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Motivations for studying gravity in 2d

» As simple as possible...
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Motivations for studying gravity in 2d

» As simple as possible...
> quantum gravity?
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Motivations for studying gravity in 2d

» As simple as possible...
> quantum gravity?
» evaporating black holes/information loss?
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Motivations for studying gravity in 2d

» As simple as possible...
>

P evaporating black holes/information loss?
» holographic principle (beyond AdS/CFT)?
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Motivations for studying gravity in 2d

» As simple as possible...
> quantum gravity?
P evaporating black holes/information loss?
» holographic principle (beyond AdS/CFT)?
» ...but not simpler
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Motivations for studying gravity in 2d

» As simple as possible...
» quantum gravity?
» evaporating black holes/information loss?
» holographic principle (beyond AdS/CFT)?
» ...but not simpler
P 2: lowest dimension with Riemann curvature and notable topology
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Motivations for studying gravity in 2d

» As simple as possible...
> quantum gravity?
» evaporating black holes/information loss?
» holographic principle (beyond AdS/CFT)?
» ...but not simpler
P 2: lowest dimension with Riemann curvature and notable topology
» 1+1: lowest dimension with lightcones/black holes
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2d sections of Reissner—Nordstrém black hole Penrose diagram, different coordinate patches
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Motivations for studying gravity in 2d

» As simple as possible...
> quantum gravity?
» evaporating black holes/information loss?
» holographic principle (beyond AdS/CFT)?
» ...but not simpler
P 2: lowest dimension with Riemann curvature and notable topology
» 1+1: lowest dimension with lightcones/black holes
P> 2: lowest dimension with boundary dynamics

Y

AdS, boundary
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Daniel Grumiller — Wolfgang Kummer's pioneering approach to 2d dilaton gravity Motivations (2d or not 2d?) 5/25



Motivations for studying gravity in 2d

» As simple as possible...
> quantum gravity?
P evaporating black holes/information loss?
» holographic principle (beyond AdS/CFT)?
» ...but not simpler
P> 2: lowest dimension with Riemann curvature and notable topology
> 1+1: lowest dimension with lightcones/black holes
» 2: lowest dimension with boundary dynamics

» Caveats:
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Motivations for studying gravity in 2d

» As simple as possible...
> quantum gravity?
» evaporating black holes/information loss?
» holographic principle (beyond AdS/CFT)?
» ...but not simpler
P 2: lowest dimension with Riemann curvature and notable topology
» 1+1: lowest dimension with lightcones/black holes
» 2: lowest dimension with boundary dynamics
> Caveats:
P no transverse-traceless part in fluctuations = no gravitational waves

L
h;w = V(ugv) + 5 hg;w
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Motivations for studying gravity in 2d

» As simple as possible...
> quantum gravity?
» evaporating black holes/information loss?
» holographic principle (beyond AdS/CFT)?
» ...but not simpler
P 2: lowest dimension with Riemann curvature and notable topology
> 1+1: lowest dimension with lightcones/black holes
P> 2: lowest dimension with boundary dynamics
» Caveats:
P no transverse-traceless part in fluctuations = no gravitational waves
» no EOM from EH action

Einstein equations hold trivially for any 2d metric:

1
Rp,u = § g;wR
—_—

true off-shell

formally: in d = 2 we have d(d — 3)/2 = —1 graviton polarizations
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Motivations for studying gravity in 2d

» As simple as possible...
> quantum gravity?
» evaporating black holes/information loss?
» holographic principle (beyond AdS/CFT)?
» ...but not simpler
P 2: lowest dimension with Riemann curvature and notable topology
> 1+1: lowest dimension with lightcones/black holes
P> 2: lowest dimension with boundary dynamics
» Caveats:
P no transverse-traceless part in fluctuations = no gravitational waves
» no EOM from EH action
» 2d metrics locally conformally flat

ds? = 2U="027) qpt dp

Caveat 1: Q singular at singularities, horizons, asymptotic boundaries
Caveat 2: EF gauge simpler for many purposes
Caveat 3: may need non-proper trafo to achieve conformal gauge
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Motivations for studying gravity in 2d

» As simple as possible...
> quantum gravity?
> evaporating black holes/information loss?
» holographic principle (beyond AdS/CFT)?
» ...but not simpler
P> 2: lowest dimension with Riemann curvature and notable topology
> 1+1: lowest dimension with lightcones/black holes
» 2: lowest dimension with boundary dynamics
> Caveats:
P> no transverse-traceless part in fluctuations = no gravitational waves
» no EOM from EH action
» 2d metrics locally conformally flat but beware of premature gauge-fixing

Gravity in 2d provides (often soluble) toy models for
quantum gravity, black hole evaporation and holography
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Outline

2d geometry
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Local geometry

» Often useful: Eddington—Finkelstein (EF) gauge
ds? = g, da" da” = —2dudr — K (u. r) du?

used this gauge for classical, semiclassical, and quantum 2d dilaton gravity

analogous to temporal/axial gauge used by Wolfgang for nonabelian gauge theories
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Local geometry

» Often useful: Eddington—Finkelstein (EF) gauge
ds? = G dat' dz” = —=2dudr — K (u, 7r) du?
P> u: retarded time; r: radial coordinate; /< (u, 7): local geometry

K = 1: Minkowski spacetime (u =1t —r)
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Local geometry
» Often useful: Eddington—Finkelstein (EF) gauge
ds? = G dot da” = =2dudr — K (u, r) du?

» wu: retarded time; r: radial coordinate; /< (u, r): local geometry
» u = const. lines null; » = const. lines null if A’ =0
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Local geometry

» Often useful: Eddington—Finkelstein (EF) gauge
ds? = G dot da” = =2dudr — K (u, r) du?
» wu: retarded time; r: radial coordinate; /< (u, r): local geometry
» u = const. lines null; » = const. lines null if A’ =0
» only scalar curvature invariant: Ricci scalar
O?K(u, r)

R =
or?
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Local geometry

» Often useful: Eddington—Finkelstein (EF) gauge
ds? = G dot da” = =2dudr — K (u, r) du?
» wu: retarded time; r: radial coordinate; /< (u, r): local geometry

» u = const. lines null; » = const. lines null if A’ =0
» only scalar curvature invariant: Ricci scalar

O?K(u, r)
or?
» special case /i = K (r): Killing vector £ = £%0, = 9,

(‘Cfg),ul/ = {aaag;w + ga,uauéa + goaxa,uga = Oufuv = 0

R=
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Local geometry

» Often useful: Eddington—Finkelstein (EF) gauge
ds® = g, da* da” = —2dudr — K (u, r) du?

» wu: retarded time; r: radial coordinate; /< (u, r): local geometry
» u = const. lines null; » = const. lines null if A’ =0

» only scalar curvature invariant: Ricci scalar

O?K(u, r)

57

» special case /i = K (r): Killing vector £ = £%0, = 9,

R=—

(‘Cfg),ul/ = {aaag;w + ga,uauéa + goa/auga = Oufuv = 0

» norm of Killing vector: &% = £/'¢”q,,, = g, — — K (1)

Daniel Grumiller — Wolfgang Kummer's pioneering approach to 2d dilaton gravity 2d geometry 8/25



Local geometry

» Often useful: Eddington—Finkelstein (EF) gauge
ds? = G dat' dz” = —=2dudr — K (u, 7r) du?

» u: retarded time; r: radial coordinate; /< (u, r): local geometry
» u = const. lines null; » = const. lines null if A =0

» only scalar curvature invariant: Ricci scalar

O?K (u, )

53

» special case ' = K (r): Killing vector £ = £%0, = 9y,

(‘Cfg),ul/ = {aaag;w + ga,uauéa + goaxa,ufa = Ouduv = 0

» norm of Killing vector: £% — §HEY 9 = Guu = —K(7)
» zeros of /i'(r) are Killing horizons (r = const. null hypersurfaces
whose normal vector is Killing vector 9,,)

R=-—
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Local geometry

» Often useful: Eddington—Finkelstein (EF) gauge
ds? = G dot da” = =2dudr — K (u, r) du?

» wu: retarded time; r: radial coordinate; /< (u, r): local geometry
» u = const. lines null; » = const. lines null if A’ =0
» only scalar curvature invariant: Ricci scalar
O?K(u, r)
7
» special case /i = K (r): Killing vector £ = £%0, = 9,

(‘Cfg),ul/ = {aaag;w + ga,uauéa + goa/auga = Oufuv = 0

» norm of Killing vector: £7 — §MEY 9 = Guu = —K(7)
» zeros of /(1) are Killing horizons
> get as many Killing horizons as there are zeros of /{(r)

R =
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Local geometry

» Often useful: Eddington—Finkelstein (EF) gauge
ds® = g, da* da” = —2dudr — K (u, r) du?

> u: retarded time; r: radial coordinate; /1 (u, r): local geometry

» u = const. lines null; » = const. lines null if A’ =0
» only scalar curvature invariant: Ricci scalar
2K (u, r)
or

» special case /i = K (r): Killing vector £ = £%0, = 9,
(‘Cég),ul/ = {aaag;w + ga,uauéa + goa/aué.a = Oufuv = 0

» norm of Killing vector: £7 — Y gy = Guu = —K (1)
» zeros of /(1) are Killing horizons
P get as many Killing horizons as there are zeros of /(1)

[ Local properties (curvature, Killing horizons) captured by K (u, ) ]
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Global geometry
» EF gauge also useful for uncovering global properties

used this gauge to find all global solutions of R? 4+ 12 gravity
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Global geometry

» EF gauge also useful for uncovering global properties
» focus on metrics with Killing vector 0y (why? see latert)

ds® = G dat dz” = =2dudr — K(r) du?

as example consider K (r) =1 — 2,—” ?—f with 7 € (0, 00)
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Global geometry

» EF gauge also useful for uncovering global properties
» focus on metrics with Killing vector 0y (why? see latert)

ds® = G dat dz” = =2dudr — K(r) du?

as example consider K (r) =1 — 2,—” @

with r € (0, 00)
» simple algorithm: determine first all curvature singularities

r2
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Global geometry
» EF gauge also useful for uncovering global properties
» focus on metrics with Killing vector 0y (why? see latert)

ds® = G dat dz” = =2dudr — K(r) du?

o 2 .
as example consider K (r) =1 — 2,—” ?—, with 7 € (0, 00)
» simple algorithm: determine first all curvature singularities

so singular at r =0

; 6Q°
in example: R = 4/—” .

rd 1
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Global geometry

» EF gauge also useful for uncovering global properties
» focus on metrics with Killing vector 0y (why? see latert)
ds? = g, da d2” = —2dudr — K (r) du?
as example consider K (r) =1 — 2,—” @ with r € (0, 00)
» simple algorithm: determine first all curvature singularities
» deduce all zeros of Killing norm, K (r) =0

r2
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Global geometry

» EF gauge also useful for uncovering global properties
» focus on metrics with Killing vector 0y (why? see latert)

ds® = G dat dz” = =2dudr — K(r) du?

as example consider K (r) =1 — 2” + C with 7 € (0, 00)
» simple algorithm: determine first aII curvature singularities
» deduce all zeros of Killing norm, K (r) =0

in example: 7+ = M +/M? — Q?
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Global geometry

» EF gauge also useful for uncovering global properties
» focus on metrics with Killing vector 0y (why? see latert)

ds® = G dat dz” = =2dudr — K(r) du?

as example consider /(1) = 1 — + . with r € (0,00)
» simple algorithm: determine first aII curvature singularities
deduce all zeros of Killing norm, /K (r) =0
P> deduce asymptotic structure (f there is an asymptotic region)

in example: metric asymptotically Minkowski for r — oo

v
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Global geometry

» EF gauge also useful for uncovering global properties
» focus on metrics with Killing vector 0y (why? see latert)

ds® = G dat dz” = =2dudr — K(r) du?

as example consider /(1) = 1 — + . with r € (0,00)
» simple algorithm: determine first aII curvature singularities
» deduce all zeros of Killing norm, K (r) =0
P> deduce asymptotic structure (f there is an asymptotic region)
» draw part of Penrose diagram for EF patch
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Global geometry

4
>

A2 A A /

EF gauge also useful for uncovering global properties
focus on metrics with Killing vector dy, (why? sce latert)

ds® = G dat dz” = =2dudr — K(r) du?

as example consider K (r) =1 — 2” + C with 7 € (0, 00)

simple algorithm: determine first aII curvature singularities
deduce all zeros of Killing norm, /K (r) =0

deduce asymptotic structure (i there is an asymptotic region)

draw part of Penrose diagram for EF patch

in example:
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Global geometry

4
>

VVyVYyYVYY

EF gauge also useful for uncovering global properties
focus on metrics with Killing vector dy, (why? sce latert)

ds® = G dxt' dz” = =2dudr — K(r) du?

as example consider K (r) =1 — 2,—” + ?—,2 with 7 € (0, 00)
simple algorithm: determine first all curvature singularities
deduce all zeros of Killing norm, /K (r) =0

deduce asymptotic structure (i there is an asymptotic region)

draw part of Penrose diagram for EF patch

determine (in-)completeness properties of boundaries of patch

by looking at all geodesics, e.g. in example:

939|dwodul
S
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Global geometry

4
>

VVYVYVY

\4

EF gauge also useful for uncovering global properties
focus on metrics with Killing vector dy, (why? sce latert)

ds® = G dxt' dz” = =2dudr — K(r) du?

as example consider /(1) = 1 — + . with r € (0,00)
simple algorithm: determine first aII curvature singularities
deduce all zeros of Killing norm, /K (r) =0

deduce asymptotic structure (i there is an asymptotic region)

draw part of Penrose diagram for EF patch

determine (in-)completeness properties of boundaries of patch
by looking at all geodesics

construct mirror f||pped versions (outgoing EF <> ingoing EF) ,

><
e

e.g.
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Global geometry

» EF gauge also useful for uncovering global properties
» focus on metrics with Killing vector 0y (why? see latert)

ds® = G dxt' dz” = =2dudr — K(r) du?

as example consider /(1) = 1 — + . with r € (0,00)

simple algorithm: determine first aII curvature singularities

deduce all zeros of Killing norm, /K (r) =0

deduce asymptotic structure (i there is an asymptotic region)

draw part of Penrose diagram for EF patch

determine (in-)completeness properties of boundaries of patch

by looking at all geodesics

construct mirror flipped versions (outgoing EF <> ingoing EF)

glue together basic EF patches to get global Penrose diagram, e.g.:

VVyVYyYVYY

vy
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Global geometry

4
>

VVyVYyYVYY

vy

EF gauge also useful for uncovering global properties
focus on metrics with Killing vector dy, (why? sce latert)

ds® = G dat dz” = =2dudr — K(r) du?

as example consider /(1) = 1 — # ?—,2 with 7 € (0, 00)
simple algorithm: determine first all curvature singularities
deduce all zeros of Killing norm, /K (r) =0

deduce asymptotic structure (i there is an asymptotic region)

draw part of Penrose diagram for EF patch

determine (in-)completeness properties of boundaries of patch
by looking at all geodesics

construct mirror flipped versions (outgoing EF <> ingoing EF)
glue together basic EF patches to get global Penrose diagram
read off event horizons, Cauchy horizons, bifurcation points on Killing
horizons, etc. (see series of papers by Klosch & Strobl, '96-'97)

Daniel Grumiller — Wolfgang Kummer's pioneering approach to 2d dilaton gravity 2d geometry 9/25



Global geometry

4
>

VVyVYyYVYY

vy

EF gauge also useful for uncovering global properties
focus on metrics with Killing vector 0y (why? see latert)

ds® = G dat dz” = =2dudr — K(r) du?

as example consider /(1) = 1 — # ?—,2 with 7 € (0, 00)

simple algorithm: determine first all curvature singularities

deduce all zeros of Killing norm, /K (r) =0

deduce asymptotic structure (i there is an asymptotic region)

draw part of Penrose diagram for EF patch

determine (in-)completeness properties of boundaries of patch

by looking at all geodesics

construct mirror flipped versions (outgoing EF <> ingoing EF)

glue together basic EF patches to get global Penrose diagram

read off event horizons, Cauchy horizons, bifurcation points on Killing

horizons, etc. (see series of papers by Klosch & Strobl, '96-'97)

[ Global properties (horizons, Penrose diagrams) captured by K (u, r) ]
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Asymptotic geometry

» many physical situations: have an actual or asymptotic boundary

while this rarely featured in Wolfgang's work, it was among the last research topics we discussed in 2007

Wolfgang studied boundary conditions with Lau '96; Bergamin, DG, Vassilevich '06 [his last paper]
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Asymptotic geometry

» many physical situations: have an actual or asymptotic boundary
» need to provide boundary conditions on fields, including metric
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Asymptotic geometry

» many physical situations: have an actual or asymptotic boundary
» need to provide boundary conditions on fields, including metric
» ‘“natural” boundary conditions (field — 0) bad for metric!
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Asymptotic geometry

» many physical situations: have an actual or asymptotic boundary
» need to provide boundary conditions on fields, including metric
» ‘“natural” boundary conditions (field — 0) bad for metric!

> instead: fall-off conditions (adapted to physical situation)
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Asymptotic geometry

» many physical situations: have an actual or asymptotic boundary
need to provide boundary conditions on fields, including metric
“natural” boundary conditions (field — 0) bad for metric!
instead: fall-off conditions (adapted to physical situation)
example in EF gauge (asymptotic boundary at 7 — o0):

2

Y T
ds® = g, da* da” = —2dudr — (57 + (9(1)) du?

implies 2 = f,;) + ... = vanilla asymptotically AdSs bc's!

vvyyvyy
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Asymptotic geometry

» many physical situations: have an actual or asymptotic boundary
need to provide boundary conditions on fields, including metric
“natural” boundary conditions (field — 0) bad for metric!
instead: fall-off conditions (adapted to physical situation)
example in EF gauge (asymptotic boundary at 7 — o0):

vvyyvyy

2
Y T
ds® = g, da* da” = —2dudr — (57 + (9(1)) du?

» metric fluctuations allowed by bc's: dgyr = dgrr =0, dguy = O(1)
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Asymptotic geometry

» many physical situations: have an actual or asymptotic boundary
need to provide boundary conditions on fields, including metric
“natural” boundary conditions (field — 0) bad for metric!
instead: fall-off conditions (adapted to physical situation)
example in EF gauge (asymptotic boundary at 7 — o0):

vvyyvyy

2
Y T
ds® = g, da* da” = —2dudr — (5—2 + (9(1)) du?

metric fluctuations allowed by bc's: dgyr = 0grr =0, dguy = O(1)
asymptotic Killing vectors &: preserve asymptotic form of metric

!
(Leg)uw = O0guu)

vy
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Asymptotic geometry

vvyyvyy

vy

many physical situations: have an actual or asymptotic boundary
need to provide boundary conditions on fields, including metric
“natural” boundary conditions (field — 0) bad for metric!
instead: fall-off conditions (adapted to physical situation)
example in EF gauge (asymptotic boundary at 7 — o0):

2
Y T
ds® = g, da* da” = —2dudr — (5—2 + (9(1)) du?

metric fluctuations allowed by bc's: dgyr = 0grr =0, dguy = O(1)
asymptotic Killing vectors &: preserve asymptotic form of metric

!
(Leg)uw = O(0gu)
example above: infinitely many (!) asymptotic Killing vectors (AKVs)
E=¢lel =e(u) Oy — 1€ (u)d, + 2" (u)d, + ...

we shall derive this result in the end
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Asymptotic geometry

vvyyvyy

vy

many physical situations: have an actual or asymptotic boundary
need to provide boundary conditions on fields, including metric
“natural” boundary conditions (field — 0) bad for metric!
instead: fall-off conditions (adapted to physical situation)
example in EF gauge (asymptotic boundary at 7 — o0):

2
Y T
ds® = g, da* da” = —2dudr — (5—2 + (9(1)) du?

metric fluctuations allowed by bc's: dgyr = 0grr =0, dguy = O(1)
asymptotic Killing vectors &: preserve asymptotic form of metric

(ﬁﬁg)uu = O(éguu)
example above: infinitely many (!) asymptotic Killing vectors (AKVs)
E=¢€le) =€(u) By —r€w)d + 02" (u) 0 + ...
Lie-bracket algebra of AKVs = asymptotic symmetry algebra

[Elel, €[], = &len” — €'n)
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Asymptotic geometry

> need to provide boundary conditions on fields, including metric
» example in EF gauge (asymptotic boundary at r — c0):

2
5 r
ds? = G dat' dz” = —2dudr — (72 + O(l)) du?

» metric fluctuations allowed by bc's: dgyr = dgrr =0, dguy = O(1)
> asymptotic Killing vectors &: preserve asymptotic form of metric

(Leg)uw = O(9,)
» example above: infinitely many (!) asymptotic Killing vectors (AKVs)
€ =¢lel = e(u) By — 1€ (u) 0, + 2" (u) D, + ...
> Lie-bracket algebra of AKVs = asymptotic symmetry algebra (ASA)
Elel, €M), = Elen” — €]

[ In holographic context AKVs are global symmetries of dual QFT ]
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Asymptotic geometry

» need to provide boundary conditions on fields, including metric
» example in EF gauge (asymptotic boundary at r — oo):

2
y r
ds? = g dat' dz” = —2dudr — (72 + O(l)) du?

» metric fluctuations allowed by bc's: dgyr = 6grr =0, dguy = O(1)
» asymptotic Killing vectors &: preserve asymptotic form of metric

(Leq)r = O3g,)
> example above: infinitely many (!) asymptotic Killing vectors (AKVs)
€ =¢le] = e(u) By — 7€ (u) 0, + 2" (u) D, + ...
» Lie-bracket algebra of AKVs = asymptotic symmetry algebra (ASA)
[€le], €], = &len” — €'n)

[ Also: asymptotic properties (AKVs, ASA) captured by K (u, r) ]
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Outline

2d quantum gravity

Daniel Grumiller — Wolfgang Kummer's pioneering approach to 2d dilaton gravity 2d quantum gravity 11/25



Action for dilaton gravity in 2d

> to quantize, we need more than geometry/kinematics: action!
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Action for dilaton gravity in 2d

> to quantize, we need more than geometry/kinematics: action!

» action for Katanaev—Volovich model in 2d dilaton gravity formulation

11X, gl = 4 /d%\/fg (XR - a(0X)? = BX? — )

47

X dilaton field
Juv: metric
«, 3,7, k: coupling constants

| can solve this globally in EF-gauge!
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Action for dilaton gravity in 2d

> to quantize, we need more than geometry/kinematics: action!

> action for Jackiw—Teitelboim model in 2d dilaton gravity formulation

11X, gu] = g / d*zy/—g X (R — A)

X dilaton field
Juv: metric
A, k: coupling constants

| can solve this globally in EF-gauge!
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Action for dilaton gravity in 2d

> to quantize, we need more than geometry/kinematics: action!
» action for Callan—Giddings—Harvey—Strominger model in 2d dilaton

gravity formulation

11X, gu) = ﬁ / d®zv/—g (XR — A)

X dilaton field
Juv: metric
A, k: coupling constants

| can solve this globally in EF-gauge!
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Action for dilaton gravity in 2d

> to quantize, we need more than geometry/kinematics: action!
» action for generic power counting renormalizable 2d dilaton gravity

11X, gw) = o /de\/—g (XR-U(X)(0X)* - V(X))
X: dilaton field
Juv: metric

U(X), V(X): dilaton potentials (may contain coupling constants)

| can solve this globally in EF-gauge: ds? = —2dudr — K (r) du?

Wolfgang's general solution has a function K of the form
K(X) =X (w(X)-2M)  dr =% dx
with Q(X) = [X U(y)dy and w(X) = -3 [X QW V() dy

= generalized Birkhoff theorem: Killing vector 9, for all solutions
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Action for dilaton gravity in 2d
> to quantize, we need more than geometry/kinematics: action!
> action for generalized 2d dilaton gravity pc, Ruzziconi, Zwikel 21

11X, gl = - [ o= (XR-V(X, (0X)?))

X: dilaton field
Juv: metric
V(X, (0X)?): free function (may contain coupling constants)

one can proof that this is the most general action possible, without adding matter degrees of freedom or destroying the

gravity-nature of the theory; the proof employs consistent deformations using BRST methods
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Action for dilaton gravity in 2d

> to quantize, we need more than geometry/kinematics: action!
P action for generalized 2d dilaton gravity pc, Ruzziconi, Zuikel 21

11X, gl = ﬁ /dzx\/?g (XR-V(X, (0X)?)

X: dilaton field
Juv: metric
V(X, (0X)?): free function (may contain coupling constants)

You can solve this globally in EF-gauge!

Daniel Grumiller — Wolfgang Kummer's pioneering approach to 2d dilaton gravity 2d quantum gravity 12/25



Action for dilaton gravity in 2d

> to quantize, we need more than geometry/kinematics: action!
P action for generalized 2d dilaton gravity pc, Ruzziconi, Zuikel 21

k
11X, gl = - / d*zv/=g (XR - V(X, (0X)?))
X: dilaton field

Juv: metric

V(X, (0X)?): free function (may contain coupling constants)

You can solve this globally in EF-gauge!
» Further generalizations:
1. boundary terms and holographic renormalization pc, McNees ‘07
2. Schwarzian-type boundary actions Maldacena, Stanford '16; Gonzélez, DG, Salzer '18
3. Carrollian 2d dilaton gravity Ecker, DG, Hartong, Pérez, Prohazka, Salzer, Troncoso '20 & 23
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Various approaches to 2d quantum gravity

» Quantize perturbatively on fixed background

_ c 5
G = Guv + 5gw/ <Tﬂu> = E R VM<T“V> =0

Guv: background metric, R: background Ricci scalar
c: central charge of matter part (trace anomaly)
last equality: covariant conservation equation of EMT T,

derived Hawking effect in this way, see review with Vassilevich '99
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Various approaches to 2d quantum gravity

» Quantize perturbatively on fixed background

» Define 2d gravity as matrix model

see e.g. Di Francesco, Ginsparg, Zinn-Justin '93
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Various approaches to 2d quantum gravity

» Quantize perturbatively on fixed background
» Define 2d gravity as matrix model

» Use holography

see final part of talk
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Various approaches to 2d quantum gravity

» Quantize perturbatively on fixed background
» Define 2d gravity as matrix model
» Use holography

» Integrate out geometry exactly

Vienna School approach Kummer, Liebl, Vassilevich, DG, Fischer, Bergamin, Hofmann
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Various approaches to 2d quantum gravity

» Quantize perturbatively on fixed background
» Define 2d gravity as matrix model
» Use holography

» Integrate out geometry exactly

Vienna School approach Kummer, Liebl, Vassilevich, DG, Fischer, Bergamin, Hofmann

[ Focus first on Vienna School approach and then on holography ]
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Integrating out geometry
For details see DG, Kummer, Vassilevich hep-th/0204253

Distinguishing features of Vienna School approach:
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Integrating out geometry
For details see DG, Kummer, Vassilevich hep-th/0204253

Distinguishing features of Vienna School approach:
» Spherically reduce Einstein gravity with matter to 2d dilaton gravity
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Integrating out geometry
For details see DG, Kummer, Vassilevich hep-th/0204253

Distinguishing features of Vienna School approach:
» Spherically reduce Einstein gravity with matter to 2d dilaton gravity

» Use covariant 1st order action in terms of Cartan variables
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Integrating out geometry
For details see DG, Kummer, Vassilevich hep-th/0204253

Distinguishing features of Vienna School approach:
» Spherically reduce Einstein gravity with matter to 2d dilaton gravity
P> Use covariant 1st order action in terms of Cartan variables

» Exploit lightcone gauge for Minkowski metric
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Integrating out geometry
For details see DG, Kummer, Vassilevich hep-th/0204253

Distinguishing features of Vienna School approach:

» Spherically reduce Einstein gravity with matter to 2d dilaton gravity
P> Use covariant 1st order action in terms of Cartan variables

» Exploit lightcone gauge for Minkowski metric

» Impose temporal gauge on zweibein and connection using BRST
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Integrating out geometry
For details see DG, Kummer, Vassilevich hep-th/0204253

Distinguishing features of Vienna School approach:
Spherically reduce Einstein gravity with matter to 2d dilaton gravity
Use covariant 1st order action in terms of Cartan variables

>

>

» Exploit lightcone gauge for Minkowski metric

» Impose temporal gauge on zweibein and connection using BRST
>

Perform the path integral over geometry: half of variables linear,
other half functional §-functions
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Integrating out geometry
For details see DG, Kummer, Vassilevich hep-th/0204253

Distinguishing features of Vienna School approach:
Spherically reduce Einstein gravity with matter to 2d dilaton gravity
Use covariant 1st order action in terms of Cartan variables

>

>

» Exploit lightcone gauge for Minkowski metric

» Impose temporal gauge on zweibein and connection using BRST
>

Perform the path integral over geometry: half of variables linear,
other half functional §-functions

» Obtain nonlocal, nonpolynomial action for matter fields
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Integrating out geometry
For details see DG, Kummer, Vassilevich hep-th/0204253

Distinguishing features of Vienna School approach:
Spherically reduce Einstein gravity with matter to 2d dilaton gravity
Use covariant 1st order action in terms of Cartan variables

>

>

» Exploit lightcone gauge for Minkowski metric

» Impose temporal gauge on zweibein and connection using BRST
>

Perform the path integral over geometry: half of variables linear,
other half functional §-functions

» Obtain nonlocal, nonpolynomial action for matter fields

» Derive Feynman rules
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Integrating out geometry
For details see DG, Kummer, Vassilevich hep-th/0204253

| Distinguishing features of Vienna School approach:
Spherically reduce Einstein gravity with matter to 2d dilaton gravity
Use covariant 1st order action in terms of Cartan variables

>

>

» Exploit lightcone gauge for Minkowski metric

» Impose temporal gauge on zweibein and connection using BRST
>

Perform the path integral over geometry: half of variables linear,
other half functional §-functions

» Obtain nonlocal, nonpolynomial action for matter fields
» Derive Feynman rules

» Calculate S-matrix
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Integrating out geometry
For details see DG, Kummer, Vassilevich hep-th/0204253

Distinguishing features of Vienna School approach:
Spherically reduce Einstein gravity with matter to 2d dilaton gravity
Use covariant 1st order action in terms of Cartan variables

>

>

» Exploit lightcone gauge for Minkowski metric

» Impose temporal gauge on zweibein and connection using BRST
>

Perform the path integral over geometry: half of variables linear,
other half functional §-functions

Obtain nonlocal, nonpolynomial action for matter fields
Derive Feynman rules
Calculate S-matrix

Optionally: reconstruct geometry from solving constraints
= virtual black holes!
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S-matrix for s-wave gravitational scattering
Massless free scalar field scatters on own gravitational energy

Implementing program for Einstein-massless Klein—-Gordon model yields
lowest order 4pt (unitary and CPT-invariant) S-matrix

Sk+K —-q—¢) =
kR qq’|3/2
withs=k+k =q+¢,t=k—q u=k —qand

T = stu 1nﬁ+i Z p21np2(3k:k'qq'— 12 Z r2v2)
st 52 2

stu
pe{k,k,q,q'} T#p VET,P

T(qa q/7 k? k,) =

S-matrix obtained in Fischer, DG, Kummer, Vassilevich '01
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S-matrix for s-wave gravitational scattering
Massless free scalar field scatters on own gravitational energy

Implementing program for Einstein-massless Klein—-Gordon model yields
lowest order 4pt (unitary and CPT-invariant) S-matrix

! 4 ~
0(k+kK —q q)T

/ A
T(qaq 7ka k ) - ]kk’qq’]3/2

withs=k+k =q+¢, t=k—q u=k —qand

T—Stu lnﬁ+i Z p2lnpz(3kk/qq/12 Z T2’U2)
st stu 52 2

pe{k,k',q,q'} r#£p vETD

» only one delta function (no separate momentum conservation)
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S-matrix for s-wave gravitational scattering
Massless free scalar field scatters on own gravitational energy

Implementing program for Einstein-massless Klein—-Gordon model yields
lowest order 4pt (unitary and CPT-invariant) S-matrix
o(k+k —q—4d) =

kR qq’|3/2
withs=k+k'=q+¢, t=k—q, u=Fk —q and

T—Stu lnﬁ_i_i Z p21an(3kk/qq/_1Z Z 7‘21)2)
st stu 52 2

pe{k,k,q,q'} T#D VET,p

T(qa qla ka k,) =

» only one delta function (no separate momentum conservation)
> forward scattering poles e.g.,

In gsfugz
st+u
PTG 2z T OO0
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S-matrix for s-wave gravitational scattering

Massless free scalar field scatters on own gravitational energy

Implementing program for Einstein-massless Klein—-Gordon model yields
lowest order 4pt (unitary and CPT-invariant) S-matrix

Sk+K —-q—¢) =
T(q, /,k,k' =
(q q ) ’kk/qq/’3/2
withs=k+k =q+¢,t=k—q u=k —qand

tu? 1
T—stuln——{——
st

proy Z p2 In iz (3l<:k:'qq' — % Z Z 7‘21)2)

pe{k,k,q,q'} T#D VET,p

» only one delta function (no separate momentum conservation)
> forward scattering poles

> UV finite e.g.,

l*\:

i+
lim T o< & +0(1/s°)
§—00
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S-matrix for s-wave gravitational scattering
Massless free scalar field scatters on own gravitational energy

Implementing program for Einstein-massless Klein—-Gordon model yields
lowest order 4pt (unitary and CPT-invariant) S-matrix
o(k+k —q—4d) =
T
kK qq’|3/2

T(q,q k. K') =

withs=k+k =q+¢, t=k—q u=k —qand

T_Stu lnﬁ+i Z p2lnpz(3kk/qq/12 Z 7‘21)2)
st stu 52 2

pe{k,k',q,q'} r#£p vETD

» only one delta function (no separate momentum conservation)
» forward scattering poles

> UV finite

» crossing symmetry T'(s,t,u) = T'(t,s,u) = T(u,t,s)
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S-matrix for s-wave gravitational scattering
Massless free scalar field scatters on own gravitational energy

Implementing program for Einstein-massless Klein—-Gordon model yields
lowest order 4pt (unitary and CPT-invariant) S-matrix
o(k+k —q—4d) =
T
kK qq’|3/2

T(q,q k. K') =

withs=k+k =q+¢, t=k—q u=k —qand

T_Stu lnﬁ+i Z p2lnpz(3kk/qq/12 Z 7‘21)2)
st stu 52 2

pe{k,k',q,q'} r#£p vETD

only one delta function (no separate momentum conservation)
forward scattering poles

UV finite

crossing symmetry T'(s,t,u) = T(t,s,u) = T(u,t,s)

scale covariance: T(A\q, A\, ANk, \E') = X4 T(q, ¢, k, k)

vvyyy

v
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Physical consequences of S-matrix

> we integrated out geometry exactly and maintain only matter dof

Wolgfgang had this vision already in '98, the start of my PhD; it took until '01 to realize it
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Physical consequences of S-matrix

> we integrated out geometry exactly and maintain only matter dof

> effective theory is non-local and non-polynomial in matter
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Physical consequences of S-matrix

> we integrated out geometry exactly and maintain only matter dof
> effective theory is non-local and non-polynomial in matter

> matter scatters on its own gravitational self-energy
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Physical consequences of S-matrix

> we integrated out geometry exactly and maintain only matter dof
> effective theory is non-local and non-polynomial in matter
> matter scatters on its own gravitational self-energy

» S-matrix: unitary, CPT-inv., UV-finite, crossing-symmetric, scale-cov.

Daniel Grumiller — Wolfgang Kummer's pioneering approach to 2d dilaton gravity 2d quantum gravity 16/25



Physical consequences of S-matrix

> we integrated out geometry exactly and maintain only matter dof
effective theory is non-local and non-polynomial in matter
matter scatters on its own gravitational self-energy

S-matrix: unitary, CPT-inv., UV-finite, crossing-symmetric, scale-cov.

vvyyy

ingoing s-wave with momentum ¢ has finite decay rate into outgoing
s-waves with momenta k, k', —¢'

a bit like Hawking radiation if interpreted as scattering process: high energy modes decays into lower energy modes
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Physical consequences of S-matrix

vvyyy

we integrated out geometry exactly and maintain only matter dof
effective theory is non-local and non-polynomial in matter

matter scatters on its own gravitational self-energy

S-matrix: unitary, CPT-inv., UV-finite, crossing-symmetric, scale-cov.

ingoing s-wave with momentum ¢ has finite decay rate into outgoing
s-waves with momenta k, k', —¢'

a bit like Hawking radiation if interpreted as scattering process: high energy modes decays into lower energy modes

can reconstruct geometry and get virtual black holes
ds? = —2dudr— [1—6(u—u0)0(r0—r) <W+a(ro)r+d(ro)>] du?
with distributional contributions

m(rg) = corp + c17g a(ro) = 3coro — 2¢1 d(ro) = cori

that account for d-insertions of kinetic matter sources at ug, 7o
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Generalizations

> Vertices for arbitrary 2d dilaton gravity models

done with Vassilevich, DG '02
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Generalizations

> Vertices for arbitrary 2d dilaton gravity models
» 1-loop calculations

indications that non-local loops vanish

see my contribution to the 14th International Hutsulian Workshop on Mathematcial Theories and their Physical and

Technical Applications '02
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Generalizations

> Vertices for arbitrary 2d dilaton gravity models
» 1-loop calculations

» 1-loop corrections to specific heat

consequence for CGHS model: specific heat no longer infinite

calculated with Vassilevich, DG '03
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Generalizations

> Vertices for arbitrary 2d dilaton gravity models
1-loop calculations

1-loop corrections to specific heat

Fermions instead of scalars

vvyy

same procedure works

done with my first student in Leipzig, Rene Meyer, DG 06
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Generalizations

> Vertices for arbitrary 2d dilaton gravity models
» 1-loop calculations

» 1-loop corrections to specific heat

» Fermions instead of scalars

» Higher dimensions

done in a recent master thesis by my student Florian Ecker '21
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Generalizations

» Vertices for arbitrary 2d dilaton gravity models

1-loop calculations

1-loop corrections to specific heat

Fermions instead of scalars

Higher dimensions

missing: other matter interactions, more S-matrix calculations, Mellin
amplitudes, asymptotic symmetries, flux-balance laws, soft theorems,

vVVvyvVvyYvVYyYy

There is a lot of opportunity for students
Consider joining the Vienna School!
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Outline

2d holography
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Heuristics of holography

> Entropy S of typical substances is extensive:
S~V ~L*

V. volume; L: length scale; d: number of spatial dimensions
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Heuristics of holography
> Entropy S of typical substances is extensive:
S~V ~L*

V. volume; L: length scale; d: number of spatial dimensions
» Black hole (Bekenstein-Hawking) entropy instead scales like area:

SBH ~ A ~ Ldil

A: area
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Heuristics of holography
> Entropy S of typical substances is extensive:
S~V ~L*

V. volume; L: length scale; d: number of spatial dimensions
» Black hole (Bekenstein-Hawking) entropy instead scales like area:

SBH ~ A ~ Ldil

A: area
» simple observation: area in 3d ~ volume in 2d
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Heuristics of holography

> Entropy S of typical substances is extensive:
S~V ~L*

V. volume; L: length scale; d: number of spatial dimensions

» Black hole (Bekenstein-Hawking) entropy instead scales like area:

SBH ~ A ~ Ldil

A: area
» simple observation: area in 3d ~ volume in 2d

Daring idea by 't Hooft and Susskind in '90s:

Holographic Principle}

Theory with gravity in d + 1 dimensions equivalent to
theory without gravity in d dimensions
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Heuristics of AdS/CFT Maldacena '97 — more than 20thousand citations
AdS/CFT = most concrete and best-studied implementation of holographic principle

» QFT typically = relevant/marginal deformation of CFT

Daniel Grumiller — Wolfgang Kummer's pioneering approach to 2d dilaton gravity 2d holography 20/25



Heuristics of AdS/CFT Maldacena '97 — more than 20thousand citations
AdS/CFT = most concrete and best-studied implementation of holographic principle

» QFT typically = relevant/marginal deformation of CFT
» UV-behavior of QFT dominated by CFT fixed point
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Heuristics of AdS/CFT Maldacena '97 — more than 20thousand citations
AdS/CFT = most concrete and best-studied implementation of holographic principle

» QFT typically = relevant/marginal deformation of CFT
» UV-behavior of QFT dominated by CFT fixed point
> lower energies E: RG flow (e.g. running coupling constants)
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Heuristics of AdS/CFT Maldacena '97 — more than 20thousand citations
AdS/CFT = most concrete and best-studied implementation of holographic principle

» QFT typically = relevant/marginal deformation of CFT

» UV-behavior of QFT dominated by CFT fixed point

> lower energies E: RG flow (e.g. running coupling constants)
> idea: geometrize RG-flow and use E as additional coordinate
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Heuristics of AdS/CFT Maldacena '97 — more than 20thousand citations
AdS/CFT = most concrete and best-studied implementation of holographic principle

» QFT typically = relevant/marginal deformation of CFT

» UV-behavior of QFT dominated by CFT fixed point

> lower energies E: RG flow (e.g. running coupling constants)
> idea: geometrize RG-flow and use E as additional coordinate
» most general metric with Poincaré-invariant constant E-slices:

ds® = f1(E) dE* + fo(E) ny, da* dz” w,v=0.(D—1)
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Heuristics of AdS/CFT Maldacena '97 — more than 20thousand citations
AdS/CFT = most concrete and best-studied implementation of holographic principle

| 2

vvyyvyy

QFT typically = relevant/marginal deformation of CFT

UV-behavior of QFT dominated by CFT fixed point

lower energies E: RG flow (e.g. running coupling constants)

idea: geometrize RG-flow and use E as additional coordinate

most general metric with Poincaré-invariant constant E-slices:
ds® = f1(B) dB* + fo(E)ny da# dz¥ p,v =0..(D — 1)

suppose further that QFT is CFT and thus has scale symmetry

= At E — EX!
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QFT typically = relevant/marginal deformation of CFT
UV-behavior of QFT dominated by CFT fixed point

lower energies E: RG flow (e.g. running coupling constants)
idea: geometrize RG-flow and use E as additional coordinate
most general metric with Poincaré-invariant constant E-slices:

ds® = f1(E) dE* + fo(E) ny, da* dz” p,v=0..(D—1)
suppose further that QFT is CFT and thus has scale symmetry
at — At E— EX!

most general line-element compatible with scale symmetry:

dE?
ds? = /2 <E2 + E? Ny dat dx”) (e R N © Minkowski
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Heuristics of AdS/CFT Maldacena '97 — more than 20thousand citations
AdS/CFT = most concrete and best-studied implementation of holographic principle

| 2

vvyyvyy

| 2

QFT typically = relevant/marginal deformation of CFT
UV-behavior of QFT dominated by CFT fixed point

lower energies E: RG flow (e.g. running coupling constants)
idea: geometrize RG-flow and use E as additional coordinate
most general metric with Poincaré-invariant constant E-slices:

ds® = f1(E) dE* + fo(E) ny, da* dz” w,v=0.(D—1)
suppose further that QFT is CFT and thus has scale symmetry
at — At E— EX!

most general line-element compatible with scale symmetry:

dE?
ds? = /2 <E2 + E? Ny dat dac”) (e R N © Minkowski

This metric is AdSp+1! UV of QFT, E — oo, is IR of gravity!
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Holographic dictionary and applications

HO|OgraphIC chtlonary Gubser, Klebanov, Polyakov '98; Witten '98

(e ([i00@)) = Zumas [0l e = )]
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» Correlations functions calculated by GKPW-dictionary above
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Holographic dictionary and applications

HO|OgraphIC chtlonary Gubser, Klebanov, Polyakov '98; Witten '98

(e ([i00@)) = Zuma [0l )t = @)

» For every QFT observable there is a corresponding gravity observable
» Correlations functions calculated by GKPW-dictionary above
» Other prominent example: (holographic) entanglement entropy

(We omit the time direction. )

CFT,

d+1

7a
AdS,,
B dZZ

/z:i (UV cut off)
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Holographic dictionary and applications

HO|0graphIC chtlonary Gubser, Klebanov, Polyakov '98; Witten '98

(e ([i00@)) = Zumas [0l e = )]

» For every QFT observable there is a corresponding gravity observable
» Correlations functions calculated by GKPW-dictionary above

» Other prominent example: (holographic) entanglement entropy Sugg
» Ryu-Takayanagi formula: Sig, = area(va)/(4G)
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HO|0graphIC chtlonary Gubser, Klebanov, Polyakov '98; Witten '98

(e ([i00@)) = Zumas [0l e = )]

» For every QFT observable there is a corresponding gravity observable
» Correlations functions calculated by GKPW-dictionary above

» Other prominent example: (holographic) entanglement entropy Sugg
» Ryu-Takayanagi formula: Sig, = area(va)/(4G)

» can describe all physical processes in two different formulations
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Holographic dictionary and applications

HO|OgraphIC chtlonary Gubser, Klebanov, Polyakov '98; Witten '98

(e ([i00@)) = Zuma [0l )t = @)

For every QFT observable there is a corresponding gravity observable
Correlations functions calculated by GKPW-dictionary above

Other prominent example: (holographic) entanglement entropy Sggg
Ryu—Takayanagi formula: SiL, = area(ya)/(4G)

can describe all physical processes in two different formulations
often, holographic correspondence maps complicated <+ simple

in applications: always pick simpler one!

vVvVvvYyVYVYYy
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Holographic dictionary and applications

HO|0graphiC Dictionary Gubser, Klebanov, Polyakov '98; Witten '98

(e ([1@)0@)) = Zyua 002, )]0 = 0)]

For every QFT observable there is a corresponding gravity observable
Correlations functions calculated by GKPW-dictionary above

Other prominent example: (holographic) entanglement entropy Syge
Ryu—Takayanagi formula: ST, = area(v4)/(4G)

can describe all physical processes in two different formulations
often, holographic correspondence maps complicated <+ simple

in applications: always pick simpler one!

example type |: map strongly coupled quantum (field) theory
[complicated]| to weakly coupled classical gravity theory [simple]
heavy ion collisions at LHC, neutron stars, cold atoms, viscous hydrodynamics,

vVvVvyVyYVYyy

v

holographic superconductors, strange metals, ...
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Holographic dictionary and applications

VVVyVYYVYYVYY

v

HO|0graphiC Dictionary Gubser, Klebanov, Polyakov '98; Witten '98

<exp ( / j(@) O(x))>m = Zgraviey |9, 2)]200 = j(x)]

For every QFT observable there is a corresponding gravity observable
Correlations functions calculated by GKPW-dictionary above

Other prominent example: (holographic) entanglement entropy Sygk
Ryu—Takayanagi formula: SiL, = area(y4)/(4G)

can describe all physical processes in two different formulations
often, holographic correspondence maps complicated <+ simple
example type |: map strongly coupled quantum (field) theory
[complicated]| to weakly coupled classical gravity theory [simple]
example type II: map quantum gravity [complicated]| to weakly
coupled quantum field theory [simple]

microscopic understanding of black holes, information paradox, black hole

evaporation, quantum information aspects of black holes, ...
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Constraining dual field theory from gravity side: asymptotic symmetries

Asymptotic symmetries are key concept in gravity
They allow to constrain the dual field theory

» Symmetries in geometries characterized by Killing vectors £ that solve
Killing equation

(‘Cég)uv = faaozg/w + guaaufa + guaaufa =0
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Constraining dual field theory from gravity side: asymptotic symmetries

Asymptotic symmetries are key concept in gravity
They allow to constrain the dual field theory

» Symmetries in geometries characterized by Killing vectors £ that solve
Killing equation

(‘Cég)uv = faaozg/w + guaaufa + guaaufa =0

» can have up to D(D + 1)/2 independent Killing vectors
> Asymptotic symmetries in asymptotic geometries characterized by
asymptotic Killing vectors £ that solve asymptotic Killing equation

!
(»ng)w/ = O((Sguu)
O(6g,m): fluctuations allowed by asymptotic fall-off conditions

e.g. asymptotically AdS, asymptotically flat, asymptotically dS, ...

Ad52 menagel’ie Of pOSSIbI|ItIeS DG, McNees, Salzer, Valcarcel, Vassilevich '17
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They allow to constrain the dual field theory

» Symmetries in geometries characterized by Killing vectors £ that solve
Killing equation
(‘Cég)uv = faaozg/w + guaaufa + guaaufa =0

» can have up to D(D + 1)/2 independent Killing vectors
> Asymptotic symmetries in asymptotic geometries characterized by
asymptotic Killing vectors £ that solve asymptotic Killing equation

!
('Cﬁg)w/ = O((Sguu)
» can have infinitely many asymptotic Killing vectors even in D = 2
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» Symmetries in geometries characterized by Killing vectors £ that solve
Killing equation
(‘Cég)uv = faaozg/w + guaaufa + guaaufa =0

» can have up to D(D + 1)/2 independent Killing vectors
> Asymptotic symmetries in asymptotic geometries characterized by
asymptotic Killing vectors £ that solve asymptotic Killing equation

!
('Cﬁg)w/ = O((Sguu)

» can have infinitely many asymptotic Killing vectors even in D = 2

» asymptotic symmetry algebra = algebra of asymptotic Killing vectors
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Constraining dual field theory from gravity side: asymptotic symmetries

Asymptotic symmetries are key concept in gravity
They allow to constrain the dual field theory

» Symmetries in geometries characterized by Killing vectors ¢

can have up to D(D + 1)/2 independent Killing vectors

> Asymptotic symmetries in asymptotic geometries characterized by
asymptotic Killing vectors £ that solve asymptotic Killing equation

!
(‘Cfg)ul/ = 0(59;14/)

» can have infinitely many asymptotic Killing vectors even in D = 2
P> asymptotic symmetry algebra = algebra of asymptotic Killing vectors

v

Key insight for holography}

Asymptotic symmetry algebra generates global symmetries of dual QFT
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Derivation of asymptotic symmetry algebra for AdSs example
» boundary and gauge fixing conditions for metric (set £ = 1):

grr =0 ru = —1 Juu = —r? +7T ’lt)
~——

state-dependent
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Derivation of asymptotic symmetry algebra for AdSs example
» boundary and gauge fixing conditions for metric (set £ = 1):
grr =0 Gru = —1 Guu = —r? + T(LL)

» asymptotic Killing vectors obey (L¢g)u . O(6guw)

T guaugrr + QQTMaTé-H =0
U §10ugru + GruOuét + guport =0
uu £'0uguu + 29up0uEt = 0T (u)
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» boundary and gauge fixing conditions for metric (set £ = 1):

grr =0 Iru = —1 Guu = _Tz + T(LL)

» asymptotic Killing vectors obey (L¢g)u . O(6guw)

T guaugrr + QQTMaTé-H =0
U §10ugru + GruOuét + guport =0
uu £'0uguu + 29up0uEt = 0T (u)

» rr-equation: 2g,,0," =0 = & = e(u)
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Derivation of asymptotic symmetry algebra for AdSs example
» boundary and gauge fixing conditions for metric (set £ = 1):
grr =0 Gru = —1 Guu = —r? + T(LL)

» asymptotic Killing vectors obey (L¢g)u . O(6guw)

T guaugrr + QQTMaTé-H =0
U §10ugru + GruOuét + guport =0
uu £'0uguu + 29up0uEt = 0T (u)

» rr-equation: 2g,,0," =0 = & = e(u)
» ru-equation: ¢r,0u&" + GurO0r&" + Guu0r-&Y = 0 together with result
above yields §&" = —r €' (u) + n(u)
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Derivation of asymptotic symmetry algebra for AdSs example

» boundary and gauge fixing conditions for metric (set £ = 1):

grr =0 Gru = —1 Gun = =17 + T (u)
» asymptotic Killing vectors obey (L¢g)u . O(69uw)
T " 0ugrr + 297 0r&" =0
TU £"0ugru + Grp0u€! + gupor€! =0
uu 101 gun + 29unOuét = 0T (u)

> rr-equation: 2¢,,0.% =0 = &4 =e(u)

» ru-equation: ¢r0uE" + GurO0r&" + Guu0r-&Y = 0 together with result
above yields §&" = —r €' (u) + n(u)

» wu-equation: €10, guu + 20uu0u€” + 20ur0u€” = 0T ; expand terms:

(re' —n) 2r +€T" +2( —r? +T)e +2(re" —n') =0T
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Derivation of asymptotic symmetry algebra for AdSs example

» boundary and gauge fixing conditions for metric (set £ = 1):

Grr =0 Gru = —1 Gun = =17 + T (u)
» asymptotic Killing vectors obey (L¢g)u < O(69uw)
T §"0ugrr + 291, 0rE" =0
TU £"0ugru + Grp0u€! + gupor€! =0
uu 101 gun + 29unOuét = 0T (u)

» rr-equation: 2g,,0," =0 = &4 =e(u)
» ru-equation: ¢r0uE" + GurO0r&" + Guu0r-&Y = 0 together with result
above yields §&" = —r €' (u) + n(u)
» wu-equation: €10, guu + 20uu0u€” + 20ur0u€” = 0T ; expand terms:
(ré —m)2r+eT' +2(—r*+T)e+2(r" —0) =0T
re/2r+2( —1“2) € =0

terms of order r2 cancel
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Derivation of asymptotic symmetry algebra for AdSs example

» boundary and gauge fixing conditions for metric (set £ = 1):

Grr =0 Gru = —1 Gun = =17 + T (u)
» asymptotic Killing vectors obey (L¢g)u < O(69uw)
T §"0ugrr + 291, 0rE" =0
TU £"0ugru + Grp0u€! + gupor€! =0
uu 101 gun + 29unOuét = 0T (u)

» rr-equation: 2g,,0," =0 = &4 =e(u)
» ru-equation: ¢r0uE" + GurO0r&" + Guu0r-&Y = 0 together with result
above yields §&" = —r €' (u) + n(u)
» wu-equation: €10, guu + 20uu0u€” + 20ur0u€” = 0T ; expand terms:
(ré —m)2r+eT' +2(—r*+T)e+2(r" —0) =0T
—n2r+2ré’ =0

terms of order r cancel if n = ¢”
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Derivation of asymptotic symmetry algebra for AdSs example

» boundary and gauge fixing conditions for metric (set £ = 1):

Grr =0 Gru = —1 Gun = =17 + T (u)
» asymptotic Killing vectors obey (L¢g)u < O(69uw)
T §"0ugrr + 291, 0rE" =0
TU £"0ugru + Grp0u€! + gupor€! =0
uu 101 gun + 29unOuét = 0T (u)

» rr-equation: 2g,,0," =0 = &4 =e(u)
» ru-equation: ¢r0uE" + GurO0r&" + Guu0r-&Y = 0 together with result
above yields §&" = —r €' (u) + n(u)
» wu-equation: §#0,guu + 29uu0u" + 29ur0uE” = 0T
this is what we wanted to prove, i.e.,
€ =e(u)dy —ré(u)d+ €' (u)d,

are the AKVs preserving the form of the metric above
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Derivation of asymptotic symmetry algebra for AdSs example

» boundary and gauge fixing conditions for metric (set £ = 1):

grr =0 Gru = —1 Gun = =17 + T (u)
» asymptotic Killing vectors obey (L¢g)u . O(69uw)
T " 0ugrr + 297 0r&" =0
TU £"0ugru + Grp0u€! + gupor€! =0
uu 101 gun + 29unOuét = 0T (u)

» rr-equation: 2g,,0," =0 = &4 =e(u)
» ru-equation: ¢r0uE" + GurO0r&" + Guu0r-&Y = 0 together with result
above yields §&" = —r €' (u) + n(u)
> wu-equation: f“a,uguu + 29uu8u£u + 29u7"8u§r =0T
€T +26 T —2" =6T

terms of order 1 yield infinitesimal Schwarzian derivative
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Derivation of asymptotic symmetry algebra for AdSs example

» boundary and gauge fixing conditions for metric (set £ = 1):

grr =0 gru = —1 Guu = =17 + T (u)
» asymptotic Killing vectors obey (L¢g), . O(6guw)
T E"0ugrr + 29r,0,6" =0
U &4 0ugru + gruOug” + guuor =0
u : £ OpGuu + 2gupOult = T (u)
» rr-equation: 2¢,,0,£% =0 = €4 = e(u)

> ru-equation: ¢0uE" + GurOr&" + GuuOrEY = 0 together with result
above yields £" = —r €' (u) + n(u)
» wu-equation: £*0,0uu + 29uu0u" + 29ur0uE” = 0T

€T+ 26T —2" = 6T

terms of order 1 yield infinitesimal Schwarzian derivative

[ First glimpse of AdSy/CFT,! ]
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Open key questions in holography
Continuing the Vienna School in the 21st century

» How general is the holographic principle?
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» If not, when does it work?

> If yes, how does it work?
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How general is the holographic principle?

Does it work beyond AdS/CFT?

If not, when does it work?

If yes, how does it work?

Does it work in our Universe?

Does it work in asymptotically flat spacetimes?
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How general is the holographic principle?

Does it work beyond AdS/CFT?

If not, when does it work?

If yes, how does it work?

Does it work in our Universe?

Does it work in asymptotically flat spacetimes?
What is the dual field theory?

Novel quantum info aspects of holography?
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Can we find novel applications of holography within AdS/CFT?
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Open key questions in holography
Continuing the Vienna School in the 21st century

v

How general is the holographic principle?

Does it work beyond AdS/CFT?

If not, when does it work?

If yes, how does it work?

Does it work in our Universe?

Does it work in asymptotically flat spacetimes?

What is the dual field theory?

Novel quantum info aspects of holography?

Can we find novel applications of holography within AdS/CFT?

VVyVYyVYyVYVYVYYVYY

Can we find novel applications of holography beyond AdS/CFT?

There is a lot of opportunity for students
Consider joining the modern Vienna School!
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