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Motivation

SBTZ =
A

4
− 3

2
lnA + . . .

I Only semiclassical data in
BH entropy to LO/NLO

I Semiclassical construction of
BH microstates?
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Guiding ideas/Cooking recipe

1. Focus on BTZ black holes for simplicity

2. Zoom into near horizon region

3. Exploit equivalence of near horizon symmetries to worldsheet
symmetries of tensionless null strings

4. Propose BTZ black hole is ensemble of null string states

5. Choose vacuum of tensionless null strings concurrent with near
horizon vacuum

6. Match coupling constant in action to LO entropy

7. Count all such tensionless null string states

Worldsheet of tensionless null strings col-
lectively represents black hole horizon
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Near horizon symmetries
Adami, Sheikh-Jabbari, Taghiloo, Yavartanoo, Zwikel ’20

I Non-extremal null hypersurfaces

ds2 = −r V (v, φ) dv2+2η(v, φ) dv dr+R2(v, φ)
(

dφ+U(v, φ) dv
)2

+. . .

preserved by near horizon Killing vectors

ξ = T (v, φ) ∂v + L(v, φ) ∂φ +W (v, φ) r ∂r + . . .

generating diff2⊕Weyl

I precisely matches null string worldsheet symmetries
I partially gauge-fixed non-extremal null hypersurfaces

ds2 = −2a r dv2 + 2 dv dr +R2(φ) dφ2 + 4ω(φ) r dv dφ+ . . .

generate two û(1) current algebras as near horizon symmetries

[J±n , J
±
m] = n δn+m, 0 J±n ∼

∮
dφ einφ

(
R(φ)± ω(φ)

)
suggesting as near horizon vacuum J±n |0〉 = 0, n ∈ Z+

I precisely matches one of the three possible tensionless string vacua
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Near horizon symmetries
Afshar, Detournay, Grumiller, Merbis, Perez, Tempo, Troncoso ’16

I Non-extremal null hypersurfaces

ds2 = −r V (v, φ) dv2+2η(v, φ) dv dr+R2(v, φ)
(

dφ+U(v, φ) dv
)2

+. . .

preserved by near horizon Killing vectors

ξ = T (v, φ) ∂v + L(v, φ) ∂φ +W (v, φ) r ∂r + . . .

generating diff2⊕Weyl
I precisely matches null string worldsheet symmetries
I partially gauge-fixed non-extremal null hypersurfaces

ds2 = −2a r dv2 + 2 dv dr +R2(φ) dφ2 + 4ω(φ) r dv dφ+ . . .
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Classical tensionless null strings I
Worldsheet action and gauge fixing; see Bagchi et al., ’13-’23

I Worldsheet action

S =
κ

2

∫
dτ dσ V a V b ∂aX

µ ∂bX
ν Gµν(X)

I κ: coupling constant (to be matched with classical data later)

I Xµ: target space coordinates (assume we have three)

I Gµν : target space metric (take LO near horizon expansion of BTZ)

I V a: weight 1
2 vector densities (replaces degenerate

√
−γ γab)

I gauge-fixing (inspired by conformal gauge)

V a∂a = ∂τ

I residual worldsheet diffeos (δξV
a = 0)

ξ =
(
h(σ) + τf ′(σ)

)
∂τ + f(σ) ∂σ

generate conformal Carroll2 ' BMS3
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Classical tensionless null strings II
Equations of motion, constraints, and closed string mode expansion

I EOM: Ẍ = 0

I constraints: Ẋ2 = 0 = Ẋ ·X ′
I closed strings: Xµ(τ, σ) = Xµ(τ, σ + 2π)

I EOM solved by mode expansion

Xµ(τ, σ) = xµ +Aµ0σ +Bµ
0 τ + i

∑
n 6=0

1

n

(
Aµn − inτBµ

n

)
e−inσ

I constraints (classically) solved by Ln = Mn = 0

Ln =
1

2

∑
m

Aµ−mB
ν
n+mGµν Mn =

1

2

∑
m

Bµ
−mB

ν
n+mGµν

I Ln,Mn obey BMS3 algebra provided

{Aµn, Bν
m} = −2in δn,mG

µν
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I closed strings: Xµ(τ, σ) = Xµ(τ, σ + 2π)

I EOM solved by mode expansion

Xµ(τ, σ) = xµ +Aµ0σ +Bµ
0 τ + i

∑
n 6=0

1

n

(
Aµn − inτBµ

n

)
e−inσ

I constraints (classically) solved by Ln = Mn = 0

Ln =
1

2

∑
m

Aµ−mB
ν
n+mGµν Mn =

1

2

∑
m

Bµ
−mB

ν
n+mGµν

I Ln,Mn obey BMS3 algebra provided

{Aµn, Bν
m} = −2in δn,mG

µν

Daniel Grumiller — Horizon strings as 3d black hole microstates 7/17



Quantum tensionless null strings
Choice of vacuum

I As usual, quantum constraints not enforced as operator statements
but as statements on physical states

〈phys′|On|phys〉 = 0 with On = Ln,Mn

I Vacuum 1 (“flipped”): On|phys〉 = 0, ∀n > 0
I Vacuum 2 (“induced”): On|phys〉 = 0, ∀n 6= 0
I Vacuum 3 (“oscillator”): On|phys〉 6= 0 but 〈phys′|On|phys〉 = 0,
∀n 6= 0

I defining Jµ±n ∝ Aµ±n ±B
µ
±n yields û(1) current algebras

[Jµ±n , Jν±m ] = n δn+m, 0G
µν

I in terms of Jµ±n , oscillator vacuum conditions are just highest weight
conditions

Jµ±n |0oscillator〉 = 0 n ∈ Z+

I reminiscent of natural near horizon vacuum!
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±n yields û(1) current algebras

[Jµ±n , Jν±m ] = n δn+m, 0G
µν

I in terms of Jµ±n , oscillator vacuum conditions are just highest weight
conditions

Jµ±n |0oscillator〉 = 0 n ∈ Z+

I reminiscent of natural near horizon vacuum!

Daniel Grumiller — Horizon strings as 3d black hole microstates 8/17



Quantum tensionless null strings
Choice of vacuum

I As usual, quantum constraints not enforced as operator statements
but as statements on physical states

〈phys′|On|phys〉 = 0 with On = Ln,Mn

I Vacuum 1 (“flipped”): On|phys〉 = 0, ∀n > 0
I Vacuum 2 (“induced”): On|phys〉 = 0, ∀n 6= 0
I Vacuum 3 (“oscillator”): On|phys〉 6= 0 but 〈phys′|On|phys〉 = 0,
∀n 6= 0

I defining Jµ±n ∝ Aµ±n ±B
µ
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Jµ±n |0oscillator〉 = 0 n ∈ Z+

I reminiscent of natural near horizon vacuum!
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Horizon strings
Quantum tensionless null strings on near horizon BTZ with oscillator vacuum

I Use target space metric (φ ∼ φ+ 2π)

ds2 = −2 dx+ dx− +R2
h dφ2 = −2 dx+ dx− + dϕ2

I Employ light cone gauge X+ = x+ +B+
0 τ , X− is determined, and

Xϕ obeys tensionless null string mode expansion

Xϕ = Rh ω σ +
n

κRh
τ +

∑
m6=0

i

m

(
Aϕm − imτBϕ

m

)
e−imσ

with winding number ω ∈ Z and momentum number n ∈ Z

Xϕ(σ + 2π, τ) = Xϕ(σ, τ) + 2π Rh ω pϕ = κBϕ
0 =

n

Rh

I Choose oscillator vacuum J±m|0〉 = 0 with û(1) currents

J±m =

√
κ

2

(
Bϕ
±m ±A

ϕ
±m
)

I Call tensionless null strings with properties above “horizon strings”
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Hilbert space of horizon strings, level matching, and mass formula

I generic near horizon string state labelled by momentum pµ (including
momentum number n), oscillator levels {r±i }, and winding ω

|Ψ〉 = |pµ, {r±i }, ω〉

low-level states:

Vacuum: |0〉
Level 1: J+

−1|0〉, J
−
−1|0〉

Level 2: J+
−2|0〉, J

−
−2|0〉, J

+
−1J

−
−1|0〉, (J+

−1)
2|0〉, (J−−1)

2|0〉
...

...

LevelN : J+
−N |0〉, J

−
−N |0〉, . . . , (J+

−1)
N |0〉, (J−−1)

N |0〉

Level N = r+ + r− with r± =
∑

i ir
±
i

I quantum constraint L0|0〉 = 0 implies level matching

r− − r+ = ω n

I quantum constraint M0|0〉 = 0 implies mass formula

m2 = κ (r+ + r−) +
n2

R2
h

where we defined m =
√

2p+p− we also assume p+ = p−

I physical states of given mass m labeled by integers r±i , ω, n subject to
level matching and mass formula
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BTZ BH microstates I
Definition and various sectors

Proposal for BTZ microstates: |m〉BTZ = |n, {r±i }, ω〉

I remaining task: fix m in terms of macroscopic geometric input Rh
I exploit near horizon first law E = T S with S ∝ Rh and E ∝ J+

0 +J−0
I due to near horizon first law mass scales linearly in horizon radius

m = κRh

I insertion into mass formula at level N yields

κR2
h = N +

n2

κR2
h

≈ N +
n2

N
+O(n4/N3)

I soft sector: n = 0
I high momentum sector: n� N or n ∼ N
I non-winding sector: ω = 0
I generic sector: none of the above; N � n
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Donnay, Giribet, Gonzalez, Pino ’15; Afshar et al. ’16
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BTZ BH microstates II
Dominant contribution from Hardy–Ramanujan-type of combinatorics

I partition function in generic sector for fixed level N

Zfix(N) =

N
2∑
l=1

Π

(
N

2
− l
)

Π
(N

2
+ l

)
τ(2l)

Π(k): number of integer partitions of k
τ(k): number of divisors of k

I large N asymptotics á la Hardy–Ramanujan

Zfix(N) ≈ 1

N5/4
exp

(
2π

√
N

3

)
I essential part of partition function comes from levels r± in range

N
2 −O(N3/4) to N

2 −O(1)

I implies typical ranges of n and ω between O(1) and O(N3/4)
I consequently, should allow fluctuations of mass m→ m+O(1)

implying Gaussian fluctuations of level, ∆N = O(
√
N)
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Final result for partition function and entropy

I taking into account mass fluctuations yields

Z(N) =

N+O(
√
N)∑

N0=N

Zfix(N0) ≈
1

N3/4
exp

(
2π

√
N

3

)

I in large N limit use mass formula to get

N +O(1/N) = κR2
h

I associated entropy is (A = 2πRh)

S = lnZ =
√

16κ
3
A

4
−3
2
lnA+. . .

I comparison with Bekenstein–Hawking works provided we fix κ = 3
16
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Outlook

I proposed semiclassical construction of non-extremal BTZ microstates
based on horizon strings

I key input: near horizon symmetries, tensionless null strings

I typical microstates are excited tensionless null strings with nonzero
winding

I mass spectrum quite different from naive area quantization
fine energy level spacing due to n2/N in mass formula

I generalization to higher dimension using tensionless null branes?
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Outlook by ChatGPT

In the study of black holes, tensionless null strings have been proposed as potential microstates of BTZ black holes. These
tensionless null strings, when considered on black hole horizons, offer valuable insights into the derivation of the
Bekenstein-Hawking entropy and its logarithmic corrections. Furthermore, they provide a foundation for exploring potential
generalizations in higher dimensions using tensionless null branes.

By examining tensionless null strings on black hole horizons, researchers have made significant progress in understanding the
microscopic origins of black hole entropy. The Bekenstein-Hawking entropy is a fundamental concept in black hole
thermodynamics, relating the entropy of a black hole to its horizon area. The successful derivation of this entropy is a crucial
step in reconciling general relativity with quantum mechanics.

When tensionless null strings are considered as microstates of BTZ black holes, their properties can account for the
Bekenstein-Hawking entropy. These strings carry no tension, which allows them to exist without breaking or distorting under the
influence of external forces. Their presence on the black hole horizon provides a mechanism to encode the entropy associated
with the black hole.

Moreover, the study of tensionless null strings reveals logarithmic corrections to the Bekenstein-Hawking entropy. These
corrections, often referred to as quantum corrections, arise due to the quantum nature of gravity and provide a more refined
understanding of black hole thermodynamics.

Looking ahead, tensionless null branes offer a potential avenue for generalizing these concepts to higher dimensions. By
extending the analysis from strings to branes, which are higher-dimensional analogues, researchers can explore the behavior of
tensionless null objects in diverse spacetime dimensions. This opens up new possibilities for investigating black hole microstates
and understanding the entropy associated with higher-dimensional black holes.

In summary, considering tensionless null strings on black hole horizons as microstates of BTZ black holes has contributed to the
successful derivation of the Bekenstein-Hawking entropy and its logarithmic corrections. This research provides valuable insights
into the microscopic origins of black hole entropy and paves the way for exploring generalizations in higher dimensions using
tensionless null branes.
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Poem by ChatGPT

In black holes’ depths, a tale unfolds,

Tensionless strings, their secrets hold.

On horizons, they dance and sway,

Microstates of BTZ, they convey.

Bekenstein-Hawking’s entropy revealed,

A union of quantum, gravity sealed.

Logarithmic corrections grace the stage,

Whispers of quantum’s ancient sage.

Tensionless branes, in higher realms,

Extend the tale, where mystery overwhelms.

Microstates’ symphony, yet to be explored,

In dimensions vast, their essence soared.

In verses woven, the cosmic ballet,

Where knowledge blossoms, like stars at play.

The riddles of holes, our souls engage,

In poetry’s embrace, the universe’s page.
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