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Gravity and holography in lower dimensions II

(5.1) Second order field equations for 2d dilaton gravity
Derive the equations of motion by varying the 2d dilaton gravity action

S2DG =
1

κ

∫
d2x
√
−g

[
XR + U(X)(∇X)2 − 2V (X)

]
with respect to the dilaton field X and the metric gµν (U, V are arbi-
trary functions of X). You may neglect surface terms in this exercise.

(5.2) Higher curvature theories of gravity as dilaton gravity theories
Show that a non-linear gravity theory in any dimension D ≥ 2 with an
action

S̃ =
1

κ̃

∫
dDx
√
−g Rγ̃ γ̃ 6= 0, 1

is equivalent to the following class of dilaton gravity models:

S =
1

κ

∫
dDx
√
−g

[
XR−Xγ

]
Derive a relation between the exponents γ and γ̃.
[Note: This result shows the equivalence of theories with f(R) inter-
actions to certain dilaton gravity models. The latter are also known
as scalar-tensor theories, Jordan–Brans–Dicke theories or quintessence
models. Both models have been used a lot in cosmology in the past 25
years.]

(5.3) Spherical reduction
Take Einstein gravity in D > 2 dimensions and assume spherical sym-
metry by considering adapted metrics

ds2 = gαβ dxα dxβ +
1

λ
X2/(D−2) d2ΩSD−2

where α, β = 0, 1, λ = const. and d2ΩSD−2 is the line-element of the
round (D − 2)-sphere. Insert the ansatz above into the D-dimensional
Einstein–Hilbert action (disregarding boundary terms) and show that
after integrating out the angular part you get a 2d dilaton gravity action
like in exercise (5.1) with

U(X) = −D − 3

D − 2

1

X
V (X) ∝ X(D−4)/(D−2) .

These exercises are due on May 4th 2021.



Hints/comments:

• The dilaton variation is straightforward. For the metric variation use
the formula δ

√
−g = 1

2

√
−g gµν δgµν (see Black Holes I). As we showed

in Black Holes II the variation of the Ricci scalar yields

δR = −Rµν δgµν +∇µ∇ν δgµν − gµν∇2 δgµν

Exploit also the fact that the 2d Einstein tensor vanishes identically
for any 2d metric, Rµν = 1

2
gµνR. Be careful with signs!

• Start with the dilaton gravity formulation and eliminate the dilaton X
in terms of curvature R by means of its own equation of motion.

• This calculation might be lengthy. For me the most efficient way was
to use the Cartan formulation and to make a 2 + (D−2)-split, but it is
also ok if you just use computer algebra to calculate the D-dimensional
Ricci scalar for metrics given in the ansatz of this exercise, expressing
it in terms of the 2-dimensional Ricci scalar and additive extra terms
involving the dilaton field and its derivatives. One thing you can cal-
culate quickly and easily by hand is the volume form, just by taking
the (square-root of minus the) determinant of the D-dimensional met-
ric and expressing at as a product of the 2-dimensional volume form
and a dilaton factor. Note that there is a simple geometric interpreta-
tion of the three terms in the Ricci scalar: the first one (containing R)
comes from the intrinsic 2-dimensional curvature; the one proportional
to U(X) comes from spacetime-variations of the dilaton, which is es-
sentially the curvature radius of the (D − 2)-sphere; finally, the term
with V (X) comes from the intrinsic curvature of the (D − 2)-sphere
(this last term would be absent if you were to do a toroidal reduction
instead of a spherical reduction). In terms of the Riemann-tensor (or
curvature 2-form) the first term comes entirely from the first sector in
the 2 + (D − 2)-split, while the last term comes entirely from the sec-
ond sector. The middle term comes from mixed terms involving both
sectors.


