## Art and Geometry in 2D From Wallpapers to Black Holes

#### Daniel Grumiller

CTP, LNS, MIT, Cambridge, Massachusetts Supported by the European Commission, Project MC-OIF 021421

New England School of Art and Design, October 2006



## Outline

## Wallpapers

- Examples
- Mathematics



### **Escher and Penrose**

- Escher's Work
- Interactions between Escher and Penrose
- Penrose Diagrams

## 3 Black Holes

- Definition
- Visualisation of Black Holes in 2D
- Conclusions

Examples Mathematics

# Outline

## Wallpapers

- Examples
- Mathematics

## 2 Escher and Penrose

- Escher's Work
- Interactions between Escher and Penrose
- Penrose Diagrams

## Black Holes

- Definition
- Visualisation of Black Holes in 2D
- Conclusions

Examples Mathematics

## Wallpaper patterns are culturally universal

|                                                                                                            |               |                |                  |                  |                                     | 0000          | ※ ※ ※<br>※ 환화<br>※ 조 ※ |
|------------------------------------------------------------------------------------------------------------|---------------|----------------|------------------|------------------|-------------------------------------|---------------|------------------------|
| Viennise cane,                                                                                             | Thomb,        | Bathroom       | Cloth,           | Floor tiling,    | Metalwork,                          | Ornament,     | Renaissance            |
| Austria                                                                                                    | Thebes, Egypt | linoleum, U.S. | Otaheite, Tahiti | Prague, Czech    | India                               | Persia        | earthenware            |
|                                                                                                            |               |                |                  |                  | ŶŶŶŶŶŶ<br>ŶŶŶŶŶŶ<br>ŶŶŶŶŶŶ<br>ŶŶŶŶŶ |               |                        |
| Cloth,                                                                                                     | Byzantine     | Street,        | Painted          | Soffitt of Arch, | Bronze vessel,                      | Wood fence,   |                        |
| Sandwich                                                                                                   | marble        | Zakopane,      | porcelain,       | Alhambra,        | Nimroud,                            | contemporary, |                        |
| Islands                                                                                                    | pavement      | Poland         | China            | Spain            | Assyria                             | Europe/U.S.   |                        |
|                                                                                                            |               |                |                  |                  |                                     |               |                        |
| <ul> <li>&lt; 미 &gt; &lt; (四 &gt; &lt; (三 &gt; &lt; (三 &gt; &lt; (三 &gt; ) )</li> <li></li></ul> <li></li> |               |                |                  |                  |                                     |               | E 990                  |

Examples Mathematics

## Why are these patterns so universal?

#### Possible explanations:

- Exchange between cultures?
- Common esthetic principles among all humans?
- Simple deeper structure responsible for universality?



Examples Mathematics

## Why are these patterns so universal?

#### Possible explanations:

- Exchange between cultures?
- Common esthetic principles among all humans?
- Simple deeper structure responsible for universality?



Examples Mathematics

## Why are these patterns so universal?

Possible explanations:

- Exchange between cultures?
- Common esthetic principles among all humans?
- Simple deeper structure responsible for universality?



< < >> < </>

Examples Mathematics

## Why are these patterns so universal?

Possible explanations:

- Exchange between cultures?
- Common esthetic principles among all humans?
- Simple deeper structure responsible for universality?



Examples Mathematics

# Outline

## Wallpapers

- Examples
- Mathematics
- 2 Escher and Penrose
  - Escher's Work
  - Interactions between Escher and Penrose
  - Penrose Diagrams

## Black Holes

- Definition
- Visualisation of Black Holes in 2D
- Conclusions

Examples Mathematics

# Reason for universality

- Wall paper patterns are mathematical patterns
- Mathematics is universal

Note: Description of Mathematics is non-universal

$$1+3=4 \iff I+III=IV \iff 1+11=100 \iff \bullet+\bullet\bullet\bullet=\bullet\bullet\bullet\bullet$$

#### Important observation

Art and Nature exhibit the same kind of universality

Mathematics describes the underlying structure

Examples Mathematics

# Wallpaper groups



Giant's Causeway in Ireland



イロト イポト イヨト イヨ

Insulin crystals

- Wallpaper patterns emerge from translations, rotations and reflections
- Same patterns arise e.g. in crystals
- Categorized by group theory: 17 different wallpaper patterns



Examples Mathematics

# Wallpaper groups



Giant's Causeway in Ireland



Insulin crystals

- Wallpaper patterns emerge from translations, rotations and reflections
- Same patterns arise e.g. in crystals
- Categorized by group theory: 17 different wallpaper patterns

→ Ξ → → Ξ

< < >> < </>

## Outline

#### Wallpapers

- Examples
- Mathematics

## 2 Escher and Penrose

- Escher's Work
- Interactions between Escher and Penrose

Escher's Work

Penrose Diagrams

## Black Holes

- Definition
- Visualisation of Black Holes in 2D
- Conclusions

Escher's Work Interactions between Escher and Penrose Penrose Diagrams

## Well-known examples







Daniel Grumiller Art and Geometry in 2D

Escher's Work Interactions between Escher and Penrose Penrose Diagrams

## Hyperbolic wallpaper



Infinitely many repetitions of the basic patterns in finite area

Possible in non-Euclidean (hyperbolic) geometry!

Note: Standard intuition may fail (straight lines, parallels) in non-Euclidean geometry!

MARIE CURIE ACTIONS

→ E → < E</p>

## Outline

### Wallpapers

- Examples
- Mathematics

## 2

#### **Escher and Penrose**

Escher's Work

#### Interactions between Escher and Penrose

Interactions between Escher and Penrose

Penrose Diagrams

## Black Holes

- Definition
- Visualisation of Black Holes in 2D
- Conclusions

## Two examples

Escher's Work Interactions between Escher and Penrose Penrose Diagrams



#### Penrose triangle





#### Penrose stair



Escher's Work Interactions between Escher and Penrose Penrose Diagrams

#### Euclidean geometry Back to Pythagoras







Graphical proof of (1) Note: Very popular theorem! More than 300 different proofs are known!

・ロト ・ 同ト ・ ヨト ・ ヨト

MARIE CURIE ACTIONS

э

Escher's Work Interactions between Escher and Penrose Penrose Diagrams

Hyperbolic geometry Lines of zero length (a.k.a. light-rays)

$$a^2 - b^2 = c^2$$
 (2)

Consequence: Lines of zero length exist which are *not* just points – very counter-intuitive!



Hyperbolic Soccerball – count the hexagons and compare with a real Soccerball!



Daniel Grumiller

Escher's Work Interactions between Escher and Penrose Penrose Diagrams

## Escher and Penrose

Visualizers of hyperbolic geometry with Art and Mathematics



M.C. Escher, 1898–1972



R. Penrose, 1931-????



Escher's Work Interactions between Escher and Penrose Penrose Diagrams

## Addendum: Penrose tilings



- Discovered 1973
- Penrose tilings are not standard wallpaper patterns
- No translational invariance!
- Nature: Quasi-crystals
- Art: Escher died before discovery

## Outline

## Wallpapers

- Examples
- Mathematics



## **Escher and Penrose**

- Escher's Work
- Interactions between Escher and Penrose

Penrose Diagrams

Penrose Diagrams

## Black Holes

- Definition
- Visualisation of Black Holes in 2D
- Conclusions

< < >> < </>

Escher's Work Interactions between Escher and Penrose Penrose Diagrams

#### Stereographic projection Moving infinity to the North Pole



Escher's Work Interactions between Escher and Penrose Penrose Diagrams

#### Minkowskian geometry: Hyperbolic Spacetime in 4D Nothing moves faster than light!





A: event M simultaneous with O B: event N simultaneous with O *Relativity!* 

イロト 不得 とくほ とくほう

Penrose Diagrams

# Conformal compactification

Causal structure of space-time



- Diagram: Minkowski (flat)
- Hyperbolic analogue of stereographic projection!
- Infinity not just North Pole (=point) but "celestial sphere" (=lightcone at  $\infty$ )
- Angels preserved means causal structure is preserved
- Distances are not preserved



## Outline

#### Wallpapers

- Examples
- Mathematics
- 2 Escher and Penrose
  - Escher's Work
  - Interactions between Escher and Penrose

Definition

Penrose Diagrams

## 3 Black Holes

- Definition
- Visualisation of Black Holes in 2D
- Conclusions

# Fishy analogy

Definition Visualisation of Black Holes in 2E Conclusions





Above: Black Hole (Artist's impression) Left: Waterfall

Analogy: Infinity  $\leftrightarrow$  Lake

 $\text{Horizon} \leftrightarrow \text{Point of no return}$ 

Singularity \leftrightarrow Waterfall



Definition Visualisation of Black Holes in 2D Conclusions

## Collapsing Stars Black Holes exist in Nature



# • Stars (like our Sun) will eventually burn out

- Collapse into dense object
- Depending on initial mass: White Dwarf, Neutron Star or...
- Black Hole!
- Observable through interactions with matter
- Black Holes come in various sizes

Definition Visualisation of Black Holes in 2D Conclusions

## Collapsing Stars Black Holes exist in Nature



- Stars (like our Sun) will eventually burn out
- Collapse into dense object
- Depending on initial mass: White Dwarf, Neutron Star or...
- Black Hole!
- Observable through interactions with matter
- Black Holes come in various sizes

Definition Visualisation of Black Holes in 2D Conclusions

## Collapsing Stars Black Holes exist in Nature



- Stars (like our Sun) will eventually burn out
- Collapse into dense object
- Depending on initial mass: White Dwarf, Neutron Star or...
- Black Hole!
- Observable through interactions with matter
- Black Holes come in various sizes

Definition Visualisation of Black Holes in 2D Conclusions

## Collapsing Stars Black Holes exist in Nature



- Stars (like our Sun) will eventually burn out
- Collapse into dense object
- Depending on initial mass: White Dwarf, Neutron Star or...
- Black Hole!
- Observable through interactions with matter
- Black Holes come in various sizes

Definition Visualisation of Black Holes in 2D Conclusions

## Collapsing Stars Black Holes exist in Nature



- Stars (like our Sun) will eventually burn out
- Collapse into dense object
- Depending on initial mass: White Dwarf, Neutron Star or...
- Black Hole!
- Observable through interactions with matter
- Black Holes come in various sizes

Definition Visualisation of Black Holes in 2D Conclusions

## Collapsing Stars Black Holes exist in Nature



- Stars (like our Sun) will eventually burn out
- Collapse into dense object
- Depending on initial mass: White Dwarf, Neutron Star or...
- Black Hole!
- Observable through interactions with matter
- Black Holes come in various sizes

## Outline

### Wallpapers

- Examples
- Mathematics
- 2 Escher and Penrose
  - Escher's Work
  - Interactions between Escher and Penrose

Visualisation of Black Holes in 2D

Penrose Diagrams

## 3 Black Holes

- Definition
- Visualisation of Black Holes in 2D
- Conclusions

< < >> < </>

Definition Visualisation of Black Holes in 2D Conclusions

#### Why just two dimensions? Schwarzschild Black Hole



- Spherical symmetry reduces 4D to 2D!
- 2D: Time and surface radius
- Exact solution of Einstein equations: Schwarzschild (General: Einstein equations determine geometry from matter Schwarzschild: no matter – (unique) vacuum solution!)

MARIE CURIE ACTIONS

イロト イ理ト イヨト イヨト

Definition Visualisation of Black Holes in 2D Conclusions

#### Schwarzschild Black Hole Visualisation of Black Holes needed!

Schwarzschild metric:

$$ds^{2} = \left(1 - \frac{2M}{r}\right) dt^{2} - \left(1 - \frac{2M}{r}\right)^{-1} dr^{2} - r^{2} d\Omega_{S^{2}}^{2}$$

- Constant M: total mass
- Coordinate r: surface radius
- Coordinate t: time (note staticity)
- Last term: 2-sphere
- Relevant term  $1 \frac{2M}{r}$
- Asymptotic region:  $r \to \infty$  ("far from waterfall")
- Event horizon: r = 2M ("point of no return")
- Singularity: *r* = 0 ("waterfall")



MARIE CURIE ACTIONS

イロト イポト イヨト イヨ

Definition Visualisation of Black Holes in 2D Conclusions

#### Visualisation of Black Holes Quantum gravity?



Definition Visualisation of Black Holes in 2D Conclusions

# Quantum gravity



- Quantum Theory: no information loss!
- Gravity: information loss!
- Incompatible?



Definition Visualisation of Black Holes in 2D Conclusions

# Visulization of a possible solution



- Main question: What is the global structure of an evaporating Black Hole?
- Hakwing (1970ies 2004): Previous picture (Information lost)
- Hakwing (since 2004): No information loss (but no picture)
- Suggestion: solution looks as depicted

#### Artistic challenge

Find better method of visualization!

< < >> < </>

→ Ξ → → Ξ

Definition Visualisation of Black Holes in 2D Conclusions

# Visulization of a possible solution



- Main question: What is the global structure of an evaporating Black Hole?
- Hakwing (1970ies 2004): Previous picture (Information lost)
- Hakwing (since 2004): No information loss (but no picture)
- Suggestion: solution looks as depicted

#### Artistic challenge

Find better method of visualization!

< < >> < </>

→ Ξ → → Ξ

Definition Visualisation of Black Holes in 2D Conclusions

# Visulization of a possible solution



- Main question: What is the global structure of an evaporating Black Hole?
- Hakwing (1970ies 2004): Previous picture (Information lost)
- Hakwing (since 2004): No information loss (but no picture)
- Suggestion: solution looks as depicted

Artistic challenge

Find better method of visualization!

< < >> < </>

→ Ξ → → Ξ

Definition Visualisation of Black Holes in 2D Conclusions

# Visulization of a possible solution



- Main question: What is the global structure of an evaporating Black Hole?
- Hakwing (1970ies 2004): Previous picture (Information lost)
- Hakwing (since 2004): No information loss (but no picture)
- Suggestion: solution looks as depicted

#### Artistic challenge

Find better method of visualization!

→ E > < E</p>

Definition Visualisation of Black Holes in 2D Conclusions

# Visulization of a possible solution



- Main question: What is the global structure of an evaporating Black Hole?
- Hakwing (1970ies 2004): Previous picture (Information lost)
- Hakwing (since 2004): No information loss (but no picture)
- Suggestion: solution looks as depicted

#### Artistic challenge

Find better method of visualization!

→ E > < E</p>

Definition Visualisation of Black Holes in 2D Conclusions

## Outline

### Wallpapers

- Examples
- Mathematics
- 2 Escher and Penrose
  - Escher's Work
  - Interactions between Escher and Penrose
  - Penrose Diagrams

## 3 Black Holes

- Definition
- Visualisation of Black Holes in 2D
- Conclusions

Main message

Definition Visualisation of Black Holes in 2D Conclusions



Art and Technique: No contradiction!

Etymology: Greek *tekhnikos* actually means

MARIE CURIE ACTIONS

Daniel Grumiller Art and Geometry in 2D

Main message

Definition Visualisation of Black Holes in 2D Conclusions



Art and Technique: No contradiction!

Etymology: Greek tekhnikos actually means

Art, skill, craft, method, system

Daniel Grumiller

Art and Geometry in 2D

