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Two simple punchlines

1. Heisenberg algebra
[Xn, Pm] = i δn,m

fundamental not only in quantum mechanics
but also in near horizon physics of gravity theories

2. Black hole microstates identified as specific “soft hair” descendants

based on work with

I Hamid Afshar, Shahin Sheikh-Jabbari [IPM Teheran]

I Martin Ammon [U. Jena]

I Stephane Detournay, Wout Merbis, Stefan Prohazka, Max Riegler
[ULB]

I Hernán González, Philip Hacker, Raphaela Wutte [TU Wien]

I Alfredo Perez, David Tempo, Ricardo Troncoso [CECS Valdivia]

I Hossein Yavartanoo [ITP Beijing]
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Outline

Motivation

Problems (and possible resolutions)

Near horizon boundary conditions and soft hair

Proposal for semi-classical BTZ microstates

New entropy formula for Kerr black holes

Outlook

Daniel Grumiller — Soft Heisenberg Hair 4/32



Outline

Motivation

Problems (and possible resolutions)

Near horizon boundary conditions and soft hair

Proposal for semi-classical BTZ microstates

New entropy formula for Kerr black holes

Outlook

Daniel Grumiller — Soft Heisenberg Hair Motivation 5/32



Overall motivation: Quantum Gravity

Classical general relativity (GR) well-tested directly
I tests of equivalence principle (redshifts, GPS, etc.)
I perihelion shifts, light-bending, Shapiro time-delay (classical tests)
I gravitational lensing
I frame-dragging, Lense–Thirring (need to be more accurate)
I binary pulsars (indirect detection of gravity waves); α3 ≤ 4 · 10−20

I black hole/neutron star mergers (direct detection of gravity waves)
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I frame-dragging, Lense–Thirring (need to be more accurate)
I binary pulsars (indirect detection of gravity waves); α3 ≤ 4 · 10−20

I black hole/neutron star mergers (direct detection of gravity waves)

Quantum GR almost untested
I speed of gravity waves close to speed of light |∆c|/c ≤ 10−16

I no modified dispersion relations up to Planck scale (FERMI satellite)
I low energy theory: quantum field theory (QFT)+(semi-)classical GR
I direct quantum gravity tests hard since Planck energy too high,
EPlanck/ELHC ∼ 1016

Know little about quantum gravity, but both from theory and
experimental side it should reduce to GR + QFT semi-classically
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Classical general relativity (GR) well-tested directly
I tests of equivalence principle (redshifts, GPS, etc.)
I perihelion shifts, light-bending, Shapiro time-delay (classical tests)
I gravitational lensing
I frame-dragging, Lense–Thirring (need to be more accurate)
I binary pulsars (indirect detection of gravity waves); α3 ≤ 4 · 10−20

I black hole/neutron star mergers (direct detection of gravity waves)

Semi-classical GR well-tested indirectly
I from above: GR correct classical theory
I from particle physics: QFT works

example: gex/2 = 1.00115965218(073), gth/2 = 1.00115965218(178)
I synthesis: plausible that semi-classical GR should work

Semi-classical predictions like Hawking effect most likely true!
Consequence: black holes have entropy!
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Motivation 1: universality of black hole entropy

Bekenstein–Hawking

SBH =
A

4G

plus semi-classical corrections

S = SBH − q lnSBH +O(1) q = number depending on matter

currently “template for experimental results” in quantum gravity

I Believing in (semi-)classical Einstein gravity result above universal

I Any purported quantum theory of gravity must reproduce results for S

I Examples collected e.g. in Sen ’12

Perhaps no need for full knowledge of quantum gravity to account mi-
croscopically for black hole entropy (of sufficiently large black holes)
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SBH =
A

4G
plus semi-classical corrections

S = SBH − q lnSBH +O(1) q = number depending on matter

currently “template for experimental results” in quantum gravity
I Believing in (semi-)classical Einstein gravity result above universal
I Any purported quantum theory of gravity must reproduce results for S

[at least any theory of quantum gravity claiming to reproduce
(semi-)classical Einstein gravity in limit of small Newton constant]

I Examples collected e.g. in Sen ’12

Perhaps no need for full knowledge of quantum gravity to account mi-
croscopically for black hole entropy (of sufficiently large black holes)
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Motivation 2: microscopic counting of generic black hole entropy

Idea: count microstates from symmetries of “dual field theory”

I For black holes with AdS3 factor: microstate counting from CFT2

symmetries (Strominger, Carlip, ...) using Cardy formula

SCardy = 2π
(√

c∆+/6 +
√
c∆−/6

)
=

A

4G
= SBH

I Generalizations in 2+1 gravity/gravity-like theories (Galilean CFT,
warped CFT, ...)

I Microstate countings so far: mostly for (near-)extremal black holes
(infinite throat geometries), e.g. “Kerr/CFT”

I Main idea of this talk: consider non-extremal horizons and their near
horizon symmetries

Hope: near horizon symmetries allow for Cardyology
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I Microstate countings so far: mostly for (near-)extremal black holes
(infinite throat geometries), e.g. “Kerr/CFT”

Kerr/CFT: Guica, Hartman, Song, Strominger ’09; Compere ’12
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Motivation 3: semi-classical microstates for generic black holes
additional motivation: information loss

Besides counting microstates one would like to construct them explicitly

I if complete set of microstates known: may conclude that black holes
behave just like any other thermodynamical system

I information loss: for all practical purposes, but not in principle

I explicit constructions in string theory for (near-)extremal black holes

I in constructions so far need lot of input of UV completion

I string theory constructions so far agree with semi-classical result for
entropy but fail to address its universality

Perhaps no need for full knowledge of quantum gravity to construct
microstates (of sufficiently large non-extremal black holes)
[at least for some observer, not necessarily an asymptotic one]
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Synthesis of the three motivations: soft hair

Soft hair := zero energy excitations with non-trivial boundary charges

I Notion/name “soft hair”: Hawking, Perry, Strominger ’16

I Name motivated by Wheeler’s folklore “black holes have no hair”

I General relativity with (asymptotic) boundaries:
(locally) diffeomorphic geometries may be physically inequivalent

I Near horizon symmetry algebras (see below) realize soft hair idea

I Soft hair is semi-classical concept

I Soft hairy black holes: same energy as black holes but distinguished
through their soft hairy charges

Hope: soft hair could address black hole entropy puzzles
and microstates in a semi-classical framework
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Soft hair := zero energy excitations with non-trivial boundary charges

I Notion/name “soft hair”: Hawking, Perry, Strominger ’16
I Name motivated by Wheeler’s folklore “black holes have no hair”
I General relativity with (asymptotic) boundaries:

(locally) diffeomorphic geometries may be physically inequivalent

Famous example: BTZ black hole is locally AdS3, but canonical
boundary charges (e.g. mass, angular momentum) differ
Bañados, Henneaux, Teitelboim, Zanelli ’93
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I Name motivated by Wheeler’s folklore “black holes have no hair”
I General relativity with (asymptotic) boundaries:

(locally) diffeomorphic geometries may be physically inequivalent
I Near horizon symmetry algebras (see below) realize soft hair idea

Donnay, Giribet, Gonzalez, Pino ’16
Afshar, Detournay, Grumiller, Merbis, Perez, Tempo, Troncoso ’16

I Soft hair is semi-classical concept
I Soft hairy black holes: same energy as black holes but distinguished

through their soft hairy charges
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Problem 1: TMI
Note: this problem may be obvious even to laypersons

I Suppose we buy suggestion by Hawking ’15 that soft hair may resolve
information loss problem

I In particular, assume soft hair responsible for different microstates

Problem: naively get infinite soft hair degeneracy, thus infinite entropy
Too Much Information!

I Possible resolution: provide cut-off on soft hair spectrum

Problem: if cut-off imposed in ad-hoc way can get any result for entropy

I Possible resolution: provide cut-off on soft hair spectrum in a
controlled and unique way

Problem: how?
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Problem 2: TLI
Shaving off soft hair: Mirbabayi, Porrati ’16; Bousso, Porrati ’17; Donnelly, Giddings ’17

I Factorization theorems of S-matrix for infrared divergences
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Starting point

Resolving the ‘how’-questions easier in simpler models

Consider as toy model Einstein gravity in three
dimensions with negative cosmological constant

Same conceptual problems as in higher di-
mension, but technically more manageable
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Outline

Motivation

Problems (and possible resolutions)

Near horizon boundary conditions and soft hair

Proposal for semi-classical BTZ microstates

New entropy formula for Kerr black holes

Outlook
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Properties of Einstein gravity in 2+1 dimensions with negative cc (AdS3)

I Second order bulk action:

IEH =
1

16πG

∫
d3x
√
−g
(
R+

2

`2

)
G: Newton constant in 2+1 dimensions; `: AdS radius

I No local physical degrees of freedom (dof)
I Depending on boundary conditions (bc’s): boundary physical dof
I Brown–Henneaux bc’s: physical phase space of some CFT2

I Brown–Henneaux central charge of AdS3/CFT2: c = 3`/(2G)
I Spectrum of physical states includes BTZ black holes

ds2 = −
(r2 − r2+)(r2 − r2−)

r2`2
dt2+

r2`2 dr2

(r2 − r2+)(r2 − r2−)
+r2

(
dϕ−r+r−

`r2
dt
)2

I BTZ BH entropy given by Bekenstein–Hawking

and Cardy formula

SBH =
A

4G
=

2πr+
4G

= 2π
(√

c∆+/6 +
√
c∆−/6

)
∆± = (r+ ± r−)2/(16`G) ∝ `M ± J (M : mass, J : angular momentum)
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Near horizon boundary conditions
See Afshar, Detournay, DG, Merbis, Perez, Tempo, Troncoso ’16 for details

I Any non-extremal horizon is approximately Rindler near the horizon

I Near horizon line-element with Rindler acceleration a:

ds2 = −2aρ dv2 + 2 dv dρ+ γ2 dϕ2 + . . .

Meaning of coordinates:
I ρ: radial direction (ρ = 0 is horizon)
I ϕ ∼ ϕ+ 2π: angular direction (horizon has S1 topology)
I v: (advanced) time

I Rindler acceleration: vev (δa 6= 0) or source (δa = 0)?
I Both options possible (see Afshar, Detournay, DG, Oblak ’16)
I Follow here suggestion by Donnay, Giribet, Gonzalez, Pino ’15

δa = 0 a = source/state-inependent/chemical potential

I Consequence: all states in theory have same (Unruh-)temperature

TU =
a

2π
I This is somewhat unusual, but convenient for our purposes!
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Explicit form of our boundary conditions in metric formulation
Note: everything much simpler in Chern–Simons formulation!

Boundary conditions as near horizon expansion of metric

gtt = −a2r2 +O
(
r3
)

gϕϕ = γ2 +
(
γ2 − `2ω2

) r2
`2

+O
(
r3
)

gtϕ = aωr2 +O
(
r3
)

grr = 1 +O
(
r2
)

grt = O
(
r2
)

grϕ = O
(
r2
)
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Boundary conditions as asymptotic expansion of metric

gtt = −1
4 a

2r2 + 1
2`

2a2 +O
(
1
r

)
gϕϕ =

(
γ2 − `2ω2

) r2
4`2

+ 1
2

(
γ2 + `2ω2

)
+O

(
1
r

)
gtϕ = 1

4 aωr
2 − 1

2 aω`
2 +O

(
1
r

)
grr =

`2

r2
+O

(
1
r3

)
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(
1
r
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(
1
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Boundary conditions in Chern–Simons formulation

A± = b−1±
(

d+a±
)
b±

with fixed sl2 group element

b± = exp
(
± r

2`
(L1 − L−1)

)
and 1-form (J ± = γ/`± ω)

a± = L0

(
±J ± dϕ− a dt

)
δJ ± 6= 0 δa = 0
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Consequences of our near horizon boundary conditions
To reduce clutter consider henceforth constant Rindler acceleration, a = const.

I Two towers of canonical boundary charges J±(ϕ)

I Asymptotic symmetry algebra (ASA) generated by those charges

[J±n , J
±
m] ∝ inδn+m, 0 [J+

n , J
−
m] = 0

I Two u(1) current algebras — like free boson in 2d!
I ASA isomorphic to infinite copies of Heisenberg algebras
I For real J0 all states in theory regular and have horizon
I Near horizon Hamiltonian H∼J+

0 + J−0 commutes with all J±n
I Consequence: soft hair!
I Entropy formula remarkably simple

S = 2π
(
J+
0 + J−0

)
= T−1H

I Simple first law dH = T dS and trivial specific heat
I Relations to asymptotic Virasoro charges L± and sources µ±

L ∼ J2 + J ′ µ′ − µJ ∼ a
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I Simple first law dH = T dS and trivial specific heat
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Twisted Sugawra construction emerges! (yields Brown–Henneaux c)
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Assumptions
For technical details see Afshar, DG, Sheikh-Jabbari, Yavartanoo ’17

1. Central charges quantized in integers

Needed due to relations like

J cn ∼ W0
n

Justifiable e.g. through Chern–Simons level quantization c = 6k

2. Conical deficit ν ∈ (0, 1) quantized in integers over c

Needed due to relations like

J c(n+ν) ∼ Wν
n

Justifiable through explicit stringy construction in D1-D5 system

3. Black hole/particle correspondence

Identify states in Hilbert space HBTZ as (composite) states in HCG

Justification 1: obtain Virasoro at central charge c in HBTZ and HCG

Justification 2: gives nice result
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List of all semi-classical BTZ black hole microstates

I Given a BTZ black hole with mass M and angular momentum J (as
measured by asymptotic observer) define parameters

∆± = 1
2

(
`M ± J

)
= c

6

(
J±0
)2

I Define sets of positive integers {n±i } obeying∑
n±i = c∆±

I Label BTZ black hole microstates as

|B({n±i }); J
±
0 〉

with sets of positive integers {n±i } obeying constraint above
I Define vacuum state |0〉 by highest weight conditions

J ±n |0〉 = 0 ∀n ≥ 0

I Full set of semi-classical BTZ black hole microstates given by

|B({n±i }); J
±
0 〉 =

∏
{n±

i }

(
J +

−n+
i

J −−n−
i

)
|0〉
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BTZ black hole entropy from counting all semi-classical microstates

We proposed (after some Bohr-type semi-classical quantization
conditions) explicit set of BTZ black hole microstates

Now let us count these microstates

I Straightforward combinatorial problem: partition of integers p(c∆±)
I Entropy given by Boltzmann’s formula

S = k logW = lnN = ln p(c∆+) + ln p(c∆−)

I Solved long ago by Hardy, Ramanujan; asymptotic formula (large N):

ln p(N) = 2π
√
N/6− lnN +O(1)

I Our final result for semi-classical BTZ black hole entropy is

S = +O(1)

I Leading order coincides with Bekenstein–Hawking/Cardy formula!
I Subleading log corrections also turn out to be correct!
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BTZ black hole entropy from counting all semi-classical microstates

We proposed (after some Bohr-type semi-classical quantization
conditions) explicit set of BTZ black hole microstates

Now let us count these microstates (not “Cardyology” but “Hardyology”)
I Straightforward combinatorial problem: partition of integers p(c∆±)
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Dyson ’87 The seeds from Ramanujans garden have been blowing on
the wind and have been sprouting all over the landscape.
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Gargantua, the most popular black hole (simulations for Interstellar, see 1502.03808)
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Does the soft Heisenberg hair story work only in three dimensions?
In particular, does it work in four spacetime dimensions, for astrophysical black holes?

We do not know

If it works, then the following three statements must be true:

1. Near horizon symmetries must be representable in terms of u(1)
current algebras

2. Entropy must be expressible in simple way in terms of 0-modes of
these algebras

3. Entropy formula should be universal (e.g. apply to rotating black
holes, charged black holes, ...)

Check the statements above!
If true: non-trivial hint that story may work!
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Near horizon symmetries of Kerr black holes
Are near horizon symmetries representable in terms of u(1) current algebras?

Donnay et al ’15 found for Kerr near horizon symmetry algebra:

[L±n , L
±
m] = (n−m)L±n+m

[L+
n , T(m, k)] = −mT(n+m, k) [L−n , T(m, k)] = −k T(m,n+k)

Ln: “superrotations”, T(m, k): “supertranslations”

Sugawara-deconstruction into four u(1) current algebras possible:

[J ±n , J ±m ] = −[K±n , K±m] = n
2 δn+m, 0

with (see Afshar et al ’16)

T(n,m) =
(
J +
n +K+

n

)(
J −m+K−m

)
L±n =

∑
p

(
J ±n−p+K±n−p

)(
J ±p −K±p

)
.

More convenient basis (see González et al ’17)

J±n := J ±n +K±n K±n := J ±n −K±n

Near horizon symmetries representable in terms of u(1) current algebras!
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New entropy formula for Kerr black holes
Is entropy expressible in simple way in terms of 0-modes of these algebras?

I Sugawara-deconstruction yields three algebraic relations between L±0 ,
T(0, 0) and J±0 , K±0

I Need fourth relation for unique solution of 0-modes J±0 , K±0
I Require

J+
0 + J−0 +K+

0 +K−0 = 2M

I Get four algebraic equations in four variables, with unique solution
(up to relabellings):

J±0 =
1

2

(
M +

√
M2 − a2 ± ia

)
K±0 =

1

2

(
M −

√
M2 − a2 ± ia

)
I Determining entropy in terms of these 0-modes yields

SKerr = 4π J+
0 J
−
0

Entropy expressible in simple way in terms of 0-modes of these algebras!
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I Require

J+
0 + J−0 +K+

0 +K−0 = 2M

I Chirally symmetric combination, so should not depend on angular
momentum

I Dimensional analysis: must be linear in mass
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Notational alert: a = J/M is here the Kerr parameter, NOT Rindler
acceleration!
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Universal aspects of entropy formula
How universal is entropy formula?

We showed that it works for Kerr black hole, but what about...

I Schwarzschild? Obviously works! (K±
0 = 0)

I Extremal Kerr? Extremality yields J±
0 = K±

0 and recovers NHEK-formula by Guica
et al ’09, SE-Kerr = 4π J+

0 J
−
0 = 2π|J |

I Kerr with NUT-charge? Works again with same formula!

I ‘Inner horizon entropy’? Works, with substitution J±
0 ↔ K±

0

zero mode combination black hole quantity physical interpretation

J+
0 + J−

0 r+ black hole radius
K+

0 +K−
0 r− Cauchy horizon radius

J±
0 +K±

0 M black hole mass

J+
0 −K

+
0

√
M2 − a2 + n2 extremality parameter

J+
0 − J

−
0 ia = iJ/M Kerr parameter

J+
0 J

−
0 S/(4π) black hole entropy

K+
0 K

−
0 Sinner/(4π) ‘inner horizon entropy’

J+
0 K

+
0 − J

−
0 K

−
0 iJ angular momentum

J+
0 K

+
0 + J−

0 K
−
0 −n2/2 nut charge (squared)

Entropy formula works for all cases studied so far!
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Summary, loose ends and generalizations

Summary:

I We proposed semi-classical set of BTZ black hole microstates

I Their counting reproduces Bekenstein–Hawking entropy

I Also subleading log corrections to entropy are correct

I At least part of the story generalizes to Kerr black holes

Loose ends:
I Derivation of Bohr-type quantization conditions of c and ν?

I Derivation of black hole/particle correspondence?
I Near horizon field theory beyond semi-classical approximation?
I Rest of the soft Heisenberg story works as well for Kerr?

Generalizations:
I Semi-classical microstate construction for cosmological horizons?

I Soft resolution of information loss problem?
I More generic black holes than BTZ or Kerr?
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Bagchi et al ’13, ’15, ’16, ’17
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Thanks for your attention!
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