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Motivations for studying gravity in 2d

I As simple as possible...

I quantum gravity?
I evaporating black holes/information loss?
I holographic principle (beyond AdS/CFT)?

I ...but not simpler

I 2: lowest dimension with Riemann curvature and notable topology
I 1+1: lowest dimension with lightcones/black holes
I 2: lowest dimension with boundary dynamics

I Caveats:

I no transverse-traceless part in fluctuations ⇒ no gravitational waves
I no EOM from EH action
I 2d metrics locally conformally flat

Gravity in 2d provides (often soluble) toy models for
quantum gravity, black hole evaporation and holography
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Local geometry

I Often useful: Eddington–Finkelstein (EF) gauge

ds2 = gµν dxµ dxν = −2 dudr −K(u, r) du2

used this gauge for classical, semiclassical, and quantum 2d dilaton gravity

analogous to temporal/axial gauge used by Wolfgang for nonabelian gauge theories

I u: retarded time; r: radial coordinate; K(u, r): local geometry
I u = const. lines null; r = const. lines null if K = 0
I only scalar curvature invariant: Ricci scalar

R = −∂
2K(u, r)

∂r2

I special case K = K(r): Killing vector ξ = ξα∂α = ∂u

(Lξg)µν = ξα∂αgµν + gαµ∂νξ
α + gαν∂µξ

α = ∂ugµν = 0

I norm of Killing vector: ξ2 = ξµξνgµν = guu = −K(r)
I zeros of K(r) are Killing horizons
I get as many Killing horizons as there are zeros of K(r)

Local properties (curvature, Killing horizons) captured by K(u, r)
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Global geometry

I EF gauge also useful for uncovering global properties

used this gauge to find all global solutions of R2 + T2 gravity

I focus on metrics with Killing vector ∂u (why? see later!)

ds2 = gµν dxµ dxν = −2 du dr −K(r) du2

as example consider K(r) = 1− 2M
r + Q2

r2
with r ∈ (0,∞)

I simple algorithm: determine first all curvature singularities
I deduce all zeros of Killing norm, K(r) = 0
I deduce asymptotic structure (if there is an asymptotic region)

I draw part of Penrose diagram for EF patch
I determine (in-)completeness properties of boundaries of patch

by looking at all geodesics
I construct mirror flipped versions (outgoing EF ↔ ingoing EF)
I glue together basic EF patches to get global Penrose diagram
I read off event horizons, Cauchy horizons, bifurcation points on Killing

horizons, etc. (see series of papers by Klösch & Strobl, ’96-’97)

Global properties (horizons, Penrose diagrams) captured by K(u, r)
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Global properties (horizons, Penrose diagrams) captured by K(u, r)

Daniel Grumiller — Wolfgang Kummer’s pioneering approach to 2d dilaton gravity 2d geometry 9/25



Global geometry

I EF gauge also useful for uncovering global properties
I focus on metrics with Killing vector ∂u (why? see later!)

ds2 = gµν dxµ dxν = −2 du dr −K(r) du2

as example consider K(r) = 1− 2M
r + Q2

r2
with r ∈ (0,∞)

I simple algorithm: determine first all curvature singularities
I deduce all zeros of Killing norm, K(r) = 0
I deduce asymptotic structure (if there is an asymptotic region)

I draw part of Penrose diagram for EF patch
I determine (in-)completeness properties of boundaries of patch

by looking at all geodesics
I construct mirror flipped versions (outgoing EF ↔ ingoing EF)
I glue together basic EF patches to get global Penrose diagram, e.g.:

I read off event horizons, Cauchy horizons, bifurcation points on Killing
horizons, etc. (see series of papers by Klösch & Strobl, ’96-’97)
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Asymptotic geometry

I many physical situations: have an actual or asymptotic boundary

while this rarely featured in Wolfgang’s work, it was among the last research topics we discussed in 2007

Wolfgang studied boundary conditions with Lau ’96; Bergamin, DG, Vassilevich ’06 [his last paper]

I need to provide boundary conditions on fields, including metric
I “natural” boundary conditions (field → 0) bad for metric!
I instead: fall-off conditions (adapted to physical situation)
I example in EF gauge (asymptotic boundary at r →∞):

ds2 = gµν dxµ dxν = −2 du dr −
(r2
`2

+O(1)
)

du2

I metric fluctuations allowed by bc’s: δgur = δgrr = 0, δguu = O(1)
I asymptotic Killing vectors ξ: preserve asymptotic form of metric

(Lξg)µν
!

= O(δgµν)

I example above: infinitely many (!) asymptotic Killing vectors (AKVs)

ξ = ξ[ε] = ε(u) ∂u − r ε′(u) ∂r + `2 ε′′(u) ∂r + . . .

I Lie-bracket algebra of AKVs = asymptotic symmetry algebra[
ξ[ε], ξ[η]

]
Lie

= ξ[εη′ − ε′η]
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I asymptotic Killing vectors ξ: preserve asymptotic form of metric

(Lξg)µν
!

= O(δgµν)

I example above: infinitely many (!) asymptotic Killing vectors (AKVs)

ξ = ξ[ε] = ε(u) ∂u − r ε′(u) ∂r + `2 ε′′(u) ∂r + . . .

we shall derive this result in the end

I Lie-bracket algebra of AKVs = asymptotic symmetry algebra[
ξ[ε], ξ[η]

]
Lie

= ξ[εη′ − ε′η]
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ds2 = gµν dxµ dxν = −2 du dr −
(r2
`2
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I asymptotic Killing vectors ξ: preserve asymptotic form of metric

(Lξg)µν
!

= O(δgµν)

I example above: infinitely many (!) asymptotic Killing vectors (AKVs)

ξ = ξ[ε] = ε(u) ∂u − r ε′(u) ∂r + `2 ε′′(u) ∂r + . . .

I Lie-bracket algebra of AKVs = asymptotic symmetry algebra (ASA)[
ξ[ε], ξ[η]

]
Lie

= ξ[εη′ − ε′η]

In holographic context AKVs are global symmetries of dual QFT
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Asymptotic geometry

I need to provide boundary conditions on fields, including metric
I example in EF gauge (asymptotic boundary at r →∞):

ds2 = gµν dxµ dxν = −2 du dr −
(r2
`2

+O(1)
)

du2

I metric fluctuations allowed by bc’s: δgur = δgrr = 0, δguu = O(1)
I asymptotic Killing vectors ξ: preserve asymptotic form of metric

(Lξg)µν
!

= O(δgµν)

I example above: infinitely many (!) asymptotic Killing vectors (AKVs)

ξ = ξ[ε] = ε(u) ∂u − r ε′(u) ∂r + `2 ε′′(u) ∂r + . . .

I Lie-bracket algebra of AKVs = asymptotic symmetry algebra (ASA)[
ξ[ε], ξ[η]

]
Lie

= ξ[εη′ − ε′η]

Also: asymptotic properties (AKVs, ASA) captured by K(u, r)
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Outline

Motivations (2d or not 2d?)

2d geometry

2d quantum gravity

2d holography
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Action for dilaton gravity in 2d

I to quantize, we need more than geometry/kinematics: action!

I
I Further generalizations:

1. boundary terms and holographic renormalization DG, McNees ’07

2. Schwarzian-type boundary actions Maldacena, Stanford ’16; González, DG, Salzer ’18

3. Carrollian 2d dilaton gravity Ecker, DG, Hartong, Pérez, Prohazka, Salzer, Troncoso ’20 & ’23

Daniel Grumiller — Wolfgang Kummer’s pioneering approach to 2d dilaton gravity 2d quantum gravity 12/25



Action for dilaton gravity in 2d

I to quantize, we need more than geometry/kinematics: action!

I action for Katanaev–Volovich model in 2d dilaton gravity formulation

I[X, gµν ] =
k

4π

∫
d2x
√
−g
(
XR− α(∂X)2 − βX2 − γ

)
X: dilaton field
gµν : metric
α, β, γ, k: coupling constants

I can solve this globally in EF-gauge!

I Further generalizations:
1. boundary terms and holographic renormalization DG, McNees ’07

2. Schwarzian-type boundary actions Maldacena, Stanford ’16; González, DG, Salzer ’18

3. Carrollian 2d dilaton gravity Ecker, DG, Hartong, Pérez, Prohazka, Salzer, Troncoso ’20 & ’23
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Action for dilaton gravity in 2d

I to quantize, we need more than geometry/kinematics: action!

I action for Jackiw–Teitelboim model in 2d dilaton gravity formulation
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k

4π

∫
d2x
√
−g X

(
R− Λ

)
X: dilaton field
gµν : metric
Λ, k: coupling constants

I can solve this globally in EF-gauge!

I Further generalizations:
1. boundary terms and holographic renormalization DG, McNees ’07

2. Schwarzian-type boundary actions Maldacena, Stanford ’16; González, DG, Salzer ’18
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Action for dilaton gravity in 2d

I to quantize, we need more than geometry/kinematics: action!
I action for Callan–Giddings–Harvey–Strominger model in 2d dilaton

gravity formulation

I[X, gµν ] =
k

4π

∫
d2x
√
−g
(
XR− Λ

)
X: dilaton field
gµν : metric
Λ, k: coupling constants

I can solve this globally in EF-gauge!

I Further generalizations:
1. boundary terms and holographic renormalization DG, McNees ’07

2. Schwarzian-type boundary actions Maldacena, Stanford ’16; González, DG, Salzer ’18

3. Carrollian 2d dilaton gravity Ecker, DG, Hartong, Pérez, Prohazka, Salzer, Troncoso ’20 & ’23
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Action for dilaton gravity in 2d

I to quantize, we need more than geometry/kinematics: action!
I action for generic power counting renormalizable 2d dilaton gravity

I[X, gµν ] =
k

4π

∫
d2x
√
−g
(
XR− U(X) (∂X)2 − V (X)

)
X: dilaton field
gµν : metric
U(X), V (X): dilaton potentials (may contain coupling constants)

I can solve this globally in EF-gauge: ds2 = −2 du dr −K(r) du2

Wolfgang’s general solution has a function K of the form

K(X) = eQ(X)
(
w(X)− 2M

)
dr = eQ(X) dX

with Q(X) =
∫X U(y) dy and w(X) = − 1

2

∫X eQ(y)V (y) dy

⇒ generalized Birkhoff theorem: Killing vector ∂u for all solutions

I Further generalizations:
1. boundary terms and holographic renormalization DG, McNees ’07

2. Schwarzian-type boundary actions Maldacena, Stanford ’16; González, DG, Salzer ’18

3. Carrollian 2d dilaton gravity Ecker, DG, Hartong, Pérez, Prohazka, Salzer, Troncoso ’20 & ’23
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Action for dilaton gravity in 2d

I to quantize, we need more than geometry/kinematics: action!

I action for generalized 2d dilaton gravity DG, Ruzziconi, Zwikel ’21

I[X, gµν ] =
k

4π

∫
d2x
√
−g
(
XR− V(X, (∂X)2)

)
X: dilaton field
gµν : metric
V(X, (∂X)2): free function (may contain coupling constants)

one can proof that this is the most general action possible, without adding matter degrees of freedom or destroying the

gravity-nature of the theory; the proof employs consistent deformations using BRST methods

I Further generalizations:

1. boundary terms and holographic renormalization DG, McNees ’07

2. Schwarzian-type boundary actions Maldacena, Stanford ’16; González, DG, Salzer ’18

3. Carrollian 2d dilaton gravity Ecker, DG, Hartong, Pérez, Prohazka, Salzer, Troncoso ’20 & ’23
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Various approaches to 2d quantum gravity

I Quantize perturbatively on fixed background

gµν = ḡµν + δgµν 〈Tµµ〉 =
c

24π
R̄ ∇̄µ〈Tµν〉 = 0

ḡµν : background metric, R̄: background Ricci scalar
c: central charge of matter part (trace anomaly)
last equality: covariant conservation equation of EMT Tµν

derived Hawking effect in this way, see review with Vassilevich ’99

I Define 2d gravity as matrix model
I Use holography
I Integrate out geometry exactly

Focus first on Vienna School approach and then on holography
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Integrating out geometry
For details see DG, Kummer, Vassilevich hep-th/0204253

Distinguishing features of Vienna School approach:

I Spherically reduce Einstein gravity with matter to 2d dilaton gravity

I Use covariant 1st order action in terms of Cartan variables

I Exploit lightcone gauge for Minkowski metric

I Impose temporal gauge on zweibein and connection using BRST

I Perform the path integral over geometry: half of variables linear,
other half functional δ-functions

I Obtain nonlocal, nonpolynomial action for matter fields

I Derive Feynman rules

I Calculate S-matrix

I Optionally: reconstruct geometry from solving constraints
⇒ virtual black holes!
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S-matrix for s-wave gravitational scattering
Massless free scalar field scatters on own gravitational energy

Implementing program for Einstein-massless Klein–Gordon model yields
lowest order 4pt (unitary and CPT-invariant) S-matrix

T (q, q′, k, k′) =
δ(k + k′ − q − q′)
|kk′qq′|3/2

T̃

with s = k + k′ = q + q′, t = k − q, u = k′ − q and

T̃ = stu ln
t2u2

s4
+

1

stu

∑
p∈{k,k′,q,q′}

p2 ln
p2

s2

(
3kk′qq′ − 1

2

∑
r 6=p

∑
v 6=r,p

r2v2
)

S-matrix obtained in Fischer, DG, Kummer, Vassilevich ’01

I only one delta function (no separate momentum conservation)
I forward scattering poles
I UV finite
I crossing symmetry T (s, t, u) = T (t, s, u) = T (u, t, s)
I scale covariance: T (λq, λq′, λk, λk′) = λ−4 T (q, q′, k, k′)
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Physical consequences of S-matrix

I we integrated out geometry exactly and maintain only matter dof

Wolgfgang had this vision already in ’98, the start of my PhD; it took until ’01 to realize it

I effective theory is non-local and non-polynomial in matter
I matter scatters on its own gravitational self-energy
I S-matrix: unitary, CPT-inv., UV-finite, crossing-symmetric, scale-cov.
I ingoing s-wave with momentum q has finite decay rate into outgoing

s-waves with momenta k, k′,−q′
a bit like Hawking radiation if interpreted as scattering process: high energy modes decays into lower energy modes

I can reconstruct geometry and get virtual black holes

ds2 = −2 dudr−
[
1−δ(u−u0)θ(r0−r)

(2m(r0)

r
+a(r0) r+d(r0)

)]
du2

with distributional contributions

m(r0) = c0r
3
0 + c1r

2
0 a(r0) = 3c0r0 − 2c1 d(r0) = c0r

2
0

that account for δ-insertions of kinetic matter sources at u0, r0
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Generalizations

I Vertices for arbitrary 2d dilaton gravity models

done with Vassilevich, DG ’02

I 1-loop calculations
I 1-loop corrections to specific heat
I Fermions instead of scalars
I Higher dimensions
I missing: other matter interactions, more S-matrix calculations, Mellin

amplitudes, asymptotic symmetries, flux-balance laws, soft theorems,
...

There is a lot of opportunity for students
Consider joining the Vienna School!
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Generalizations

I Vertices for arbitrary 2d dilaton gravity models
I 1-loop calculations
I 1-loop corrections to specific heat
I Fermions instead of scalars
I Higher dimensions

done in a recent master thesis by my student Florian Ecker ’21

I missing: other matter interactions, more S-matrix calculations, Mellin
amplitudes, asymptotic symmetries, flux-balance laws, soft theorems,
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Outline

Motivations (2d or not 2d?)

2d geometry

2d quantum gravity

2d holography
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Heuristics of holography

I Entropy S of typical substances is extensive:

S ∼ V ∼ Ld

V : volume; L: length scale; d: number of spatial dimensions

I Black hole (Bekenstein–Hawking) entropy instead scales like area:

SBH ∼ A ∼ Ld−1

A: area
I simple observation: area in 3d ∼ volume in 2d

Daring idea by ’t Hooft and Susskind in ’90s:

Theory with gravity in d + 1 dimensions equivalent to
theory without gravity in d dimensions

Holographic Principle
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Heuristics of AdS/CFT Maldacena ’97 — more than 20thousand citations
AdS/CFT = most concrete and best-studied implementation of holographic principle

I QFT typically = relevant/marginal deformation of CFT

I UV-behavior of QFT dominated by CFT fixed point
I lower energies E: RG flow (e.g. running coupling constants)
I idea: geometrize RG-flow and use E as additional coordinate
I most general metric with Poincaré-invariant constant E-slices:

ds2 = f1(E) dE2 + f2(E) ηµν dxµ dxν µ, ν = 0..(D − 1)

I suppose further that QFT is CFT and thus has scale symmetry

xµ → λxµ E → Eλ−1

I most general line-element compatible with scale symmetry:

ds2 = `2
(

dE2

E2
+E2 ηµν dxµ dxν

)
` ∈ R+ ηµν : Minkowski

I This metric is AdSD+1! UV of QFT, E → ∞, is IR of gravity!
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ds2 = f1(E) dE2 + f2(E) ηµν dxµ dxν µ, ν = 0..(D − 1)

I suppose further that QFT is CFT and thus has scale symmetry

xµ → λxµ E → Eλ−1

I most general line-element compatible with scale symmetry:

ds2 = `2
(

dE2

E2
+E2 ηµν dxµ dxν

)
` ∈ R+ ηµν : Minkowski

I This metric is AdSD+1! UV of QFT, E → ∞, is IR of gravity!

Daniel Grumiller — Wolfgang Kummer’s pioneering approach to 2d dilaton gravity 2d holography 20/25



Heuristics of AdS/CFT Maldacena ’97 — more than 20thousand citations
AdS/CFT = most concrete and best-studied implementation of holographic principle

I QFT typically = relevant/marginal deformation of CFT
I UV-behavior of QFT dominated by CFT fixed point
I lower energies E: RG flow (e.g. running coupling constants)
I idea: geometrize RG-flow and use E as additional coordinate
I most general metric with Poincaré-invariant constant E-slices:
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Holographic dictionary and applications

〈
exp

(∫
j(x)O(x)

)〉
CFT

= Zgravity

[
φ(x, z)|z→0 = j(x)

]
Holographic Dictionary Gubser, Klebanov, Polyakov ’98; Witten ’98

I For every QFT observable there is a corresponding gravity observable
I Correlations functions calculated by GKPW-dictionary above
I Other prominent example: (holographic) entanglement entropy
I Ryu–Takayanagi formula: SRT

HEE = area(γA)/(4G)
I can describe all physical processes in two different formulations
I often, holographic correspondence maps complicated ↔ simple
I example type I: map strongly coupled quantum (field) theory

[complicated] to weakly coupled classical gravity theory [simple]
I example type II: map quantum gravity [complicated] to weakly

coupled quantum field theory [simple]
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I can describe all physical processes in two different formulations
I often, holographic correspondence maps complicated ↔ simple

in applications: always pick simpler one!
I example type I: map strongly coupled quantum (field) theory

[complicated] to weakly coupled classical gravity theory [simple]
heavy ion collisions at LHC, neutron stars, cold atoms, viscous hydrodynamics,

holographic superconductors, strange metals, ...

I example type II: map quantum gravity [complicated] to weakly
coupled quantum field theory [simple]
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I example type I: map strongly coupled quantum (field) theory

[complicated] to weakly coupled classical gravity theory [simple]
I example type II: map quantum gravity [complicated] to weakly

coupled quantum field theory [simple]
microscopic understanding of black holes, information paradox, black hole

evaporation, quantum information aspects of black holes, ...
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Constraining dual field theory from gravity side: asymptotic symmetries

Asymptotic symmetries are key concept in gravity
They allow to constrain the dual field theory

I Symmetries in geometries characterized by Killing vectors ξ that solve
Killing equation

(Lξg)µν = ξα∂αgµν + gµα∂νξ
α + gνα∂µξ

α = 0

I can have up to D(D + 1)/2 independent Killing vectors
I Asymptotic symmetries in asymptotic geometries characterized by

asymptotic Killing vectors ξ that solve asymptotic Killing equation

(Lξg)µν
!

= O(δgµν)

I can have infinitely many asymptotic Killing vectors even in D = 2
I asymptotic symmetry algebra = algebra of asymptotic Killing vectors

Asymptotic symmetry algebra generates global symmetries of dual QFT

Key insight for holography
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AdS2: menagerie of possibilities DG, McNees, Salzer, Valcárcel, Vassilevich ’17
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Derivation of asymptotic symmetry algebra for AdS2 example

I boundary and gauge fixing conditions for metric (set ` = 1):

grr = 0 gru = −1 guu = −r2 + T (u)︸ ︷︷ ︸
state-dependent

I asymptotic Killing vectors obey (Lξg)µν
!

= O(δgµν)

rr : ξµ∂µgrr + 2grµ∂rξ
µ = 0

ru : ξµ∂µgru + grµ∂uξ
µ + guµ∂rξ

µ = 0

uu : ξµ∂µguu + 2guµ∂uξ
µ = δT (u)

I rr-equation: 2gru∂rξ
u = 0 ⇒ ξu = ε(u)

I ru-equation: gru∂uξ
u + gur∂rξ

r + guu∂rξ
u = 0 together with result

above yields ξr = −r ε′(u) + η(u)
I uu-equation: ξµ∂µguu + 2guu∂uξ

u + 2gur∂uξ
r = δT

First glimpse of AdS2/CFT1!
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grr = 0 gru = −1 guu = −r2 + T (u)

I asymptotic Killing vectors obey (Lξg)µν
!

= O(δgµν)

rr : ξµ∂µgrr + 2grµ∂rξ
µ = 0

ru : ξµ∂µgru + grµ∂uξ
µ + guµ∂rξ

µ = 0

uu : ξµ∂µguu + 2guµ∂uξ
µ = δT (u)

I rr-equation: 2gru∂rξ
u = 0 ⇒ ξu = ε(u)

I ru-equation: gru∂uξ
u + gur∂rξ

r + guu∂rξ
u = 0 together with result

above yields ξr = −r ε′(u) + η(u)
I uu-equation: ξµ∂µguu + 2guu∂uξ

u + 2gur∂uξ
r = δT ; expand terms:(

rε′ − η
)

2r + εT ′ + 2
(
− r2 + T

)
ε′ + 2

(
rε′′ − η′

)
= δT
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−η 2r + 2rε′′ = 0

terms of order r cancel if η = ε′′
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are the AKVs preserving the form of the metric above
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Open key questions in holography
Continuing the Vienna School in the 21st century

I How general is the holographic principle?

I Does it work beyond AdS/CFT?

I If not, when does it work?

I If yes, how does it work?

I Does it work in our Universe?

I Does it work in asymptotically flat spacetimes?

I What is the dual field theory?

I Novel quantum info aspects of holography?

I Can we find novel applications of holography within AdS/CFT?

I Can we find novel applications of holography beyond AdS/CFT?

There is a lot of opportunity for students
Consider joining the modern Vienna School!
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