Gravity and holography in lower dimensions II

(4.1) Soft hair and information loss

Assume it is correct that soft hair excitations account for the entropy of black holes. What are the potential difficulties with such a proposal and how could they be overcome?

(4.2) Transformation of boundary fields

Show that the Schwarzian transformation behavior

$$\delta_{\xi}\mathcal{L} = \xi\mathcal{L}' + 2\xi'\mathcal{L} - \frac{1}{2}\xi'''$$

is compatible with the twisted Sugawara construction $\mathcal{L} = \frac{1}{4} (\Phi')^2 + \frac{1}{2} \Phi''$ provided Φ transforms analogously to entanglement entropy in a CFT₂, i.e., like an anomalous scalar field. Moreover, show that $X' = e^{-\Phi}$ transforms like a non-anomalous scalar field and $Y = -\frac{1}{2} \Phi'$ like an anomalous vector field under ξ .

(4.3) Naive ultrarelativistic limit of bosonic strings

Take the bosonic string spectrum

$$X_{\pm}^{\mu}(t \pm \sigma) = \frac{x^{\mu}}{2} + \frac{\ell_s^2}{2} p_{\pm}^{\mu}(t \pm \sigma) + \frac{\ell_s}{\sqrt{2}} \sum_{n \neq 0} \frac{\alpha_{-n}^{\pm}}{in} e^{in(t \pm \sigma)}$$

and perform the naive ultrarelativistic limit $t \to \varepsilon t$, $\sigma \to \sigma$ and $\varepsilon \to 0$. Compare the result with the mode expansion of the near horizon boundary field Φ discussed in the lectures.

These exercises are due on April 27th 2021.

Hints/comments:

- Recall what "soft" means and consider a black hole of fixed mass and angular momentum when discussing this issue.
- Remember that entanglement entropy in a CFT₂ transforms as

$$\delta_{\xi}S = \xi S' - \# \xi'$$

with some number # that depends on the central charge. This is what is meant by "anomalous scalar field" transformation behavior. Determine this number for Φ so that everything works out. If the number vanishes, # = 0, we have instead a non-anomalous scalar field. This should happen for X (possibly up to an irrelevant sign). Finally, an anomalous vector field transforms as

$$\delta_{\xi}V = \xi V' + \xi' V + \# \xi''$$

where # is another number. This should happen for Y. Note that the fields in this exercise, Φ, X, Y , are the boundary fields that appear in a Gauss decomposition of the Brown–Henneaux connection.

• This exercise is too short to deserve any hints. You find the mode expansion of Φ either in my lecture video or in the paper with Wout, 1906.10694.