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Gravity and holography in lower dimensions I

(5.1) Schwarzian
Prove that the Schwarzian derivative

S(f(z), z) =
1

(∂f)2

(
(∂f)(∂3f)− 3

2
(∂2f)2

)
is annihilated if and only if f(z) generates an SL(2, R) transformation,
f(z) = (az + b)/(cz + d). Moreover, show that for infinitesimal trans-
formations f(z) = z + ε(z) +O(ε2) the Schwarzian derivative expands
as

S(f(z), z) = ∂3ε+O(ε2) .

(5.2) Virasoro descendants of the vacuum
As discussed, the vacuum state |0〉 obeys the highest weight conditions
Ln|0〉 = 0, ∀n ≥ −1, where Ln are the Virasoro generators. Consider
a generic descendant of the vacuum

|n1, n2, . . . , nm〉 := L−n1L−n2 . . . L−nm|0〉 ni ≥ 2 ∀i = 1 . . .m

and calculate its L0 eigenvalue, called the ‘level’ of the descendant.
Verify that the number of descendants at level N coincides with the N th

Taylor expansion coefficient around q = 0 of the generating function

∞∏
n=2

1

1− qn
= 1 + q2 + q3 + 2q4 + 2q5 + 4q6 + 4q7 + 7q8 +O(q9) .

Either prove this generally or verify it explicitly for N = 0, 1, . . . , 8.

(5.3) Cardy formula and asymptotic density of states
Defining as usual the microcanonical density of states at energy E as
ρ(E) = eS(E) show that the asymptotic density of states (large energy
and hence large entropy) is correctly reproduced by the Cardy formula,
using the standard Laplace transformation between canonical partition
function and microcanonical density of states

Z[β] =

∞∫
0

dE ρ(E) e−βE .

These exercises are due on November 24th 2020.



Hints:

• For the first part one direction is trivial to show: just insert f(z) =
(az + b)/(cz + d) into the Schwarzian derivative and show that it van-
ishes. To verify the other direction you need to solve the differential
equation S(f(z), z) = 0 for f(z). If you do this with Mathematica you
will get the solution immediately; if you do this by hand notice that
you can first substitute g(z) = f ′(z) to get a non-linear second order
ODE for g(z) and then use the substitution y(z) = 1/

√
g(z) to simplify

it to a linear second order ODE, which is solved easily (note that you
can always drop overall factors of g(z)). The last part of the exercise
is straightforward and short.

• Insert into the eigenvalue equation

L0|n1, n2, . . . , nn〉 = N |n1, n2, . . . , nn〉

the definition of the vacuum descendant and commute L0 step-by-step
through the Virasoro generators L−ni

using the Virasoro algebra. For
the second task you can start (and, if you want, finish) with the explicit
verification until level 8, which is a simple and manageable counting
problem; e.g. at level four you have the two descendants L−4|0〉 and
L2
−2|0〉. Proving the correctness of the generating function for any level

N is not required for this exercise.

In case you are ambitious: Euler’s generating function for the number of
partitions p(N) of the integer N is given by

∏∞
n=1

1
1−qn =

∑∞
n=0 p(n)qn.

Proceed from there, noting that there are no L−1 descendants of the
vacuum. You should be able to conclude that it is then sufficient to
prove the following lemma: the number of partitions of N with no parts
equal to 1 is p(N)− p(N − 1). For more info see section 2 of
http://www.math.upenn.edu/∼wilf/PIMS/PIMSLectures.pdf.

• Assume that entropy to a good approximation is given by the Cardy
formula

S(E) ≈ 2π

√
cE

3

and use the saddle point approximation to the integral∫
dE ef(E) ≈ ef(Es)

where the saddle point value Es is determined by f ′(Es) = 0. Verify
that this saddle-point value¸ is consistent with the first law of thermo-
dynamics, dE = T dS. Finally, show that the result above correctly
reproduces the high temperature partition function Z[β] ≈ exp(π

2c
3β

).

http://www.math.upenn.edu/~wilf/PIMS/PIMSLectures.pdf

