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Gravity and holography in lower dimensions I

(10.1) Log corrections to entropy from ensemble change
Assume you have two different ensembles describing the same physical
system, but with different definitions of energy, E1 and E2. Use the
fact that the microscopic density of states transforms with a Jacobian,

ρ[E2] =
∂E1

∂E2

ρ[E1]

to derive how the entropies obtained in these two ensembles, S1 and
S2, differ from each other. In the second part of the exercise assume
that the Jacobian evaluates to some power of the entropy in the first
ensemble, ∂E1

∂E2
= aS−α

1 , with a, α > 0. In the limit of very large entropy,
S1 � 1, how do the leading two terms look like if you express S2 in
terms of S1?

(10.2) Gravitons on global AdS3

Consider linearized fluctuations of the metric, gµν = gAdS
µν +ψµν , around

global AdS,

ds2AdS = dρ2 − cosh2 ρ dt2 + sinh2 ρ dϕ2 ϕ ∼ ϕ+ 2π .

Find all normalizable left-moving linearized fluctuations ψµν that obey
the SL(2)×SL(2) primary conditions (L±

1 h)µν = 0 where L±
n are the six

Killing vectors of global AdS3
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)
with x± = t±ϕ. By the attribute “left-moving” we mean (L−

0 ψ)µν = 0
and (L+

0 ψ)µν = h+ψµν , where the weight has to be positive, h+ > 0, for
the mode to be called “normalizable”. Work in a gauge where ψµ− = 0
and exploit that ψ solving the linearized Einstein equations implies
(C+

2 + C−
2 + 2)ψ = 0, where C±

2 = 1
2

(L±
1 L

±
−1 + L±

−1L
±
1 ) − (L±

0 )2 is the
quadratic Casimir.

(10.3) Length of geodesics on Poincaré patch AdS3

Take a constant time slice of Poincaré patch AdS3 with unit AdS radius
and a fixed length interval near the boundary of this slice (“near” here
means that you consider not the asymptotic boundary, but rather some
cut-off surface). Anchor a geodesic extending into the bulk on this
fixed length interval at the cut-off surface and calculate its length as a
function of the interval length and the value of the cut-off, to leading
order in the cut-off.

These exercises are due on January 8th 2019.



Hints:

• Recall the microcanonical definition of entropy as the logarithm of the
microscopic density, S1,2 = ln ρ[E1,2]. Actually, this is all you need to
recall, the rest is straightforward.

• Applying the ancient wisdom of Fourier transforming when you do not
know what else to do you can start with the separation ansatz

ψµν(h
+, h−) = e−ih

+x+−ih−x−

F++(ρ) 0 F+ρ(ρ)
0 0 0

F+ρ(ρ) 0 Fρρ(ρ)


µν

so that you work with L±
0 eigenmodes, L±

0 ψ = h±ψ, and have im-
plemented already the required gauge conditions ψµ− = 0. The left-
moving condition sets one of the weights to zero, h− = 0. The Einstein
equations (using the quadratic Casimir) fix the (by normalizability pos-
itive!) other weight, h+ = 2. The remaining steps are to solve the
Killing equations corresponding to the two primary conditions, using
the ansatz above. Note that some of the equations linearly combine to
algebraic relations between the three functions Fµν(ρ). One of the ++
component equations allows to immediately determine F++ ∝ tanh2 ρ
by simple integration. In the end this procedure yields a unique result
for ψ, up to an overall factor.

• The exercise is technically simple, but you need to translate carefully
all the words into formulas first. You might find a shorter way, but
here I outline the way I did this. Useful coordinates for Poincaré patch
AdS3 with unit AdS radius are

ds2 =
1

z2
(

dz2 − dt2 + dx2
)
.

The AdS3 boundary is reached for z → 0, so imposing a cut-off means
instead of sending z → 0 sending it to some fixed (small, but non-
zero) value z → zc � 1. Write down the geodesic equation (either by
calculating the Christoffels or by varying the geodesic action with the
above metric as input; I did the latter), assume constant t and integrate
the geodesic equation from some initial point (z = zc, t = 0, x = x1) to
some final point (z = zc, t = 0, x = x2). Fix your integration constants
by demanding that the length of the boundary interval, x1 − x2, takes
some fixed value L. Note that you could use x as your geodesic “time”,
and that you have a Noether charge associated with shift symmetry
x → x + x0 (that Noether charge is the Hamiltonian associated with
x-translations). In fact, you can make your life a bit simpler exploiting
symmetries: since we have translation invariance and the geodesic must
be symmetric with respect to the midpoint of the interval, you can
integrate from the initial point (z = zc, t = 0, x = 0) to the mid
point (z = ze, t = 0, x = L/2). You should convince yourself that
the quantity ze has as defining property dz/ dτ |z=ze = 0, where τ is
the parameter of your geodesic (for instance, τ = x or τ = z). The
parameter ze is essentially the Noether charge mentioned earlier, and
you should find ze = z

√
(dz/ dx)2 + 1 = L/2 + . . . , where the ellipsis

refers to terms that vanish when the cutoff is removed, zc → 0. The
final task is to determine the length of the geodesic as function of L
and zc, which at this stage is straightforward. Your final result for the
length should be proportional to ln(L/zc).


