Gravity and holography in lower dimensions I

(6.1) Casini–Huerta spacetime diagram

Prove the formula (20) in the notes on EE, AD = BC, that we used in the derivation of the Casini–Huerta *c*-function.

(6.2) Entanglement entropy of thermal states

Use the exponential map $z = \exp\left(\frac{2\pi}{\beta}w\right)$ to a cylinder of circumference $\beta = T^{-1}$ to derive the thermal result for EE

$$S_A(L; T) = \frac{c}{3} \ln\left(\frac{\beta}{\pi\varepsilon_{\text{UV}}} \sinh\frac{\pi L}{\beta}\right) + \text{const.}$$

from the T = 0 result $S_A(L) = \frac{c}{3} \ln \frac{L}{\varepsilon_{UV}} + \text{const.}$ Verify that in the large T limit you get a volume law for EE, $S_A(L; T) \propto LT$.

(6.3) Geodesics in Poincaré patch AdS₃

Just for fun and with no hidden agenda, calculate the geodesic length of an equal time-geodesic

$$S_A(L) = \frac{1}{4G} \int_L \mathrm{d}s$$

for a spatial interval of length L anchored at the asymptotic boundary $z\to 0$ of Poincaré patch ${\rm AdS}_3$

$$ds^{2} = \frac{\ell^{2}}{z^{2}} \left(-dt^{2} + dx^{2} + dz^{2} \right)$$

Since the result will diverge, introduce a small cutoff $z = \varepsilon$ instead of calculating at z = 0. Express your result as function of the interval length L, the cutoff ε , the AdS radius ℓ and Newton's constant G.

These exercises are due on December 1st 2020.

Hints:

• Either use explicitly coordinates or prove this in a coordinate independent way. Here is again the figure.

• Recall how conformal primaries transform and look up the conformal weights $\Delta_n = \bar{\Delta}_n$ of the twist operators $\Phi_{\pm n}$ in the lecture notes. Work first at the level of the n^{th} Rényi entropy and then take the limit $n \to 1^+$, like in the lectures. The key formula you need to use is

$$S_{A} = -\frac{\mathrm{d}}{\mathrm{d}n} \operatorname{tr} \rho_{A}^{n} \Big|_{n \to 1^{+}} = -\frac{\mathrm{d}}{\mathrm{d}n} \Big(\langle \Phi_{n}(w_{1}, \bar{w}_{1}) \Phi_{-n}(w_{2}, \bar{w}_{2}) \rangle \Big)^{n} \Big|_{n \to 1^{+}}$$

The UV cutoff can be introduced at the final step on dimensional grounds (why?). You can assume $w_1 - w_2 = \bar{w}_1 - \bar{w}_2 = L$.

• You can either calculate the Christoffels and brute-force solve the geodesic equations with suitable boundary conditions, or you directly use the action functional (convince yourself why this expression is correct!)

$$S_A = \frac{1}{4G} 2 \int_{L/2 - \mathcal{O}(\varepsilon)}^{0} \mathrm{d}x \,\ell \,\mathcal{L}(z, \, \dot{z})$$

where you should find $\mathcal{L}(z, \dot{z}) = \sqrt{1 + \dot{z}^2}/z$, with dot denoting *x*-derivatives; then exploit the Noether charge associated with invariance under *x*-translations, $Q = \mathcal{L} - \dot{z}\partial\mathcal{L}/\partial\dot{z}$ and relate it to the maximal *z* value that can be taken on a geodesic. Finally, note that the interval length is simply given by

$$L/2 - \mathcal{O}(\varepsilon) = \int_{0}^{L/2 - \mathcal{O}(\varepsilon)} dx = \int_{z_{\max}}^{\varepsilon} \frac{dz}{\dot{z}}$$

And of course there is a hiden agenda! Once you have the final result you'll see...