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Holography – Main Idea
aka gauge/gravity duality, aka AdS/CFT correspondence

One of the most fruitful ideas in contemporary theoretical physics:
I The number of dimensions is a matter of perspective
I We can choose to describe the same physical situation using two

different formulations in two different dimensions
I The formulation in higher dimensions is a theory with gravity
I The formulation in lower dimensions is a theory without gravity
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Why Gravity?
The holographic principle in black hole physics

Boltzmann/Planck: entropy of photon gas in d spatial dimensions

Sgauge ∝ volume ∝ Ld

Bekenstein/Hawking: entropy of black hole in d spatial dimensions

Sgravity ∝ area ∝ Ld−1

Daring idea by ’t Hooft/Susskind in 1990ies:

Any consistent quantum theory of gravity could/should have a holo-
graphic formulation in terms of a field theory in one dimension lower

Discovery by Maldacena 1997:

Holographic principle is realized in string theory in specific way

e.g. 〈Tµν〉gauge = TBY
µν δaction =

∫
ddx

√
|h|TBY

µν δhµν
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Why should I care?
...and why were there > 6300 papers on holography in the past 12 years?

I Many applications!

I Tool for calculations

I Strongly coupled gauge theories (difficult) mapped to semi-cassical
gravity (simple)

I Quantum gravity (difficult) mapped to weakly coupled gauge theories
(simple)

I Sometimes both limits accessible: integrability of N = 4 SYM

I Examples of first type: heavy ion collisions at RHIC and LHC,
superfluidity, type II superconductors (?), cold atoms (?), ...

I Examples of the second type: microscopic understanding of black
holes, information paradox, Kerr/CFT (?), 3D quantum gravity (?), ...

We can expect many new applications in the next decade!
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Why gravity in three dimensions?
“As simple as possible, but not simpler”

Gravity simpler in lower dimensions

11D: 1144 Weyl, 66 Ricci, 5D: 35 Weyl, 15 Ricci, 4D: 10 Weyl, 10 Ricci
3D: no Weyl, 6 Ricci, 2D: no Weyl, 1 Ricci

2D gravity: black holes!

Applications:
I Solve conceptual problems of (quantum) gravity

I Approximate geometry of cosmic strings/particles confined in plane

I Holographic tool for 2D condensed matter systems

pioneering work by Deser, Jackiw and Templeton in 1980ies
2007 Witten rekindled interest in 3D gravity
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Attempt 1: Einstein–Hilbert
As simple as possible... but not simpler!

Let us start with the simplest attempt. Einstein-Hilbert action:

IEH =
1

16πG

∫
d3x

√
−g R

Equations of motion:
Rµν = 0

Ricci-flat and therefore Riemann-flat – locally trivial!

I No gravitons (recall: in D dimensions D(D − 3)/2 gravitons)

I No BHs

I Einstein-Hilbert in 3D is too simple for us!

Properties of Einstein-Hilbert
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Attempt 2: Topologically massive gravity
Deser, Jackiw and Templeton found a way to introduce gravitons!

Let us now add a gravitational Chern–Simons term. TMG action:

ITMG = IEH +
1

16πG

∫
d3x

√
−g 1

2µ
ελµν Γρ

λσ

(
∂µΓσ

νρ +
2
3

Γσ
µτΓτ

νρ

)
Equations of motion:

Rµν +
1
µ
Cµν = 0

with the Cotton tensor defined as

Cµν =
1
2
εµ

αβ∇αRβν + (µ↔ ν)

I Gravitons! Reason: third derivatives in Cotton tensor!

I No BHs

I TMG is slightly too simple for us!

Properties of TMG
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Attempt 3: Einstein–Hilbert–AdS
Bañados, Teitelboim and Zanelli (and Henneaux) taught us how to get 3D BHs

Add negative cosmological constant to Einstein-Hilbert action:

IΛEH =
1

16πG

∫
d3x

√
−g

(
R+

2
`2

)
Equations of motion:

Gµν = Rµν −
1
2
gµνR−

1
`2
gµν = 0

Particular solutions: BTZ BH with line-element

ds2BTZ = −
(r2 − r2+)(r2 − r2−)

`2r2
dt2 +

`2r2

(r2 − r2+)(r2 − r2−)
dr2 + r2

(
dφ− r+r−

`r2
dt

)2

I No gravitons

I Rotating BH solutions that asymptote to AdS3!

I Adding a negative cosmological constant produces BH solutions!

Properties of Einstein-Hilbert-AdS
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Cosmological topologically massive gravity
CTMG is a 3D theory with BHs and gravitons!

We want a 3D theory with gravitons and BHs and therefore take CTMG
action

ICTMG =
1

16πG

∫
d3x

√
−g

[
R+

2
`2

+
1
2µ

ελµν Γρ
λσ

(
∂µΓσ

νρ +
2
3

Γσ
µτΓτ

νρ

)]
Equations of motion:

Gµν +
1
µ
Cµν = 0

I Gravitons!

I BHs!

I CTMG is just perfect for us. Study this theory!

Properties of CTMG
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Einstein sector of the classical theory

Solutions of Einstein’s equations

Gµν = 0 ↔ R = − 6
`2

also have vanishing Cotton tensor

Cµν = 0

and therefore are solutions of CTMG.

This sector of solutions contains

I BTZ BH

I Pure AdS

Line-element of pure AdS:

ds2AdS = ḡµν dxµ dxν = `2
(
− cosh2 ρdτ2 + sinh2 ρdφ2 + dρ2

)
Isometry group: SL(2,R)L × SL(2,R)R

Useful to introduce light-cone coordinates u = τ + φ, v = τ − φ
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Cotton sector of the classical theory

Solutions of CTMG with
Gµν 6= 0

necessarily have also non-vanishing Cotton tensor

Cµν 6= 0

Few exact solutions of this type are known.

Perhaps most interesting solution:

I Warped AdS (stretched/squashed), see Bengtsson & Sandin

Line-element of space-like warped AdS:

ds2warped AdS =
`2

ν2 + 3
(
− cosh2 ρdτ2 +

4ν2

ν2 + 3
(du+ sinh ρdτ)2 + dρ2

)
Sidenote: null-warped AdS in holographic duals of cold atoms:

ds2null warped AdS = `2
(dy2 + 2 dx+ dx−

y2
± (dx−)2

y4

)
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CTMG at the chiral point
...abbreviated as CCTMG

Definition: CTMG at the chiral point is CTMG with the tuning

µ ` = 1

between the cosmological constant and the Chern–Simons coupling.

Why special?
Calculating the central charges of the dual boundary CFT yields

cL =
3

2G
(
1− 1

µ `

)
, cR =

3
2G

(
1 +

1
µ `

)
Thus, at the chiral point we get

cL = 0 , cR =
3
G

Notes:

I Abbreviate “CTMG at the chiral point” as CCTMG
I CCTMG sometimes called “chiral gravity” (misnomer!)
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Gravitons around AdS3 in CTMG

Linearization around AdS background

gµν = ḡµν + hµν

leads to linearized EOM that are third order PDE

G(1)
µν +

1
µ
C(1)

µν = (DRDLDMh)µν = 0

with three mutually commuting first order operators

(DL/R)µ
ν = δν

µ ± ` εµ
αν∇̄α , (DM )µ

ν = δν
µ +

1
µ
εµ

αν∇̄α

Three linearly independent solutions to linearized EOM:(
DLhL

)
µν

= 0 ,
(
DRhR

)
µν

= 0 ,
(
DMhM

)
µν

= 0

At chiral point left (L) and massive (M) branches coincide!
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Degeneracy at the chiral point

Li, Song & Strominger found all regular nonrmalizable solutions of
linearized EOM for µ` 6= 1.

I Primaries: L0, L̄0 eigenstates ψL/R/M with

L1ψ
R/L/M = L̄1ψ

R/L/M = 0

I Descendants: act with L−1 and L̄−1 on primaries
I General solution: linear combination of ψR/L/M

I Linearized metric is then the real part of the wavefunction

hµν = Reψµν

I At chiral point: L and M branches degenerate. Get new regular
normalizable solution (Grumiller & Johansson)

ψlog
µν = lim

µ`→1

ψM
µν(µ`)− ψL

µν

µ`− 1
with property(

DLψlog
)
µν

=
(
DMψlog

)
µν
∝ ψL ,

(
(DL)2ψlog

)
µν

= 0
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Sign oder nicht sign?
That is the question. Choosing between Skylla and Charybdis.

I With signs defined as in this
talk: BHs positive energy,
gravitons negative energy

I With signs as defined in
Deser-Jackiw-Templeton
paper: BHs negative energy,
gravitons positive energy

I Either way need a mechanism to
eliminate unwanted negative
energy objects – either the
gravitons or the BHs

I Even at chiral point the problem
persists because of the
logarithmic mode. See Figure.
(Figure: thanks to N. Johansson)

Energy for all branches:
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persists because of the
logarithmic mode. See Figure.
(Figure: thanks to N. Johansson)

Energy for all branches:
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Holography: An Introduction

3D gravity

Which 3D theory?

Logarithmic CFT dual

Open issues
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The LCFT conjecture

Observation:

L0

(
log
left

)
=

(
2 1

2
0 2

) (
log
left

)
,

L̄0

(
log
left

)
=

(
0 1

2
0 0

) (
log
left

)
.

Such a Jordan form of L0, L̄0 is defining property of a logarithmic CFT!
Logarithmic gravity conjecture (Grumiller & Johansson 2008):

CFT dual to CTMG exists and is logarithmic

Grumiller, Jackiw, Johansson, Henneaux, Maloney, Martinez,
Song, Strominger, Troncoso, ... 2008/2009:
Several non-trivial consistency checks that LCFT conjecture could be
correct.
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Towards a proof of the LCFT conjecture
Calculate correlators on the gravity side

If AdS3/LCFT2 works then the following algorithm must work:

I Construct non-normalizable modes related to left-, right- and
log-branches

DL/RψL/R = 0 ψL/R ∼ e2ρ(
DL

)2
ψlog = 0 ψlog ∼ ρ e2ρ

I Take the n-th variation of the full on-shell action

δS(2)(ψ1, ψ2) = boundary δS(n)(ψ1, ψ2, . . . , ψn) = bulk

I Insert above n non-normalizable modes as sources
I Compare with LCFT correlators, e.g.

〈OL(z, z̄)Olog(0)〉 = − b

2 z4
+ . . .

Skenderis, Taylor & van Rees 2009: n = 2
Grumiller & Sachs 2009: n = 2, 3
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Non-normalizable modes

Constructed with Ivo Sachs in global coordinates:

I Separation Ansatz with SL(2,R) weights h, h̄:

ψµν = e−ihu−ih̄v Fµν(ρ) DL/R/Mψ = 0

I Obtain two integration constants: one fixed by regularity at origin
ρ = 0, the other fixed by overall normalization

I No free parameters! For given weights (h, h̄) modes are either
normalizable or non-normalizable (up to degenerate cases)

I Normalizable: (2 + n,m) and (n, 2 +m)
I Non-normalizable: (−1 + n,−1−m) and (−1− n,−1 +m)
I Exploit SL(2,R) algebra to related modes of different weights:[

DL/R, L±
]
ψL =

[
DL/R, L̄±

]
ψL = 0[(

DL
)2
, L±

]
ψlog =

[(
DL

)2
, L̄±

]
ψlog = 0

In words: L±, L̄± act as ladder operators
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Second and third variation of action

Straightforward but lengthy; some useful tricks:

I Second variation:

δS(2)(ψ1, ψ2) ∼
∫

(DLψ1) δG(ψ2) + boundary

I Exploit

DLψL = 0 DLψR = 2ψR DLψlog = 2ψlog

and reduce most correlators to correlators in Einstein gravity (get
boundary terms for free!): cL → 0, cR → 2cEH

I Third variation:

δS(3)(ψ1, ψ2, ψ3) ∼
∫

(DLψ1) δ(2)G(ψ2, ψ3) + · · ·+ boundary

I Show that all boundary terms are contact terms!

I Exploit trick above and partial integrations to simplify 3-point
correlators
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Example for 2-point correlator

Interesting correlator between left- and log-modes for weights h, h̄

I

〈L log〉 ∼ δ(2)S(L, log) ∼ δ(2)SEH(L,L) ∼ cEH

h(h2 − 1)
h̄

I Consider limit of large weights (small separations z) and make Fourier
transformation

〈L log〉 ∼ b
h3

h̄
∼ b

∂3

∂̄
I Use standard methods to convert result into more familiar form:

〈L log〉 ∼ b
∂4

∂∂̄
∼ b ∂4 ln |z| ∼ b

z4

I Keep track of all numerical factors:

〈L log〉 = − b

2 z4
= 〈OL(z, z̄)Olog(0)〉
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Examples for 3-point correlators

Without log insertions reduce to Einstein gravity correlators:

〈RRR〉 ∼ δ(3)S(R,R,R) ∼ 2δ(3)SEH(R,R,R)

〈LLL〉 ∼ δ(3)S(L,L,L) ∼ 0δ(3)SEH(L,L,L) = 0

With single log insertions after some manipulations reduce to Einstein
gravity correlators:

〈LL log〉 ∼ δ(3)S(L,L, log) ∝ δ(3)SEH(L,L,L)

〈LR log〉 ∼ δ(3)S(L,R, log) ∼ 0 + contact terms

With multiple log insertions calculations still very lengthy:

〈log log log〉 ∼ δ(3)S(log, log, log) = lengthy!
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Comparison with LCFT correlators

I 2-point correlators (keep only leading divergences):

〈OR(z, z̄)OR(0)〉 = 2 〈OR(z, z̄)OR(0)〉EH = 2
cEH

2 z̄4
=

cR
2 z̄4

(1)

〈OR(z, z̄)OL(0)〉 = 〈OR(z, z̄)Olog(0)〉 = 〈OL(z, z̄)OL(0)〉 = 0 (2)

〈OL(z, z̄)Olog(0)〉 = − b

2 z4
(3)

〈Olog(z, z̄)Olog(0)〉 =
b ln (m2|z|2)

z4
(4)

I

All correlators above reproduced on gravity side!
Skenderis, Taylor and van Rees (2009)

I 3-point correlators:
Calculated 7 of 10 correlators so far — all of them match precisely.
Plan to calculate one more. Will not calculate 〈L log log〉 and
〈log log log〉 (lengthy!)
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Plan to calculate one more. Will not calculate 〈L log log〉 and
〈log log log〉 (lengthy!)
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Holography: An Introduction

3D gravity

Which 3D theory?

Logarithmic CFT dual

Open issues
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Quantum gravity or condensed matter physics?

Original idea (Li, Song & Strominger 2008):

I Take CCTMG as starting point

I Take its LCFT dual (non-chiral, non-unitary)

I Truncate (consistently?) the logarithmic modes

I Obtain a chiral CFT (“chiral gravity”, “extremal CFT”)

I Calculate its partition function

I Exploit results for quantum gravity applications

I Problem 1: Extremal CFTs may not exist for arbitrary c

I Problem 2: Truncation may be inconsistent at quantum level
(Andrade & Marolf 2009)

I Problem 3: If instead of truncation we attempt unitary completion we
are probably back to string theory

CTMG might not be a good toy model for quantum gravity!
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Quantum gravity or condensed matter physics?

New twist to the 3D story (Grumiller & Johansson 2008):

I Take CCTMG as starting point

I Take its LCFT dual (non-chiral, non-unitary)

I Establish AdS3/LCFT2 dictionary

I Relate observables on LCFT side with observables on gravity side

I Apply this to certain condensed matter systems

I LCFT in condensed matter physics: turbulence, critical polymers,
sandpile models, ...

I Indication 1: L0, L̄0 non-diagonalizable

I Indication 2: Passes consistency checks (asymptotic AdS, finiteness of
charges, finiteness of energy, Hamiltonian analysis)

I Indication 3: 2- and 3-point correlators match

CTMG might be a good gravity dual to strongly coupled LCFTs!
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Thank you for your attention!

Thanks to Bob McNees for providing the LATEX beamerclass!
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