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Executive summary

I 1915: Einstein’s General Relativity predicts gravitational waves

Rµν = 0

I 1916: Schwarzschild constructs first black hole solution
I 2015: LIGO detects gravitational waves
I 2016: LIGO announces results; interpretation as black hole merger
I 2115: gravitational waves standard tool in astrophysics & cosmology
I 2116: someone pays taxes for gravitational waves
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Executive summary

I 1915: Einstein’s General Relativity predicts gravitational waves

I 1916: Schwarzschild constructs first black hole solution

I 2015: LIGO detects gravitational waves

I 2016: LIGO announces results; interpretation as black hole merger

I 2115: gravitational waves standard tool in astrophysics & cosmology

I 2116: someone pays taxes for gravitational waves

Disclaimer: quote above is commonly cited, but probably not authentic
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Warm-up: electromagnetism

I Electromagnetism: theory describing dynamics of charges

I Unifies electricity, magnetism, optics and special relativity
I Quantum electrodynamics tested with amazing precision and accuracy
I Without charges: still have lightwaves
I Lightwaves solutions of vacuum Maxwell’s equations

dF = 0 = d∗F ⇒ �Aµ = 0

I Light propagates in spacetime
I In vacuum light propagates with the biggest velocity possible
I First observation of light by humankind: about 2 million years ago
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I Electromagnetism: theory describing dynamics of charges
I Unifies electricity, magnetism, optics and special relativity
I Quantum electrodynamics tested with amazing precision and accuracy

Example: gyromagnetic factor of electron

Experiment (2008):

gexp
e

2
= 1.00115965218073± 0.00000000000028

Theory (2012):

gthe
e

2
= 1.00115965218178± 0.00000000000077
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General Relativity

I General Relativity: theory describing dynamics of masses

I Unifies gravity and special relativity; curves spacetime
I Quantum gravity not tested with any experiment so far
I Without masses: still have gravitational waves
I Gravitational waves solutions of vacuum Einstein’s equations

Rµν = 0 ⇒ �hµν = 0

I Gravity waves propagate in spacetime and deform it
I Gravitational waves propagate with the biggest velocity possible
I First observation of gravitational waves by humankind: about 2 years

ago
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Gravitational wave sources

I Any acceleration that is not spherically or cylindrically symmetric
produces gravitational waves

I Examples: supernovae, black hole merger, big bang, me, ...
I Focus here on black hole merger
I Simple calculation to estimate gravitational wave energy

Take two Schwarzschild black holes of equal mass m
Call final black hole mass M and gravitational wave energy E
Energy conservation:

M + E = m + m⇒ E = 2m−M

Use Hawking’s area theorem (with area ∝ mass squared):

Afinal ≥ Ainitial ⇒M2 ≥ 2m2

Get upper bound on gravitational wave energy

E ≤ (2−
√

2)m ≈ 29% of initial energy

Energy released by 1034 − 1036 Nagasaki bombs!
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Gravitational waves as the last known puzzle piece
Big questions: what is the Universe made of? what are the fundamental forces?

I All known forces of Nature described with amazing precision through
the Standard Models of particle physics and Cosmology

I 5 years ago: all particles predicted by Standard Model discovered,
except Higgs & graviton (or classical counterpart, gravitational waves)

I July 2012: Higgs particle detected at LHC (CMS and ATLAS)
I September 2015: Gravitational waves detected by LIGO
I Standard Models now complete as far as their known parts are

concerned
I Is there something else missing?
I Yes: the dark side of the Universe! (dark matter, dark energy)

We may be lucky and witness not only the completion
of the Standard Models, but also a first glimpse into the
dark side of the Universe within our lifetimes!
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I July 2012: Higgs particle detected at LHC (CMS and ATLAS)
I September 2015: Gravitational waves detected by LIGO
I Standard Models now complete as far as their known parts are

concerned
I Is there something else missing?
I Yes: the dark side of the Universe! (dark matter, dark energy)

Understanding the dark side may take a couple of decades —
interesting times for fundamental physics!

We may be lucky and witness not only the completion
of the Standard Models, but also a first glimpse into the
dark side of the Universe within our lifetimes!
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How to measure gravitational waves?

I In principle easy!

I In practice nearly impossible!
I Laser interferometry to the rescue
I Laser Interferometer Gravitational-Wave Observatory
I Can resolve subnuclear distances with laser interferometry
I Good news: sensitive enough to resolve gravitational waves!
I Bad news: sensitive to background noise (tiny seismic activities,

thermal noise, passing trucks, ocean waves, ...)
I Reduce errors by having two identical experiments, one at West coast

(Hanford, Washington), one at East coast (Livingston, Louisiana)
I Reduce local errors by suspension system to isolate mirrors from

shaking

Suspension system works (in principle) like that of a (very advanced)
car — wheels feel bumps, but are decoupled from car
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LIGO suspension system
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September 14, 2015, 5:51am (Boston time)

I East and West coast data compatible with each other
I Gravitational wave signal significantly above background
I Matches very precisely predictions from black hole merger
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Theoretical implications of gravitational wave discovery

I General relativity confirmed in qualitatively new way

I To be more precise: 2-body problem amazingly complicated in
General Relativity (100 thousands of CPU hours necessary to describe
merger process of two black holes)

I Gravitational waves propagate with the speed of light

I Gravitons (like photons) are massless

I Black holes confirmed in a qualitatively new way

I Black holes hard to observe since nothing escapes (by definition)

Having said all this:

I gravitational waves were expected to exist

I interest therefore mostly in experimental applications!
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Experimental applications: gravitational wave astronomy
A new way to experience the Universe!

I Humanity is no longer deaf to gravitational waves

I Humanity is no longer deaf to gravitational waves!

I Humanity is no longer deaf to gravitational waves!!!

I Beginning of the era of gravitational wave astronomy

I You can hide from light in the shadows, but not from gravity

I Example 1: new properties of black holes, neutron stars, or other
massive objects

I Example 2: supernova early warning system

I Example 3: early Universe (light blind to anything before Universe
was 370.000 years old)
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Industrial applications

I Curiosity driven research not focused on industrial applications

I This is ultimately reason why major industrial breakthroughs come
from curiosity driven research

“Electric bulb was not created in an attempt to improve on candles”

I Two classes of applications: spin-offs and direct applications

I Famous spin-off example: www from CERN research laboratory

I Direct application of general relativity: GPS
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“Electric bulb was not created in an attempt to improve on candles”
I Two classes of applications: spin-offs and direct applications
I Famous spin-off example: www from CERN research laboratory
I Direct application of general relativity: GPS

I It took 8 decades to develop the first industrial general
relativity application

I Patience needed in fundamental research on big questions

I Funding must come from public sources, not from industry

I Conversely: Public funding should go to fundamental research,
not to industry (Austrian funding agency FWF in dire straits)
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Congratulations to the Advanced LIGO team at MIT and 90 other
institutions!
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I hope you enjoyed my talk!

... any questions?
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Backup slide
Educational video by LIGO
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