Daniel Grumiller October 28" 2020

Gravity and holography in lower dimensions I

(3.1)

(3.2)

(3.3)

Special Conformal Transformations (SCTs)
Prove that the finite form of an inversion plus translation by some
constant vector b* plus an inversion,

is equivalent to a finite SCT generated by the same constant vector.

xt — 2 bt
1 —2b%x, + b2a2

a

Moreover, show that finite SCTs are compatible with the infinitesimal
SCTs discussed in the lectures.
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CFT 2-point correlation functions

Prove that in CFTs in at least 3 spacetime dimensions all two-point
correlators vanish unless the scaling weights of both operators are the
same, A; = A,.
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Unitarity bound

Consider a state |A) in a CFT, that has scaling dimension A, D|A) =
—iA|A) and is normalized, (A]A) = 1. Moreover, assume that this
state is annihilated by special conformal transformations, K,|A) = 0,
and by Lorentz-trafos, L,,|A) = 0. Show that the unitarity bound
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implies A > 0. In words, unitarity demands the scaling dimension to
be non-negative.

These exercises are due on November 10" 2020.



Hints:

This should be straightforward.

Use the results shown in the lectures, in particular
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and consider additionally in the general transformation formula
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the action of special conformal transformations which yield a Jacobian
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A useful intermediate result that you should prove is
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which follows from the finite SCT formula
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Since K, annihilates |A) you can replace K,P,|A) by the commutator
(K, P,]|A). Then just evaluate the commutator

(K., P,) =2i (nuD — L)
and use the properties of the state |A) regarding D and L, mentioned

in the exercise.

Note: if you use a more standard definition of dilatations, D = "0,
then the ugly factor —i disappears from the definition of the scaling
weight, D|A) = A|A).



