M}{r} + \frac{Q^2}{r^2}$ with $r \in (0, \infty)$

- ▶ simple algorithm: determine first all curvature singularities
- ▶ deduce all zeros of Killing norm, $K(r) = 0$
- ▶ deduce asymptotic structure (if there is an asymptotic region)
in example: metric asymptotically Minkowski for $r \rightarrow \infty$

Global geometry

- ▶ EF gauge also useful for uncovering **global properties**
- ▶ focus on metrics with Killing vector ∂_u (why? see later!)

$$ds^2 = g_{\mu\nu} dx^\mu dx^\nu = -2 du dr - K(r) du^2$$

as example consider $K(r) = 1 - \frac{2M}{r} + \frac{Q^2}{r^2}$ with $r \in (0, \infty)$

- ▶ simple algorithm: determine first all curvature singularities
- ▶ deduce all zeros of Killing norm, $K(r) = 0$
- ▶ deduce asymptotic structure (if there is an asymptotic region)
- ▶ draw part of Penrose diagram for EF patch

Global geometry

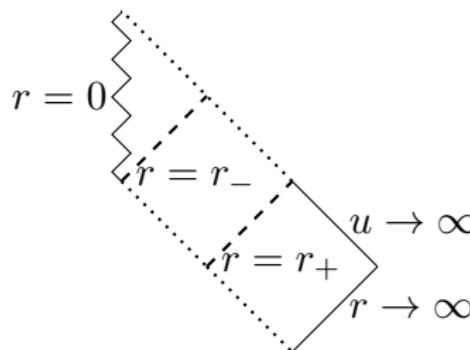
- ▶ EF gauge also useful for uncovering **global properties**
- ▶ focus on metrics with Killing vector ∂_u (why? see later!)

$$ds^2 = g_{\mu\nu} dx^\mu dx^\nu = -2 du dr - K(r) du^2$$

as example consider $K(r) = 1 - \frac{2M}{r} + \frac{Q^2}{r^2}$ with $r \in (0, \infty)$

- ▶ simple algorithm: determine first all curvature singularities
- ▶ deduce all zeros of Killing norm, $K(r) = 0$
- ▶ deduce asymptotic structure (if there is an asymptotic region)
- ▶ draw part of Penrose diagram for EF patch

in example:



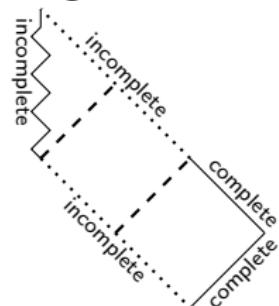
Global geometry

- ▶ EF gauge also useful for uncovering **global properties**
- ▶ focus on metrics with Killing vector ∂_u (why? see later!)

$$ds^2 = g_{\mu\nu} dx^\mu dx^\nu = -2 du dr - K(r) du^2$$

as example consider $K(r) = 1 - \frac{2M}{r} + \frac{Q^2}{r^2}$ with $r \in (0, \infty)$

- ▶ simple algorithm: determine first all curvature singularities
- ▶ deduce all zeros of Killing norm, $K(r) = 0$
- ▶ deduce asymptotic structure (if there is an asymptotic region)
- ▶ draw part of Penrose diagram for EF patch
- ▶ determine (in-)completeness properties of boundaries of patch by looking at all geodesics, e.g. in example:



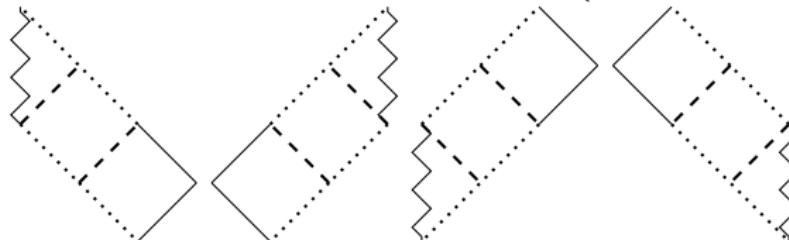
Global geometry

- ▶ EF gauge also useful for uncovering **global properties**
- ▶ focus on metrics with Killing vector ∂_u (why? see later!)

$$ds^2 = g_{\mu\nu} dx^\mu dx^\nu = -2 du dr - K(r) du^2$$

as example consider $K(r) = 1 - \frac{2M}{r} + \frac{Q^2}{r^2}$ with $r \in (0, \infty)$

- ▶ simple algorithm: determine first all curvature singularities
- ▶ deduce all zeros of Killing norm, $K(r) = 0$
- ▶ deduce asymptotic structure (if there is an asymptotic region)
- ▶ draw part of Penrose diagram for EF patch
- ▶ determine (in-)completeness properties of boundaries of patch by looking at all geodesics
- ▶ construct mirror flipped versions (outgoing EF \leftrightarrow ingoing EF) , e.g.:



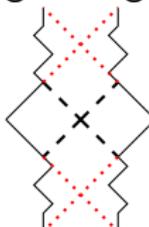
Global geometry

- ▶ EF gauge also useful for uncovering **global properties**
- ▶ focus on metrics with Killing vector ∂_u (why? see later!)

$$ds^2 = g_{\mu\nu} dx^\mu dx^\nu = -2 du dr - K(r) du^2$$

as example consider $K(r) = 1 - \frac{2M}{r} + \frac{Q^2}{r^2}$ with $r \in (0, \infty)$

- ▶ simple algorithm: determine first all curvature singularities
- ▶ deduce all zeros of Killing norm, $K(r) = 0$
- ▶ deduce asymptotic structure (if there is an asymptotic region)
- ▶ draw part of Penrose diagram for EF patch
- ▶ determine (in-)completeness properties of boundaries of patch by looking at all geodesics
- ▶ construct mirror flipped versions (outgoing EF \leftrightarrow ingoing EF)
- ▶ glue together basic EF patches to get global **Penrose diagram**, e.g.:



Global geometry

- ▶ EF gauge also useful for uncovering **global properties**
- ▶ focus on metrics with Killing vector ∂_u (why? see later!)

$$ds^2 = g_{\mu\nu} dx^\mu dx^\nu = -2 du dr - K(r) du^2$$

as example consider $K(r) = 1 - \frac{2M}{r} + \frac{Q^2}{r^2}$ with $r \in (0, \infty)$

- ▶ simple algorithm: determine first all curvature singularities
- ▶ deduce all zeros of Killing norm, $K(r) = 0$
- ▶ deduce asymptotic structure (if there is an asymptotic region)
- ▶ draw part of Penrose diagram for EF patch
- ▶ determine (in-)completeness properties of boundaries of patch by looking at all geodesics
- ▶ construct mirror flipped versions (outgoing EF \leftrightarrow ingoing EF)
- ▶ glue together basic EF patches to get global Penrose diagram
- ▶ read off **event horizons**, **Cauchy horizons**, **bifurcation points** on Killing horizons, etc. (see series of papers by Klösch & Strobl, '96-'97)

Global geometry

- ▶ EF gauge also useful for uncovering **global properties**
- ▶ focus on metrics with Killing vector ∂_u (why? see later!)

$$ds^2 = g_{\mu\nu} dx^\mu dx^\nu = -2 du dr - K(r) du^2$$

as example consider $K(r) = 1 - \frac{2M}{r} + \frac{Q^2}{r^2}$ with $r \in (0, \infty)$

- ▶ simple algorithm: determine first all curvature singularities
- ▶ deduce all zeros of Killing norm, $K(r) = 0$
- ▶ deduce asymptotic structure (if there is an asymptotic region)
- ▶ draw part of Penrose diagram for EF patch
- ▶ determine (in-)completeness properties of boundaries of patch by looking at all geodesics
- ▶ construct mirror flipped versions (outgoing EF \leftrightarrow ingoing EF)
- ▶ glue together basic EF patches to get global Penrose diagram
- ▶ read off **event horizons**, **Cauchy horizons**, **bifurcation points** on Killing **horizons**, etc. (see series of papers by Klösch & Strobl, '96-'97)

Global properties (**horizons**, **Penrose diagrams**) captured by $K(u, r)$

Asymptotic geometry

- ▶ many physical situations: have an actual or **asymptotic boundary**

while this rarely featured in Wolfgang's work, it was among the last research topics we discussed in 2007

Wolfgang studied boundary conditions with [Lau '96](#); [Bergamin, DG, Vassilevich '06](#) [his last paper]

Asymptotic geometry

- ▶ many physical situations: have an actual or **asymptotic boundary**
- ▶ need to provide boundary conditions on fields, including metric

Asymptotic geometry

- ▶ many physical situations: have an actual or **asymptotic boundary**
- ▶ need to provide boundary conditions on fields, including metric
- ▶ “natural” boundary conditions (field $\rightarrow 0$) bad for metric!

Asymptotic geometry

- ▶ many physical situations: have an actual or **asymptotic boundary**
- ▶ need to provide boundary conditions on fields, including metric
- ▶ “natural” boundary conditions (field $\rightarrow 0$) bad for metric!
- ▶ instead: fall-off conditions (adapted to physical situation)

Asymptotic geometry

- ▶ many physical situations: have an actual or **asymptotic boundary**
- ▶ need to provide boundary conditions on fields, including metric
- ▶ “natural” boundary conditions (field $\rightarrow 0$) bad for metric!
- ▶ instead: fall-off conditions (adapted to physical situation)
- ▶ example in EF gauge (**asymptotic boundary** at $r \rightarrow \infty$):

$$ds^2 = g_{\mu\nu} dx^\mu dx^\nu = -2 du dr - \left(\frac{r^2}{\ell^2} + \mathcal{O}(1) \right) du^2$$

implies $R = -\frac{2}{\ell^2} + \dots \Rightarrow$ vanilla asymptotically AdS_2 bc's!

Asymptotic geometry

- ▶ many physical situations: have an actual or **asymptotic boundary**
- ▶ need to provide boundary conditions on fields, including metric
- ▶ “natural” boundary conditions (field $\rightarrow 0$) bad for metric!
- ▶ instead: fall-off conditions (adapted to physical situation)
- ▶ example in EF gauge (**asymptotic boundary** at $r \rightarrow \infty$):

$$ds^2 = g_{\mu\nu} dx^\mu dx^\nu = -2 du dr - \left(\frac{r^2}{\ell^2} + \mathcal{O}(1) \right) du^2$$

- ▶ metric fluctuations allowed by bc's: $\delta g_{ur} = \delta g_{rr} = 0$, $\delta g_{uu} = \mathcal{O}(1)$

Asymptotic geometry

- ▶ many physical situations: have an actual or **asymptotic boundary**
- ▶ need to provide boundary conditions on fields, including metric
- ▶ “natural” boundary conditions (field $\rightarrow 0$) bad for metric!
- ▶ instead: fall-off conditions (adapted to physical situation)
- ▶ example in EF gauge (**asymptotic boundary** at $r \rightarrow \infty$):

$$ds^2 = g_{\mu\nu} dx^\mu dx^\nu = -2 du dr - \left(\frac{r^2}{\ell^2} + \mathcal{O}(1) \right) du^2$$

- ▶ metric fluctuations allowed by bc's: $\delta g_{ur} = \delta g_{rr} = 0$, $\delta g_{uu} = \mathcal{O}(1)$
- ▶ **asymptotic Killing vectors** ξ : preserve asymptotic form of metric

$$(\mathcal{L}_\xi g)_{\mu\nu} \stackrel{!}{=} \mathcal{O}(\delta g_{\mu\nu})$$

Asymptotic geometry

- ▶ many physical situations: have an actual or **asymptotic boundary**
- ▶ need to provide boundary conditions on fields, including metric
- ▶ “natural” boundary conditions (field $\rightarrow 0$) bad for metric!
- ▶ instead: fall-off conditions (adapted to physical situation)
- ▶ example in EF gauge (**asymptotic boundary** at $r \rightarrow \infty$):

$$ds^2 = g_{\mu\nu} dx^\mu dx^\nu = -2 du dr - \left(\frac{r^2}{\ell^2} + \mathcal{O}(1) \right) du^2$$

- ▶ metric fluctuations allowed by bc's: $\delta g_{ur} = \delta g_{rr} = 0$, $\delta g_{uu} = \mathcal{O}(1)$
- ▶ **asymptotic Killing vectors** ξ : preserve asymptotic form of metric

$$(\mathcal{L}_\xi g)_{\mu\nu} \stackrel{!}{=} \mathcal{O}(\delta g_{\mu\nu})$$

- ▶ example above: infinitely many (!) **asymptotic Killing vectors** (AKVs)

$$\xi = \xi[\epsilon] = \epsilon(u) \partial_u - r \epsilon'(u) \partial_r + \ell^2 \epsilon''(u) \partial_r + \dots$$

we shall derive this result in the end

Asymptotic geometry

- ▶ many physical situations: have an actual or **asymptotic boundary**
- ▶ need to provide boundary conditions on fields, including metric
- ▶ “natural” boundary conditions (field $\rightarrow 0$) bad for metric!
- ▶ instead: fall-off conditions (adapted to physical situation)
- ▶ example in EF gauge (**asymptotic boundary** at $r \rightarrow \infty$):

$$ds^2 = g_{\mu\nu} dx^\mu dx^\nu = -2 du dr - \left(\frac{r^2}{\ell^2} + \mathcal{O}(1) \right) du^2$$

- ▶ metric fluctuations allowed by bc's: $\delta g_{ur} = \delta g_{rr} = 0$, $\delta g_{uu} = \mathcal{O}(1)$
- ▶ **asymptotic Killing vectors** ξ : preserve asymptotic form of metric

$$(\mathcal{L}_\xi g)_{\mu\nu} \stackrel{!}{=} \mathcal{O}(\delta g_{\mu\nu})$$

- ▶ example above: infinitely many (!) **asymptotic Killing vectors** (AKVs)

$$\xi = \xi[\epsilon] = \epsilon(u) \partial_u - r \epsilon'(u) \partial_r + \ell^2 \epsilon''(u) \partial_r + \dots$$

- ▶ Lie-bracket algebra of AKVs = **asymptotic symmetry algebra**

$$[\xi[\epsilon], \xi[\eta]]_{\text{Lie}} = \xi[\epsilon\eta' - \epsilon'\eta]$$

Asymptotic geometry

- ▶ need to provide boundary conditions on fields, including metric
- ▶ example in EF gauge (asymptotic boundary at $r \rightarrow \infty$):

$$ds^2 = g_{\mu\nu} dx^\mu dx^\nu = -2 du dr - \left(\frac{r^2}{\ell^2} + \mathcal{O}(1) \right) du^2$$

- ▶ metric fluctuations allowed by bc's: $\delta g_{ur} = \delta g_{rr} = 0$, $\delta g_{uu} = \mathcal{O}(1)$
- ▶ asymptotic Killing vectors ξ : preserve asymptotic form of metric

$$(\mathcal{L}_\xi g)_{\mu\nu} \stackrel{!}{=} \mathcal{O}(\delta g_{\mu\nu})$$

- ▶ example above: infinitely many (!) asymptotic Killing vectors (AKVs)

$$\xi = \xi[\epsilon] = \epsilon(u) \partial_u - r \epsilon'(u) \partial_r + \ell^2 \epsilon''(u) \partial_r + \dots$$

- ▶ Lie-bracket algebra of AKVs = asymptotic symmetry algebra (ASA)

$$[\xi[\epsilon], \xi[\eta]]_{\text{Lie}} = \xi[\epsilon\eta' - \epsilon'\eta]$$

In holographic context AKVs are global symmetries of dual QFT

Asymptotic geometry

- ▶ need to provide boundary conditions on fields, including metric
- ▶ example in EF gauge (asymptotic boundary at $r \rightarrow \infty$):

$$ds^2 = g_{\mu\nu} dx^\mu dx^\nu = -2 du dr - \left(\frac{r^2}{\ell^2} + \mathcal{O}(1) \right) du^2$$

- ▶ metric fluctuations allowed by bc's: $\delta g_{ur} = \delta g_{rr} = 0$, $\delta g_{uu} = \mathcal{O}(1)$
- ▶ asymptotic Killing vectors ξ : preserve asymptotic form of metric

$$(\mathcal{L}_\xi g)_{\mu\nu} \stackrel{!}{=} \mathcal{O}(\delta g_{\mu\nu})$$

- ▶ example above: infinitely many (!) asymptotic Killing vectors (AKVs)

$$\xi = \xi[\epsilon] = \epsilon(u) \partial_u - r \epsilon'(u) \partial_r + \ell^2 \epsilon''(u) \partial_r + \dots$$

- ▶ Lie-bracket algebra of AKVs = asymptotic symmetry algebra (ASA)

$$[\xi[\epsilon], \xi[\eta]]_{\text{Lie}} = \xi[\epsilon\eta' - \epsilon'\eta]$$

Also: asymptotic properties (AKVs, ASA) captured by $K(u, r)$

Outline

Motivations (2d or not 2d?)

2d geometry

2d quantum gravity

2d holography

Action for dilaton gravity in 2d

- ▶ to quantize, we need more than geometry/kinematics: action!

Action for dilaton gravity in 2d

- ▶ to quantize, we need more than geometry/kinematics: action!
- ▶ action for **Katanaev–Volovich** model in 2d dilaton gravity formulation

$$I[X, g_{\mu\nu}] = \frac{k}{4\pi} \int d^2x \sqrt{-g} (XR - \alpha(\partial X)^2 - \beta X^2 - \gamma)$$

X : dilaton field

$g_{\mu\nu}$: metric

α, β, γ, k : coupling constants

I can solve this globally in EF-gauge!

Action for dilaton gravity in 2d

- ▶ to quantize, we need more than geometry/kinematics: action!
- ▶ action for **Jackiw–Teitelboim** model in 2d dilaton gravity formulation

$$I[X, g_{\mu\nu}] = \frac{k}{4\pi} \int d^2x \sqrt{-g} X (R - \Lambda)$$

X : dilaton field

$g_{\mu\nu}$: metric

Λ, k : coupling constants

I can solve this globally in EF-gauge!

Action for dilaton gravity in 2d

- ▶ to quantize, we need more than geometry/kinematics: action!
- ▶ action for **Callan–Giddings–Harvey–Strominger** model in 2d dilaton gravity formulation

$$I[X, g_{\mu\nu}] = \frac{k}{4\pi} \int d^2x \sqrt{-g} (XR - \Lambda)$$

X : dilaton field

$g_{\mu\nu}$: metric

Λ, k : coupling constants

I can solve this globally in EF-gauge!

Action for dilaton gravity in 2d

- ▶ to quantize, we need more than geometry/kinematics: action!
- ▶ action for generic power counting renormalizable 2d dilaton gravity

$$I[X, g_{\mu\nu}] = \frac{k}{4\pi} \int d^2x \sqrt{-g} (XR - U(X)(\partial X)^2 - V(X))$$

X : dilaton field

$g_{\mu\nu}$: metric

$U(X), V(X)$: dilaton potentials (may contain coupling constants)

I can solve this globally in EF-gauge: $ds^2 = -2 du dr - K(r) du^2$

Wolfgang's general solution has a function K of the form

$$K(X) = e^{Q(X)} (w(X) - 2M) \quad dr = e^{Q(X)} dX$$

with $Q(X) = \int^X U(y) dy$ and $w(X) = -\frac{1}{2} \int^X e^{Q(y)} V(y) dy$

⇒ **generalized Birkhoff theorem: Killing vector ∂_u for all solutions**

Action for dilaton gravity in 2d

- ▶ to quantize, we need more than geometry/kinematics: action!
- ▶ action for generalized 2d dilaton gravity DG, Ruzziconi, Zwikel '21

$$I[X, g_{\mu\nu}] = \frac{k}{4\pi} \int d^2x \sqrt{-g} (XR - \mathcal{V}(X, (\partial X)^2))$$

X : dilaton field

$g_{\mu\nu}$: metric

$\mathcal{V}(X, (\partial X)^2)$: free function (may contain coupling constants)

one can proof that this is the most general action possible, without adding matter degrees of freedom or destroying the gravity-nature of the theory; the proof employs consistent deformations using BRST methods

Action for dilaton gravity in 2d

- ▶ to quantize, we need more than geometry/kinematics: action!
- ▶ action for generalized 2d dilaton gravity [DG, Ruzziconi, Zwickel '21](#)

$$I[X, g_{\mu\nu}] = \frac{k}{4\pi} \int d^2x \sqrt{-g} (XR - \mathcal{V}(X, (\partial X)^2))$$

X : dilaton field

$g_{\mu\nu}$: metric

$\mathcal{V}(X, (\partial X)^2)$: free function (may contain coupling constants)

You can solve this globally in EF-gauge!

Action for dilaton gravity in 2d

- ▶ to quantize, we need more than geometry/kinematics: action!
- ▶ action for generalized 2d dilaton gravity DG, Ruzziconi, Zwickel '21

$$I[X, g_{\mu\nu}] = \frac{k}{4\pi} \int d^2x \sqrt{-g} (XR - \mathcal{V}(X, (\partial X)^2))$$

X : dilaton field

$g_{\mu\nu}$: metric

$\mathcal{V}(X, (\partial X)^2)$: free function (may contain coupling constants)

You can solve this globally in EF-gauge!

- ▶ **Further generalizations:**

1. boundary terms and holographic renormalization DG, McNees '07
2. Schwarzian-type boundary actions Maldacena, Stanford '16; González, DG, Salzer '18
3. Carrollian 2d dilaton gravity Ecker, DG, Hartong, Pérez, Prohazka, Salzer, Troncoso '20 & '23

Various approaches to 2d quantum gravity

- ▶ Quantize perturbatively on fixed background

$$g_{\mu\nu} = \bar{g}_{\mu\nu} + \delta g_{\mu\nu} \quad \langle T^{\mu}{}_{\mu} \rangle = \frac{c}{24\pi} \bar{R} \quad \bar{\nabla}_{\mu} \langle T^{\mu}{}_{\nu} \rangle = 0$$

$\bar{g}_{\mu\nu}$: background metric, \bar{R} : background Ricci scalar

c : central charge of matter part (trace anomaly)

last equality: covariant conservation equation of EMT $T_{\mu\nu}$

derived Hawking effect in this way, see review with [Vassilevich '99](#)

Various approaches to 2d quantum gravity

- ▶ Quantize perturbatively on fixed background
- ▶ Define 2d gravity as matrix model

see e.g. Di Francesco, Ginsparg, Zinn-Justin '93

Various approaches to 2d quantum gravity

- ▶ Quantize perturbatively on fixed background
- ▶ Define 2d gravity as matrix model
- ▶ Use holography

see final part of talk

Various approaches to 2d quantum gravity

- ▶ Quantize perturbatively on fixed background
- ▶ Define 2d gravity as matrix model
- ▶ Use holography
- ▶ Integrate out geometry exactly

Vienna School approach Kummer, Liebl, Vassilevich, DG, Fischer, Bergamin, Hofmann

Various approaches to 2d quantum gravity

- ▶ Quantize perturbatively on fixed background
- ▶ Define 2d gravity as matrix model
- ▶ Use holography
- ▶ Integrate out geometry exactly

Vienna School approach Kummer, Liebl, Vassilevich, DG, Fischer, Bergamin, Hofmann

Focus first on Vienna School approach and then on holography

Integrating out geometry

For details see DG, Kummer, Vassilevich [hep-th/0204253](https://arxiv.org/abs/hep-th/0204253)

Distinguishing features of Vienna School approach:

Integrating out geometry

For details see DG, Kummer, Vassilevich [hep-th/0204253](https://arxiv.org/abs/hep-th/0204253)

Distinguishing features of Vienna School approach:

- ▶ Spherically reduce Einstein gravity with matter to 2d dilaton gravity

Integrating out geometry

For details see DG, Kummer, Vassilevich [hep-th/0204253](#)

Distinguishing features of Vienna School approach:

- ▶ Spherically reduce Einstein gravity with matter to 2d dilaton gravity
- ▶ Use covariant 1st order action in terms of Cartan variables

Integrating out geometry

For details see DG, Kummer, Vassilevich [hep-th/0204253](https://arxiv.org/abs/hep-th/0204253)

Distinguishing features of Vienna School approach:

- ▶ Spherically reduce Einstein gravity with matter to 2d dilaton gravity
- ▶ Use covariant 1st order action in terms of Cartan variables
- ▶ Exploit lightcone gauge for Minkowski metric

Integrating out geometry

For details see DG, Kummer, Vassilevich [hep-th/0204253](#)

Distinguishing features of Vienna School approach:

- ▶ Spherically reduce Einstein gravity with matter to 2d dilaton gravity
- ▶ Use covariant 1st order action in terms of Cartan variables
- ▶ Exploit lightcone gauge for Minkowski metric
- ▶ Impose temporal gauge on zweibein and connection using BRST

Integrating out geometry

For details see DG, Kummer, Vassilevich [hep-th/0204253](#)

Distinguishing features of Vienna School approach:

- ▶ Spherically reduce Einstein gravity with matter to 2d dilaton gravity
- ▶ Use covariant 1st order action in terms of Cartan variables
- ▶ Exploit lightcone gauge for Minkowski metric
- ▶ Impose temporal gauge on zweibein and connection using BRST
- ▶ Perform the path integral over geometry: half of variables linear, other half functional δ -functions

Integrating out geometry

For details see DG, Kummer, Vassilevich [hep-th/0204253](#)

Distinguishing features of Vienna School approach:

- ▶ Spherically reduce Einstein gravity with matter to 2d dilaton gravity
- ▶ Use covariant 1st order action in terms of Cartan variables
- ▶ Exploit lightcone gauge for Minkowski metric
- ▶ Impose temporal gauge on zweibein and connection using BRST
- ▶ Perform the path integral over geometry: half of variables linear, other half functional δ -functions
- ▶ Obtain nonlocal, nonpolynomial action for matter fields

Integrating out geometry

For details see DG, Kummer, Vassilevich [hep-th/0204253](https://arxiv.org/abs/hep-th/0204253)

Distinguishing features of Vienna School approach:

- ▶ Spherically reduce Einstein gravity with matter to 2d dilaton gravity
- ▶ Use covariant 1st order action in terms of Cartan variables
- ▶ Exploit lightcone gauge for Minkowski metric
- ▶ Impose temporal gauge on zweibein and connection using BRST
- ▶ Perform the path integral over geometry: half of variables linear, other half functional δ -functions
- ▶ Obtain nonlocal, nonpolynomial action for matter fields
- ▶ Derive Feynman rules

Integrating out geometry

For details see DG, Kummer, Vassilevich [hep-th/0204253](#)

Distinguishing features of Vienna School approach:

- ▶ Spherically reduce Einstein gravity with matter to 2d dilaton gravity
- ▶ Use covariant 1st order action in terms of Cartan variables
- ▶ Exploit lightcone gauge for Minkowski metric
- ▶ Impose temporal gauge on zweibein and connection using BRST
- ▶ Perform the path integral over geometry: half of variables linear, other half functional δ -functions
- ▶ Obtain nonlocal, nonpolynomial action for matter fields
- ▶ Derive Feynman rules
- ▶ Calculate S-matrix

Integrating out geometry

For details see DG, Kummer, Vassilevich [hep-th/0204253](https://arxiv.org/abs/hep-th/0204253)

Distinguishing features of Vienna School approach:

- ▶ Spherically reduce Einstein gravity with matter to 2d dilaton gravity
- ▶ Use covariant 1st order action in terms of Cartan variables
- ▶ Exploit lightcone gauge for Minkowski metric
- ▶ Impose temporal gauge on zweibein and connection using BRST
- ▶ Perform the path integral over geometry: half of variables linear, other half functional δ -functions
- ▶ Obtain nonlocal, nonpolynomial action for matter fields
- ▶ Derive Feynman rules
- ▶ Calculate S-matrix
- ▶ Optionally: reconstruct geometry from solving constraints
⇒ virtual black holes!

S-matrix for s-wave gravitational scattering

Massless free scalar field scatters on own gravitational energy

Implementing program for Einstein-massless Klein–Gordon model yields lowest order 4pt (unitary and CPT-invariant) S-matrix

$$T(q, q', k, k') = \frac{\delta(k + k' - q - q')}{|kk'qq'|^{3/2}} \tilde{T}$$

with $s = k + k' = q + q'$, $t = k - q$, $u = k' - q$ and

$$\tilde{T} = stu \ln \frac{t^2 u^2}{s^4} + \frac{1}{stu} \sum_{p \in \{k, k', q, q'\}} p^2 \ln \frac{p^2}{s^2} \left(3kk'qq' - \frac{1}{2} \sum_{r \neq p} \sum_{v \neq r, p} r^2 v^2 \right)$$

S-matrix obtained in [Fischer, DG, Kummer, Vassilevich '01](#)

S-matrix for s-wave gravitational scattering

Massless free scalar field scatters on own gravitational energy

Implementing program for Einstein-massless Klein–Gordon model yields lowest order 4pt (unitary and CPT-invariant) S-matrix

$$T(q, q', k, k') = \frac{\delta(k + k' - q - q')}{|kk'qq'|^{3/2}} \tilde{T}$$

with $s = k + k' = q + q'$, $t = k - q$, $u = k' - q$ and

$$\tilde{T} = stu \ln \frac{t^2 u^2}{s^4} + \frac{1}{stu} \sum_{p \in \{k, k', q, q'\}} p^2 \ln \frac{p^2}{s^2} \left(3kk'qq' - \frac{1}{2} \sum_{r \neq p} \sum_{v \neq r, p} r^2 v^2 \right)$$

- ▶ only one delta function (no separate momentum conservation)

S-matrix for s-wave gravitational scattering

Massless free scalar field scatters on own gravitational energy

Implementing program for Einstein-massless Klein–Gordon model yields lowest order 4pt (unitary and CPT-invariant) S-matrix

$$T(q, q', k, k') = \frac{\delta(k + k' - q - q')}{|kk'qq'|^{3/2}} \tilde{T}$$

with $s = k + k' = q + q'$, $t = k - q$, $u = k' - q$ and

$$\tilde{T} = stu \ln \frac{t^2 u^2}{s^4} + \frac{1}{stu} \sum_{p \in \{k, k', q, q'\}} p^2 \ln \frac{p^2}{s^2} \left(3kk'qq' - \frac{1}{2} \sum_{r \neq p} \sum_{v \neq r, p} r^2 v^2 \right)$$

- ▶ only one delta function (no separate momentum conservation)
- ▶ forward scattering poles e.g.,

$$\lim_{t \rightarrow 0} T \propto \frac{1}{t} \frac{\ln \frac{(s-u)^2}{(s+u)^2}}{|s^2 - u^2|} + \mathcal{O}(t)$$

S-matrix for s-wave gravitational scattering

Massless free scalar field scatters on own gravitational energy

Implementing program for Einstein-massless Klein–Gordon model yields lowest order 4pt (unitary and CPT-invariant) S-matrix

$$T(q, q', k, k') = \frac{\delta(k + k' - q - q')}{|kk'qq'|^{3/2}} \tilde{T}$$

with $s = k + k' = q + q'$, $t = k - q$, $u = k' - q$ and

$$\tilde{T} = stu \ln \frac{t^2 u^2}{s^4} + \frac{1}{stu} \sum_{p \in \{k, k', q, q'\}} p^2 \ln \frac{p^2}{s^2} \left(3kk'qq' - \frac{1}{2} \sum_{r \neq p} \sum_{v \neq r, p} r^2 v^2 \right)$$

- ▶ only one delta function (no separate momentum conservation)
- ▶ forward scattering poles
- ▶ UV finite e.g.,

$$\lim_{s \rightarrow \infty} T \propto \frac{\frac{t}{u} + \frac{u}{t}}{s^3} + \mathcal{O}(1/s^5)$$

S-matrix for s-wave gravitational scattering

Massless free scalar field scatters on own gravitational energy

Implementing program for Einstein-massless Klein–Gordon model yields lowest order 4pt (unitary and CPT-invariant) S-matrix

$$T(q, q', k, k') = \frac{\delta(k + k' - q - q')}{|kk'qq'|^{3/2}} \tilde{T}$$

with $s = k + k' = q + q'$, $t = k - q$, $u = k' - q$ and

$$\tilde{T} = stu \ln \frac{t^2 u^2}{s^4} + \frac{1}{stu} \sum_{p \in \{k, k', q, q'\}} p^2 \ln \frac{p^2}{s^2} \left(3kk'qq' - \frac{1}{2} \sum_{r \neq p} \sum_{v \neq r, p} r^2 v^2 \right)$$

- ▶ only one delta function (no separate momentum conservation)
- ▶ forward scattering poles
- ▶ UV finite
- ▶ crossing symmetry $T(s, t, u) = T(t, s, u) = T(u, t, s)$

S-matrix for s-wave gravitational scattering

Massless free scalar field scatters on own gravitational energy

Implementing program for Einstein-massless Klein–Gordon model yields lowest order 4pt (unitary and CPT-invariant) S-matrix

$$T(q, q', k, k') = \frac{\delta(k + k' - q - q')}{|kk'qq'|^{3/2}} \tilde{T}$$

with $s = k + k' = q + q'$, $t = k - q$, $u = k' - q$ and

$$\tilde{T} = stu \ln \frac{t^2 u^2}{s^4} + \frac{1}{stu} \sum_{p \in \{k, k', q, q'\}} p^2 \ln \frac{p^2}{s^2} \left(3kk'qq' - \frac{1}{2} \sum_{r \neq p} \sum_{v \neq r, p} r^2 v^2 \right)$$

- ▶ only one delta function (no separate momentum conservation)
- ▶ forward scattering poles
- ▶ UV finite
- ▶ crossing symmetry $T(s, t, u) = T(t, s, u) = T(u, t, s)$
- ▶ scale covariance: $T(\lambda q, \lambda q', \lambda k, \lambda k') = \lambda^{-4} T(q, q', k, k')$

Physical consequences of S-matrix

- ▶ we integrated out geometry exactly and maintain only matter dof

Wolfgang had this vision already in '98, the start of my PhD; it took until '01 to realize it

Physical consequences of S-matrix

- ▶ we integrated out geometry exactly and maintain only matter dof
- ▶ effective theory is non-local and non-polynomial in matter

Physical consequences of S-matrix

- ▶ we integrated out geometry exactly and maintain only matter dof
- ▶ effective theory is non-local and non-polynomial in matter
- ▶ matter scatters on its own gravitational self-energy

Physical consequences of S-matrix

- ▶ we integrated out geometry exactly and maintain only matter dof
- ▶ effective theory is non-local and non-polynomial in matter
- ▶ matter scatters on its own gravitational self-energy
- ▶ S-matrix: unitary, CPT-inv., UV-finite, crossing-symmetric, scale-cov.

Physical consequences of S-matrix

- ▶ we integrated out geometry exactly and maintain only matter dof
- ▶ effective theory is non-local and non-polynomial in matter
- ▶ matter scatters on its own gravitational self-energy
- ▶ S-matrix: unitary, CPT-inv., UV-finite, crossing-symmetric, scale-cov.
- ▶ ingoing s-wave with momentum q has finite decay rate into outgoing s-waves with momenta $k, k', -q'$

a bit like Hawking radiation if interpreted as scattering process: high energy modes decays into lower energy modes

Physical consequences of S-matrix

- ▶ we integrated out geometry exactly and maintain only matter dof
- ▶ effective theory is non-local and non-polynomial in matter
- ▶ matter scatters on its own gravitational self-energy
- ▶ S-matrix: unitary, CPT-inv., UV-finite, crossing-symmetric, scale-cov.
- ▶ ingoing s-wave with momentum q has finite decay rate into outgoing s-waves with momenta $k, k', -q'$
a bit like Hawking radiation if interpreted as scattering process: high energy modes decays into lower energy modes
- ▶ can reconstruct geometry and get virtual black holes

$$ds^2 = -2 \, du \, dr - \left[1 - \delta(u - u_0) \theta(r_0 - r) \left(\frac{2m(r_0)}{r} + a(r_0) r + d(r_0) \right) \right] \, du^2$$

with distributional contributions

$$m(r_0) = c_0 r_0^3 + c_1 r_0^2 \quad a(r_0) = 3c_0 r_0 - 2c_1 \quad d(r_0) = c_0 r_0^2$$

that account for δ -insertions of kinetic matter sources at u_0, r_0

Generalizations

- ▶ Vertices for arbitrary 2d dilaton gravity models

done with [Vassilevich, DG '02](#)

Generalizations

- ▶ Vertices for arbitrary 2d dilaton gravity models
- ▶ 1-loop calculations

indications that non-local loops vanish

see my contribution to the 14th International Hutsulian Workshop on Mathematical Theories and their Physical and Technical Applications '02

Generalizations

- ▶ Vertices for arbitrary 2d dilaton gravity models
- ▶ 1-loop calculations
- ▶ 1-loop corrections to specific heat

consequence for CGHS model: specific heat no longer infinite

calculated with [Vassilevich, DG '03](#)

Generalizations

- ▶ Vertices for arbitrary 2d dilaton gravity models
- ▶ 1-loop calculations
- ▶ 1-loop corrections to specific heat
- ▶ Fermions instead of scalars

same procedure works

done with my first student in Leipzig, [Rene Meyer](#), DG '06

Generalizations

- ▶ Vertices for arbitrary 2d dilaton gravity models
- ▶ 1-loop calculations
- ▶ 1-loop corrections to specific heat
- ▶ Fermions instead of scalars
- ▶ Higher dimensions

done in a recent master thesis by my student [Florian Ecker '21](#)

Generalizations

- ▶ Vertices for arbitrary 2d dilaton gravity models
- ▶ 1-loop calculations
- ▶ 1-loop corrections to specific heat
- ▶ Fermions instead of scalars
- ▶ Higher dimensions
- ▶ missing: other matter interactions, more S-matrix calculations, Mellin amplitudes, asymptotic symmetries, flux-balance laws, soft theorems,

...

There is a lot of opportunity for students
Consider joining the Vienna School!

Outline

Motivations (2d or not 2d?)

2d geometry

2d quantum gravity

2d holography

Heuristics of holography

- ▶ Entropy S of typical substances is extensive:

$$S \sim V \sim L^d$$

V : volume; L : length scale; d : number of spatial dimensions

Heuristics of holography

- ▶ Entropy S of typical substances is extensive:

$$S \sim V \sim L^d$$

V : volume; L : length scale; d : number of spatial dimensions

- ▶ Black hole (Bekenstein–Hawking) entropy instead scales like area:

$$S_{\text{BH}} \sim A \sim L^{d-1}$$

A : area

Heuristics of holography

- ▶ Entropy S of typical substances is extensive:

$$S \sim V \sim L^d$$

V : volume; L : length scale; d : number of spatial dimensions

- ▶ Black hole (Bekenstein–Hawking) entropy instead scales like area:

$$S_{\text{BH}} \sim A \sim L^{d-1}$$

A : area

- ▶ simple observation: area in 3d \sim volume in 2d

Heuristics of holography

- ▶ Entropy S of typical substances is extensive:

$$S \sim V \sim L^d$$

V : volume; L : length scale; d : number of spatial dimensions

- ▶ Black hole (Bekenstein–Hawking) entropy instead scales like area:

$$S_{\text{BH}} \sim A \sim L^{d-1}$$

A : area

- ▶ simple observation: area in 3d \sim volume in 2d

Daring idea by 't Hooft and Susskind in '90s:

Holographic Principle

Theory with gravity in $d + 1$ dimensions equivalent to theory without gravity in d dimensions

Heuristics of AdS/CFT Maldacena '97 — more than 20 thousand citations
AdS/CFT = most concrete and best-studied implementation of holographic principle

- QFT typically = relevant/marginal deformation of CFT

Heuristics of AdS/CFT Maldacena '97 — more than 20 thousand citations

AdS/CFT = most concrete and best-studied implementation of holographic principle

- ▶ QFT typically = relevant/marginal deformation of CFT
- ▶ UV-behavior of QFT dominated by CFT fixed point

Heuristics of AdS/CFT Maldacena '97 — more than 20 thousand citations

AdS/CFT = most concrete and best-studied implementation of holographic principle

- ▶ QFT typically = relevant/marginal deformation of CFT
- ▶ UV-behavior of QFT dominated by CFT fixed point
- ▶ lower energies E : RG flow (e.g. running coupling constants)

Heuristics of AdS/CFT Maldacena '97 — more than 20 thousand citations

AdS/CFT = most concrete and best-studied implementation of holographic principle

- ▶ QFT typically = relevant/marginal deformation of CFT
- ▶ UV-behavior of QFT dominated by CFT fixed point
- ▶ lower energies E : RG flow (e.g. running coupling constants)
- ▶ idea: geometrize RG-flow and use E as additional coordinate

Heuristics of AdS/CFT Maldacena '97 — more than 20 thousand citations

AdS/CFT = most concrete and best-studied implementation of holographic principle

- ▶ QFT typically = relevant/marginal deformation of CFT
- ▶ UV-behavior of QFT dominated by CFT fixed point
- ▶ lower energies E : RG flow (e.g. running coupling constants)
- ▶ idea: geometrize RG-flow and use E as additional coordinate
- ▶ most general metric with Poincaré-invariant constant E -slices:

$$ds^2 = f_1(E) dE^2 + f_2(E) \eta_{\mu\nu} dx^\mu dx^\nu \quad \mu, \nu = 0..(D-1)$$

- ▶ QFT typically = relevant/marginal deformation of CFT
- ▶ UV-behavior of QFT dominated by CFT fixed point
- ▶ lower energies E : RG flow (e.g. running coupling constants)
- ▶ idea: geometrize RG-flow and use E as additional coordinate
- ▶ most general metric with Poincaré-invariant constant E -slices:

$$ds^2 = f_1(E) dE^2 + f_2(E) \eta_{\mu\nu} dx^\mu dx^\nu \quad \mu, \nu = 0..(D-1)$$

- ▶ suppose further that QFT is CFT and thus has scale symmetry

$$x^\mu \rightarrow \lambda x^\mu \quad E \rightarrow E\lambda^{-1}$$

- ▶ QFT typically = relevant/marginal deformation of CFT
- ▶ UV-behavior of QFT dominated by CFT fixed point
- ▶ lower energies E : RG flow (e.g. running coupling constants)
- ▶ idea: geometrize RG-flow and use E as additional coordinate
- ▶ most general metric with Poincaré-invariant constant E -slices:

$$ds^2 = f_1(E) dE^2 + f_2(E) \eta_{\mu\nu} dx^\mu dx^\nu \quad \mu, \nu = 0..(D-1)$$

- ▶ suppose further that QFT is CFT and thus has scale symmetry

$$x^\mu \rightarrow \lambda x^\mu \quad E \rightarrow E\lambda^{-1}$$

- ▶ most general line-element compatible with scale symmetry:

$$ds^2 = \ell^2 \left(\frac{dE^2}{E^2} + E^2 \eta_{\mu\nu} dx^\mu dx^\nu \right) \quad \ell \in \mathbb{R}^+ \quad \eta_{\mu\nu} : \text{Minkowski}$$

- ▶ QFT typically = relevant/marginal deformation of CFT
- ▶ UV-behavior of QFT dominated by CFT fixed point
- ▶ lower energies E : RG flow (e.g. running coupling constants)
- ▶ idea: geometrize RG-flow and use E as additional coordinate
- ▶ most general metric with Poincaré-invariant constant E -slices:

$$ds^2 = f_1(E) dE^2 + f_2(E) \eta_{\mu\nu} dx^\mu dx^\nu \quad \mu, \nu = 0..(D-1)$$

- ▶ suppose further that QFT is CFT and thus has scale symmetry

$$x^\mu \rightarrow \lambda x^\mu \quad E \rightarrow E\lambda^{-1}$$

- ▶ most general line-element compatible with scale symmetry:

$$ds^2 = \ell^2 \left(\frac{dE^2}{E^2} + E^2 \eta_{\mu\nu} dx^\mu dx^\nu \right) \quad \ell \in \mathbb{R}^+ \quad \eta_{\mu\nu} : \text{Minkowski}$$

- ▶ **This metric is AdS $_{D+1}$! UV of QFT, $E \rightarrow \infty$, is IR of gravity!**

Holographic Dictionary Gubser, Klebanov, Polyakov '98; Witten '98

$$\left\langle \exp \left(\int j(x) \mathcal{O}(x) \right) \right\rangle_{\text{CFT}} = Z_{\text{gravity}} \left[\phi(x, z) \big|_{z \rightarrow 0} = j(x) \right]$$

Holographic Dictionary Gubser, Klebanov, Polyakov '98; Witten '98

$$\left\langle \exp \left(\int j(x) \mathcal{O}(x) \right) \right\rangle_{\text{CFT}} = Z_{\text{gravity}} \left[\phi(x, z) \big|_{z \rightarrow 0} = j(x) \right]$$

- ▶ For every QFT observable there is a corresponding gravity observable

Holographic Dictionary Gubser, Klebanov, Polyakov '98; Witten '98

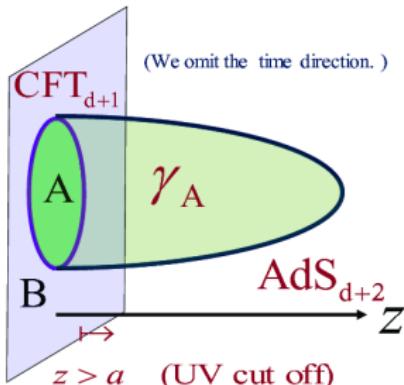
$$\left\langle \exp \left(\int j(x) \mathcal{O}(x) \right) \right\rangle_{\text{CFT}} = Z_{\text{gravity}} \left[\phi(x, z) \big|_{z \rightarrow 0} = j(x) \right]$$

- ▶ For every QFT observable there is a corresponding gravity observable
- ▶ Correlations functions calculated by GKPW-dictionary above

Holographic Dictionary Gubser, Klebanov, Polyakov '98; Witten '98

$$\left\langle \exp \left(\int j(x) \mathcal{O}(x) \right) \right\rangle_{\text{CFT}} = Z_{\text{gravity}} \left[\phi(x, z) \big|_{z \rightarrow 0} = j(x) \right]$$

- ▶ For every QFT observable there is a corresponding gravity observable
- ▶ Correlations functions calculated by GKPW-dictionary above
- ▶ Other prominent example: (holographic) entanglement entropy



Holographic Dictionary Gubser, Klebanov, Polyakov '98; Witten '98

$$\left\langle \exp \left(\int j(x) \mathcal{O}(x) \right) \right\rangle_{\text{CFT}} = Z_{\text{gravity}} \left[\phi(x, z) \big|_{z \rightarrow 0} = j(x) \right]$$

- ▶ For every QFT observable there is a corresponding gravity observable
- ▶ Correlations functions calculated by GKPW-dictionary above
- ▶ Other prominent example: (holographic) entanglement entropy S_{HEE}
- ▶ Ryu–Takayanagi formula: $S_{\text{HEE}}^{\text{RT}} = \text{area}(\gamma_A)/(4G)$

Holographic Dictionary Gubser, Klebanov, Polyakov '98; Witten '98

$$\left\langle \exp \left(\int j(x) \mathcal{O}(x) \right) \right\rangle_{\text{CFT}} = Z_{\text{gravity}} \left[\phi(x, z) \big|_{z \rightarrow 0} = j(x) \right]$$

- ▶ For every QFT observable there is a corresponding gravity observable
- ▶ Correlations functions calculated by GKPW-dictionary above
- ▶ Other prominent example: (holographic) entanglement entropy S_{HEE}
- ▶ Ryu–Takayanagi formula: $S_{\text{HEE}}^{\text{RT}} = \text{area}(\gamma_A)/(4G)$
- ▶ can describe all physical processes in two different formulations

Holographic Dictionary Gubser, Klebanov, Polyakov '98; Witten '98

$$\left\langle \exp \left(\int j(x) \mathcal{O}(x) \right) \right\rangle_{\text{CFT}} = Z_{\text{gravity}} \left[\phi(x, z) \big|_{z \rightarrow 0} = j(x) \right]$$

- ▶ For every QFT observable there is a corresponding gravity observable
- ▶ Correlations functions calculated by GKPW-dictionary above
- ▶ Other prominent example: (holographic) entanglement entropy S_{HEE}
- ▶ Ryu–Takayanagi formula: $S_{\text{HEE}}^{\text{RT}} = \text{area}(\gamma_A)/(4G)$
- ▶ can describe all physical processes in two different formulations
- ▶ often, holographic correspondence maps **complicated** \leftrightarrow **simple** in applications: always pick simpler one!

Holographic Dictionary Gubser, Klebanov, Polyakov '98; Witten '98

$$\left\langle \exp \left(\int j(x) \mathcal{O}(x) \right) \right\rangle_{\text{CFT}} = Z_{\text{gravity}} \left[\phi(x, z) |_{z \rightarrow 0} = j(x) \right]$$

- ▶ For every QFT observable there is a corresponding gravity observable
- ▶ Correlations functions calculated by GKPW-dictionary above
- ▶ Other prominent example: (holographic) entanglement entropy S_{HEE}
- ▶ Ryu–Takayanagi formula: $S_{\text{HEE}}^{\text{RT}} = \text{area}(\gamma_A)/(4G)$
- ▶ can describe all physical processes in two different formulations
- ▶ often, holographic correspondence maps **complicated** \leftrightarrow **simple** in applications: always pick simpler one!
- ▶ example type I: map strongly coupled quantum (field) theory **[complicated]** to weakly coupled classical gravity theory **[simple]**
heavy ion collisions at LHC, neutron stars, cold atoms, viscous hydrodynamics, holographic superconductors, strange metals, ...

Holographic Dictionary Gubser, Klebanov, Polyakov '98; Witten '98

$$\left\langle \exp \left(\int j(x) \mathcal{O}(x) \right) \right\rangle_{\text{CFT}} = Z_{\text{gravity}} \left[\phi(x, z)|_{z \rightarrow 0} = j(x) \right]$$

- ▶ For every QFT observable there is a corresponding gravity observable
- ▶ Correlations functions calculated by GKPW-dictionary above
- ▶ Other prominent example: (holographic) entanglement entropy S_{HEE}
- ▶ Ryu–Takayanagi formula: $S_{\text{HEE}}^{\text{RT}} = \text{area}(\gamma_A)/(4G)$
- ▶ can describe all physical processes in two different formulations
- ▶ often, holographic correspondence maps **complicated** \leftrightarrow **simple**
- ▶ example type I: map strongly coupled quantum (field) theory **[complicated]** to weakly coupled classical gravity theory **[simple]**
- ▶ example type II: map quantum gravity **[complicated]** to weakly coupled quantum field theory **[simple]**
microscopic understanding of black holes, information paradox, black hole evaporation, quantum information aspects of black holes, ...

Asymptotic symmetries are key concept in gravity
They allow to constrain the dual field theory

- ▶ Symmetries in geometries characterized by Killing vectors ξ that solve Killing equation

$$(\mathcal{L}_\xi g)_{\mu\nu} = \xi^\alpha \partial_\alpha g_{\mu\nu} + g_{\mu\alpha} \partial_\nu \xi^\alpha + g_{\nu\alpha} \partial_\mu \xi^\alpha = 0$$

Asymptotic symmetries are key concept in gravity
They allow to constrain the dual field theory

- ▶ Symmetries in geometries characterized by Killing vectors ξ that solve Killing equation

$$(\mathcal{L}_\xi g)_{\mu\nu} = \xi^\alpha \partial_\alpha g_{\mu\nu} + g_{\mu\alpha} \partial_\nu \xi^\alpha + g_{\nu\alpha} \partial_\mu \xi^\alpha = 0$$

- ▶ can have up to $D(D + 1)/2$ independent Killing vectors

Asymptotic symmetries are key concept in gravity
They allow to constrain the dual field theory

- ▶ Symmetries in geometries characterized by Killing vectors ξ that solve Killing equation

$$(\mathcal{L}_\xi g)_{\mu\nu} = \xi^\alpha \partial_\alpha g_{\mu\nu} + g_{\mu\alpha} \partial_\nu \xi^\alpha + g_{\nu\alpha} \partial_\mu \xi^\alpha = 0$$

- ▶ can have up to $D(D + 1)/2$ independent Killing vectors
- ▶ Asymptotic symmetries in asymptotic geometries characterized by asymptotic Killing vectors ξ that solve asymptotic Killing equation

$$(\mathcal{L}_\xi g)_{\mu\nu} \stackrel{!}{=} \mathcal{O}(\delta g_{\mu\nu})$$

$\mathcal{O}(\delta g_{\mu\nu})$: fluctuations allowed by asymptotic fall-off conditions

e.g. asymptotically AdS, asymptotically flat, asymptotically dS, ...

AdS₂: menagerie of possibilities DG, McNees, Salzer, Valcárcel, Vassilevich '17

Asymptotic symmetries are key concept in gravity
They allow to constrain the dual field theory

- ▶ Symmetries in geometries characterized by Killing vectors ξ that solve Killing equation

$$(\mathcal{L}_\xi g)_{\mu\nu} = \xi^\alpha \partial_\alpha g_{\mu\nu} + g_{\mu\alpha} \partial_\nu \xi^\alpha + g_{\nu\alpha} \partial_\mu \xi^\alpha = 0$$

- ▶ can have up to $D(D + 1)/2$ independent Killing vectors
- ▶ Asymptotic symmetries in asymptotic geometries characterized by asymptotic Killing vectors ξ that solve asymptotic Killing equation

$$(\mathcal{L}_\xi g)_{\mu\nu} \stackrel{!}{=} \mathcal{O}(\delta g_{\mu\nu})$$

- ▶ can have infinitely many asymptotic Killing vectors even in $D = 2$

Asymptotic symmetries are key concept in gravity
They allow to constrain the dual field theory

- ▶ Symmetries in geometries characterized by Killing vectors ξ that solve Killing equation

$$(\mathcal{L}_\xi g)_{\mu\nu} = \xi^\alpha \partial_\alpha g_{\mu\nu} + g_{\mu\alpha} \partial_\nu \xi^\alpha + g_{\nu\alpha} \partial_\mu \xi^\alpha = 0$$

- ▶ can have up to $D(D + 1)/2$ independent Killing vectors
- ▶ Asymptotic symmetries in asymptotic geometries characterized by asymptotic Killing vectors ξ that solve asymptotic Killing equation

$$(\mathcal{L}_\xi g)_{\mu\nu} \stackrel{!}{=} \mathcal{O}(\delta g_{\mu\nu})$$

- ▶ can have infinitely many asymptotic Killing vectors even in $D = 2$
- ▶ asymptotic symmetry algebra = algebra of asymptotic Killing vectors

Asymptotic symmetries are key concept in gravity
They allow to constrain the dual field theory

- ▶ Symmetries in geometries characterized by Killing vectors ξ
- ▶ can have up to $D(D + 1)/2$ independent Killing vectors
- ▶ Asymptotic symmetries in asymptotic geometries characterized by asymptotic Killing vectors ξ that solve asymptotic Killing equation

$$(\mathcal{L}_\xi g)_{\mu\nu} \stackrel{!}{=} \mathcal{O}(\delta g_{\mu\nu})$$

- ▶ can have infinitely many asymptotic Killing vectors even in $D = 2$
- ▶ asymptotic symmetry algebra = algebra of asymptotic Killing vectors

Key insight for holography

Asymptotic symmetry algebra generates global symmetries of dual QFT

Derivation of asymptotic symmetry algebra for AdS_2 example

- ▶ boundary and gauge fixing conditions for metric (set $\ell = 1$):

$$g_{rr} = 0 \quad g_{ru} = -1 \quad g_{uu} = -r^2 + \underbrace{\mathcal{T}(u)}_{\text{state-dependent}}$$

Derivation of asymptotic symmetry algebra for AdS_2 example

- ▶ boundary and gauge fixing conditions for metric (set $\ell = 1$):

$$g_{rr} = 0 \quad g_{ru} = -1 \quad g_{uu} = -r^2 + \mathcal{T}(u)$$

- ▶ asymptotic Killing vectors obey $(\mathcal{L}_{\xi} g)_{\mu\nu} \stackrel{!}{=} \mathcal{O}(\delta g_{\mu\nu})$

$$rr : \quad \xi^{\mu} \partial_{\mu} g_{rr} + 2g_{r\mu} \partial_r \xi^{\mu} = 0$$

$$ru : \quad \xi^{\mu} \partial_{\mu} g_{ru} + g_{r\mu} \partial_u \xi^{\mu} + g_{u\mu} \partial_r \xi^{\mu} = 0$$

$$uu : \quad \xi^{\mu} \partial_{\mu} g_{uu} + 2g_{u\mu} \partial_u \xi^{\mu} = \delta \mathcal{T}(u)$$

Derivation of asymptotic symmetry algebra for AdS_2 example

- ▶ boundary and gauge fixing conditions for metric (set $\ell = 1$):

$$g_{rr} = 0 \quad g_{ru} = -1 \quad g_{uu} = -r^2 + \mathcal{T}(u)$$

- ▶ asymptotic Killing vectors obey $(\mathcal{L}_{\xi} g)_{\mu\nu} \stackrel{!}{=} \mathcal{O}(\delta g_{\mu\nu})$

$$rr : \quad \xi^{\mu} \partial_{\mu} g_{rr} + 2g_{r\mu} \partial_r \xi^{\mu} = 0$$

$$ru : \quad \xi^{\mu} \partial_{\mu} g_{ru} + g_{r\mu} \partial_u \xi^{\mu} + g_{u\mu} \partial_r \xi^{\mu} = 0$$

$$uu : \quad \xi^{\mu} \partial_{\mu} g_{uu} + 2g_{u\mu} \partial_u \xi^{\mu} = \delta \mathcal{T}(u)$$

- ▶ rr -equation: $2g_{ru} \partial_r \xi^u = 0 \quad \Rightarrow \quad \xi^u = \epsilon(u)$

Derivation of asymptotic symmetry algebra for AdS_2 example

- ▶ boundary and gauge fixing conditions for metric (set $\ell = 1$):

$$g_{rr} = 0 \quad g_{ru} = -1 \quad g_{uu} = -r^2 + \mathcal{T}(u)$$

- ▶ asymptotic Killing vectors obey $(\mathcal{L}_{\xi} g)_{\mu\nu} \stackrel{!}{=} \mathcal{O}(\delta g_{\mu\nu})$

$$rr : \quad \xi^{\mu} \partial_{\mu} g_{rr} + 2g_{r\mu} \partial_r \xi^{\mu} = 0$$

$$ru : \quad \xi^{\mu} \partial_{\mu} g_{ru} + g_{r\mu} \partial_u \xi^{\mu} + g_{u\mu} \partial_r \xi^{\mu} = 0$$

$$uu : \quad \xi^{\mu} \partial_{\mu} g_{uu} + 2g_{u\mu} \partial_u \xi^{\mu} = \delta \mathcal{T}(u)$$

- ▶ rr -equation: $2g_{ru} \partial_r \xi^u = 0 \quad \Rightarrow \quad \xi^u = \epsilon(u)$
- ▶ ru -equation: $g_{ru} \partial_u \xi^u + g_{ur} \partial_r \xi^r + g_{uu} \partial_r \xi^u = 0$ together with result above yields $\xi^r = -r \epsilon'(u) + \eta(u)$

Derivation of asymptotic symmetry algebra for AdS_2 example

- boundary and gauge fixing conditions for metric (set $\ell = 1$):

$$g_{rr} = 0 \quad g_{ru} = -1 \quad g_{uu} = -r^2 + \mathcal{T}(u)$$

- asymptotic Killing vectors obey $(\mathcal{L}_\xi g)_{\mu\nu} \stackrel{!}{=} \mathcal{O}(\delta g_{\mu\nu})$

$$rr : \quad \xi^\mu \partial_\mu g_{rr} + 2g_{r\mu} \partial_r \xi^\mu = 0$$

$$ru : \quad \xi^\mu \partial_\mu g_{ru} + g_{r\mu} \partial_u \xi^\mu + g_{u\mu} \partial_r \xi^\mu = 0$$

$$uu : \quad \xi^\mu \partial_\mu g_{uu} + 2g_{u\mu} \partial_u \xi^\mu = \delta \mathcal{T}(u)$$

- rr -equation: $2g_{ru} \partial_r \xi^u = 0 \Rightarrow \xi^u = \epsilon(u)$

- ru -equation: $g_{ru} \partial_u \xi^u + g_{ur} \partial_r \xi^r + g_{uu} \partial_r \xi^u = 0$ together with result above yields $\xi^r = -r \epsilon'(u) + \eta(u)$

- uu -equation: $\xi^\mu \partial_\mu g_{uu} + 2g_{uu} \partial_u \xi^u + 2g_{ur} \partial_u \xi^r = \delta \mathcal{T}$; expand terms:

$$(r\epsilon' - \eta) 2r + \epsilon \mathcal{T}' + 2(-r^2 + \mathcal{T}) \epsilon' + 2(r\epsilon'' - \eta') = \delta \mathcal{T}$$

Derivation of asymptotic symmetry algebra for AdS_2 example

- boundary and gauge fixing conditions for metric (set $\ell = 1$):

$$g_{rr} = 0 \quad g_{ru} = -1 \quad g_{uu} = -r^2 + \mathcal{T}(u)$$

- asymptotic Killing vectors obey $(\mathcal{L}_\xi g)_{\mu\nu} \stackrel{!}{=} \mathcal{O}(\delta g_{\mu\nu})$

$$rr : \quad \xi^\mu \partial_\mu g_{rr} + 2g_{r\mu} \partial_r \xi^\mu = 0$$

$$ru : \quad \xi^\mu \partial_\mu g_{ru} + g_{r\mu} \partial_u \xi^\mu + g_{u\mu} \partial_r \xi^\mu = 0$$

$$uu : \quad \xi^\mu \partial_\mu g_{uu} + 2g_{u\mu} \partial_u \xi^\mu = \delta \mathcal{T}(u)$$

- rr -equation: $2g_{ru} \partial_r \xi^u = 0 \Rightarrow \xi^u = \epsilon(u)$
- ru -equation: $g_{ru} \partial_u \xi^u + g_{ur} \partial_r \xi^r + g_{uu} \partial_r \xi^u = 0$ together with result above yields $\xi^r = -r \epsilon'(u) + \eta(u)$
- uu -equation: $\xi^\mu \partial_\mu g_{uu} + 2g_{uu} \partial_u \xi^u + 2g_{ur} \partial_u \xi^r = \delta \mathcal{T}$; expand terms:

$$(r\epsilon' - \eta) 2r + \epsilon \mathcal{T}' + 2(-r^2 + \mathcal{T}) \epsilon' + 2(r\epsilon'' - \eta') = \delta \mathcal{T}$$

$$r\epsilon' 2r + 2(-r^2) \epsilon' = 0$$

terms of order r^2 cancel

Derivation of asymptotic symmetry algebra for AdS_2 example

- boundary and gauge fixing conditions for metric (set $\ell = 1$):

$$g_{rr} = 0 \quad g_{ru} = -1 \quad g_{uu} = -r^2 + \mathcal{T}(u)$$

- asymptotic Killing vectors obey $(\mathcal{L}_{\xi} g)_{\mu\nu} \stackrel{!}{=} \mathcal{O}(\delta g_{\mu\nu})$

$$rr : \quad \xi^{\mu} \partial_{\mu} g_{rr} + 2g_{r\mu} \partial_r \xi^{\mu} = 0$$

$$ru : \quad \xi^{\mu} \partial_{\mu} g_{ru} + g_{r\mu} \partial_u \xi^{\mu} + g_{u\mu} \partial_r \xi^{\mu} = 0$$

$$uu : \quad \xi^{\mu} \partial_{\mu} g_{uu} + 2g_{u\mu} \partial_u \xi^{\mu} = \delta \mathcal{T}(u)$$

- rr -equation: $2g_{ru} \partial_r \xi^u = 0 \Rightarrow \xi^u = \epsilon(u)$
- ru -equation: $g_{ru} \partial_u \xi^u + g_{ur} \partial_r \xi^r + g_{uu} \partial_r \xi^u = 0$ together with result above yields $\xi^r = -r \epsilon'(u) + \eta(u)$
- uu -equation: $\xi^{\mu} \partial_{\mu} g_{uu} + 2g_{uu} \partial_u \xi^u + 2g_{ur} \partial_u \xi^r = \delta \mathcal{T}$; expand terms:

$$(r\epsilon' - \eta) 2r + \epsilon \mathcal{T}' + 2(-r^2 + \mathcal{T}) \epsilon' + 2(r\epsilon'' - \eta') = \delta \mathcal{T}$$

$$-\eta 2r + 2r\epsilon'' = 0$$

terms of order r cancel if $\eta = \epsilon''$

Derivation of asymptotic symmetry algebra for AdS_2 example

- boundary and gauge fixing conditions for metric (set $\ell = 1$):

$$g_{rr} = 0 \quad g_{ru} = -1 \quad g_{uu} = -r^2 + \mathcal{T}(u)$$

- asymptotic Killing vectors obey $(\mathcal{L}_{\xi} g)_{\mu\nu} \stackrel{!}{=} \mathcal{O}(\delta g_{\mu\nu})$

$$rr : \quad \xi^{\mu} \partial_{\mu} g_{rr} + 2g_{r\mu} \partial_r \xi^{\mu} = 0$$

$$ru : \quad \xi^{\mu} \partial_{\mu} g_{ru} + g_{r\mu} \partial_u \xi^{\mu} + g_{u\mu} \partial_r \xi^{\mu} = 0$$

$$uu : \quad \xi^{\mu} \partial_{\mu} g_{uu} + 2g_{u\mu} \partial_u \xi^{\mu} = \delta \mathcal{T}(u)$$

- rr -equation: $2g_{ru} \partial_r \xi^u = 0 \Rightarrow \xi^u = \epsilon(u)$
- ru -equation: $g_{ru} \partial_u \xi^u + g_{ur} \partial_r \xi^r + g_{uu} \partial_r \xi^u = 0$ together with result above yields $\xi^r = -r \epsilon'(u) + \eta(u)$
- uu -equation: $\xi^{\mu} \partial_{\mu} g_{uu} + 2g_{uu} \partial_u \xi^u + 2g_{ur} \partial_u \xi^r = \delta \mathcal{T}$

this is what we wanted to prove, i.e.,

$$\xi = \epsilon(u) \partial_u - r \epsilon'(u) \partial_r + \epsilon''(u) \partial_r$$

are the **AKVs** preserving the form of the metric above

Derivation of asymptotic symmetry algebra for AdS_2 example

- ▶ boundary and gauge fixing conditions for metric (set $\ell = 1$):

$$g_{rr} = 0 \quad g_{ru} = -1 \quad g_{uu} = -r^2 + \mathcal{T}(u)$$

- ▶ asymptotic Killing vectors obey $(\mathcal{L}_{\xi} g)_{\mu\nu} \stackrel{!}{=} \mathcal{O}(\delta g_{\mu\nu})$

$$rr : \quad \xi^{\mu} \partial_{\mu} g_{rr} + 2g_{r\mu} \partial_r \xi^{\mu} = 0$$

$$ru : \quad \xi^{\mu} \partial_{\mu} g_{ru} + g_{r\mu} \partial_u \xi^{\mu} + g_{u\mu} \partial_r \xi^{\mu} = 0$$

$$uu : \quad \xi^{\mu} \partial_{\mu} g_{uu} + 2g_{u\mu} \partial_u \xi^{\mu} = \delta \mathcal{T}(u)$$

- ▶ rr -equation: $2g_{ru} \partial_r \xi^u = 0 \Rightarrow \xi^u = \epsilon(u)$

- ▶ ru -equation: $g_{ru} \partial_u \xi^u + g_{ur} \partial_r \xi^r + g_{uu} \partial_r \xi^u = 0$ together with result above yields $\xi^r = -r \epsilon'(u) + \eta(u)$

- ▶ uu -equation: $\xi^{\mu} \partial_{\mu} g_{uu} + 2g_{uu} \partial_u \xi^u + 2g_{ur} \partial_u \xi^r = \delta \mathcal{T}$

$$\epsilon \mathcal{T}' + 2\epsilon' \mathcal{T} - 2\epsilon''' = \delta \mathcal{T}$$

terms of order 1 yield infinitesimal Schwarzian derivative

Derivation of asymptotic symmetry algebra for AdS_2 example

- boundary and gauge fixing conditions for metric (set $\ell = 1$):

$$g_{rr} = 0 \quad g_{ru} = -1 \quad g_{uu} = -r^2 + \mathcal{T}(u)$$

- asymptotic Killing vectors obey $(\mathcal{L}_\xi g)_{\mu\nu} \stackrel{!}{=} \mathcal{O}(\delta g_{\mu\nu})$

$$rr : \quad \xi^\mu \partial_\mu g_{rr} + 2g_{r\mu} \partial_r \xi^\mu = 0$$

$$ru : \quad \xi^\mu \partial_\mu g_{ru} + g_{r\mu} \partial_u \xi^\mu + g_{u\mu} \partial_r \xi^\mu = 0$$

$$uu : \quad \xi^\mu \partial_\mu g_{uu} + 2g_{u\mu} \partial_u \xi^\mu = \delta \mathcal{T}(u)$$

- rr -equation: $2g_{ru} \partial_r \xi^u = 0 \Rightarrow \xi^u = \epsilon(u)$

- ru -equation: $g_{ru} \partial_u \xi^u + g_{ur} \partial_r \xi^r + g_{uu} \partial_r \xi^u = 0$ together with result above yields $\xi^r = -r \epsilon'(u) + \eta(u)$

- uu -equation: $\xi^\mu \partial_\mu g_{uu} + 2g_{uu} \partial_u \xi^u + 2g_{ur} \partial_u \xi^r = \delta \mathcal{T}$

$$\epsilon \mathcal{T}' + 2\epsilon' \mathcal{T} - 2\epsilon''' = \delta \mathcal{T}$$

terms of order 1 yield infinitesimal Schwarzian derivative

First glimpse of $\text{AdS}_2/\text{CFT}_1$!

Open key questions in holography

Continuing the Vienna School in the 21st century

- ▶ How general is the holographic principle?

Open key questions in holography

Continuing the Vienna School in the 21st century

- ▶ How general is the holographic principle?
- ▶ Does it work beyond AdS/CFT?

Open key questions in holography

Continuing the Vienna School in the 21st century

- ▶ How general is the holographic principle?
- ▶ Does it work beyond AdS/CFT?
- ▶ If not, when does it work?

Open key questions in holography

Continuing the Vienna School in the 21st century

- ▶ How general is the holographic principle?
- ▶ Does it work beyond AdS/CFT?
- ▶ If not, when does it work?
- ▶ If yes, how does it work?

Open key questions in holography

Continuing the Vienna School in the 21st century

- ▶ How general is the holographic principle?
- ▶ Does it work beyond AdS/CFT?
- ▶ If not, when does it work?
- ▶ If yes, how does it work?
- ▶ Does it work in our Universe?

Open key questions in holography

Continuing the Vienna School in the 21st century

- ▶ How general is the holographic principle?
- ▶ Does it work beyond AdS/CFT?
- ▶ If not, when does it work?
- ▶ If yes, how does it work?
- ▶ Does it work in our Universe?
- ▶ Does it work in asymptotically flat spacetimes?

Open key questions in holography

Continuing the Vienna School in the 21st century

- ▶ How general is the holographic principle?
- ▶ Does it work beyond AdS/CFT?
- ▶ If not, when does it work?
- ▶ If yes, how does it work?
- ▶ Does it work in our Universe?
- ▶ Does it work in asymptotically flat spacetimes?
- ▶ What is the dual field theory?

Open key questions in holography

Continuing the Vienna School in the 21st century

- ▶ How general is the holographic principle?
- ▶ Does it work beyond AdS/CFT?
- ▶ If not, when does it work?
- ▶ If yes, how does it work?
- ▶ Does it work in our Universe?
- ▶ Does it work in asymptotically flat spacetimes?
- ▶ What is the dual field theory?
- ▶ Novel quantum info aspects of holography?

Open key questions in holography

Continuing the Vienna School in the 21st century

- ▶ How general is the holographic principle?
- ▶ Does it work beyond AdS/CFT?
- ▶ If not, when does it work?
- ▶ If yes, how does it work?
- ▶ Does it work in our Universe?
- ▶ Does it work in asymptotically flat spacetimes?
- ▶ What is the dual field theory?
- ▶ Novel quantum info aspects of holography?
- ▶ Can we find novel applications of holography within AdS/CFT?

Open key questions in holography

Continuing the Vienna School in the 21st century

- ▶ How general is the holographic principle?
- ▶ Does it work beyond AdS/CFT?
- ▶ If not, when does it work?
- ▶ If yes, how does it work?
- ▶ Does it work in our Universe?
- ▶ Does it work in asymptotically flat spacetimes?
- ▶ What is the dual field theory?
- ▶ Novel quantum info aspects of holography?
- ▶ Can we find novel applications of holography within AdS/CFT?
- ▶ Can we find novel applications of holography beyond AdS/CFT?

Open key questions in holography

Continuing the Vienna School in the 21st century

- ▶ How general is the holographic principle?
- ▶ Does it work beyond AdS/CFT?
- ▶ If not, when does it work?
- ▶ If yes, how does it work?
- ▶ Does it work in our Universe?
- ▶ Does it work in asymptotically flat spacetimes?
- ▶ What is the dual field theory?
- ▶ Novel quantum info aspects of holography?
- ▶ Can we find novel applications of holography within AdS/CFT?
- ▶ Can we find novel applications of holography beyond AdS/CFT?

There is a lot of opportunity for students
Consider joining the modern Vienna School!

