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Black Holes II — Exercise sheet 7

(17.1) Schwarzschild black hole and thermal reservoir
Couple the Schwarzschild black hole to a finite thermal reservoir of radi-
ation within the volume V at the Hawking temperature TH = 1/(8πM).
Show that for sufficiently small volumina V < Vc this system is ther-
modynamically stable, whereas for sufficiently large volumina V > Vc
it is unstable. Calculate Vc.

(17.2) Information loss problem in condensed matter physics
Consider a piece of coal at zero temperature and a laser beam (a pure
quantum state with some finite energy and entropy) in vacuum as initial
state. Provided the laser beam is directed toward the piece of coal it will
eventually be absorbed and scattered by the coal. In this (complicated)
process the coal will heat up a little bit. Suppose that the coal is a
nearly perfect black body. Then the final state will be the scattered
pure radiation and the outgoing thermal black-body radiation emitted
by the piece of coal. Thus, we appear to have an evolution of a pure
initial state into a final state that is not pure. Information is lost,
similar to what happens in the case of an evaporating black hole. How
is this information loss problem resolved in condensed matter physics?

(17.3) Third Law
The third law of black hole mechanics states that physical processes
that lead to

κ→ 0

are not possible in finite time. Discuss for a Schwarzschild black hole
how you could attempt to violate the third law and why such attempts
do not work. Generalize this discussion to Reissner–Nordström black
holes.

These exercises are due on May 26th 2020.



Hints:

• For the finite reservoir of radiation you need the Stefan–Boltzmann law
Eres = σV T 4, where Eres is the energy of the radiation and σ = π2/15.
The relation between energy Eres and entropy Sres for a radiation gas
is given by Eres = 3

4
SresT . Use the Bekenstein–Hawking result for the

entropy, SBH = A/4, and show that the total entropy S = Sres+SBH is
extremized for a total energy of E = Eres +M if T = TH . A simple way
to extremize entropy under the given conditions is to add to the total
entropy the energy constraint multiplied with a Lagrange multiplier β.
Then vary that entropy with respect to the Lagrange multiplier and
with respect to the black hole mass, keeping fixed the total energy E:

δS = δ
(
Sres + SBH + β(Eres +M − E)

)
= 0

Prove now that the extremum is a maximum if and only if V < Vc,
where

Vc =
15

32π3 T 5

Consider what this result implies for thermodynamic (in-)stability.

• Compare with exercise (8.3) of Black Holes I.

• Remember how surface gravity is related to mass and consider what
you would have to do with the mass of a Schwarzschild black hole
in order to make surface gravity vanish. For the Reissner–Nordström
case start with a sub-extremal black hole |Q| < M and try to make it
extremal by dropping charged particles into it. Note that the particle
only falls into the black hole if gravitational attraction overcomes the
electrostatic repulsion.


