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Motivations for studying gravity in three dimensions

I Quantum gravity
I Address conceptual issues of quantum gravity
I Black hole evaporation, information loss, black hole microstate

counting, virtual black hole production, ...
I Technically much simpler than 4D or higher D gravity
I Integrable models: powerful tools in physics (Coulomb problem,

Hydrogen atom, harmonic oscillator, ...)
I Models should be as simple as possible, but not simpler

I Gauge/gravity duality
I Deeper understanding of black hole holography
I AdS3/CFT2 correspondence best understood
I Quantum gravity via AdS/CFT? (Witten ’07, Li, Song, Strominger ’08)
I Applications to 2D condensed matter systems?
I Gauge gravity duality beyond standard AdS/CFT: warped AdS,

asymptotic Schrödinger, non-relativistic CFTs, logarithmic CFTs, ...
I Physics

I Cosmic strings (Deser, Jackiw, ’t Hooft ’84, ’92)
I Black hole analog systems in condensed matter physics (graphene,

BEC, fluids, ...)
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Motivations for studying gravity in three dimensions

I Gauge/gravity duality
I Gauge gravity duality beyond standard AdS/CFT: warped AdS,

asymptotic Schrödinger, non-relativistic CFTs, logarithmic CFTs, ...

Main motivation of this talk:
Gravity duals for logarithmic CFTs?
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Main motivation of this talk:
Gravity duals for logarithmic CFTs?

Theoretically interesting (for a review see Gaberdiel ’01):
I logarithmic CFTs are non-unitary

I not evident if/how gauge/gravity duality is supposed to work in this
case — would need gravity theories reflecting non-unitarity

I for specific logarithmic CFTs where energy momentum tensor
acquires a logarithmic partner: would need some partner of the
graviton on the gravity side
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case — would need gravity theories reflecting non-unitarity
I for specific logarithmic CFTs where energy momentum tensor

acquires a logarithmic partner: would need some partner of the
graviton on the gravity side

Phenomenologically interesting:
I logarithmic CFTs describe e.g. systems with quenched disorder
I examples: spin glasses, quenched random magnets, percolation, dilute

self-avoiding polymers

I in appropriate strong coupling limit: exploit AdS/LCFT
correspondence to calculate observables on gravity side?
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Logarithmic CFT in a nutshell

Reminder: energy-momentum tensor of CFTs

Tzz = OL(z) Tz̄z̄ = OR(z̄)

Suppose that CFT has operator Olog with same conformal weights as OL

If Hamiltonian does not diagonalize we have a (specific) logarithmic CFT:

H

(
Olog

OL
)

=

(
2 1
0 2

)(
Olog

OL
)

Alternatively: suppose that CFT has operator OM with conformal weights

h = 2 + ε h̄ = ε 〈OM (z, z̄)OM (0, 0)〉 =
B̂

z4+2εz̄2ε
+ . . .

Send simultaneously left central charge cL and parameter ε to zero.
If these limits exist then get a logarithmic CFT:

bL := lim
cL→0

−cL
ε
6= 0 B := lim

cL→0

(
B̂ +

2

cL

)
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Two-point correlators in LCFTs

Recapitulate some formulas from the last slide:

h = 2 + ε h̄ = ε 〈OM (z, z̄)OM (0, 0)〉 =
B̂

z4+2εz̄2ε
+ . . .

bL := lim
cL→0

−cL
ε
6= 0 B := lim

cL→0

(
B̂ +

2

cL

)
Define a new operator Olog that linearly combines OL/M .

Olog = bL
OL

cL
+
bL
2
OM

Taking the limit cL → 0 leads to the following 2-point correlators:

〈OL(z)OL(0, 0)〉 = 0

〈OL(z)Olog(0, 0)〉 =
bL
2z4

〈Olog(z, z̄)Olog(0, 0)〉 = −
bL ln (m2

L|z|2)

z4

“New anomaly” bL characterizes LCFT
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Conformal Ward identities

Like in ordinary CFTs, conformal Ward identities determine essentially
uniquely the form of 2- and 3-point correlators (set mL = 1)

〈OL(z)OL(0, 0)〉 = 0

〈OL(z)Olog(0, 0)〉 =
bL
2z4

〈Olog(z, z̄)Olog(0, 0)〉 = −bL ln (|z|2)

z4

〈OL(z, z̄)OL(z′, z̄′)Olog(0, 0)〉 =
bL

z2z′2(z − z′)2

〈OL(z, z̄)Olog(z′, z̄′)Olog(0, 0)〉 = −
2bL ln |z′|2 + bL

2

z2z′2(z − z′)2

〈Olog(z, z̄)Olog(z′, z̄′)Olog(0, 0)〉 =
lengthy

z2z′2(z − z′)2
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Requirements for gravity duals to LCFTs

Checks for purported gravity duals to logarithmic CFTs

I There exists some bulk mode corresponding to the operator Olog

I Weights of Olog must degenerate with weights of OL

I Jordan cell structure of H ∼ L0 + L̄0 with respect to OL, Olog

I Central charges must be tunable to zero by some parameter

I Gravity theory should exhibit non-unitarity

I Conformal Ward identities must hold

Cannot be Einstein gravity!

Consider theories that naturally generalize Einstein gravity:

Massive gravity in three dimensions
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Action and equations of motion of topologically massive gravity (TMG)

Consider the action (Deser, Jackiw & Templeton ’82)

ITMG =
1

16πG

∫
d3x
√
−g
[
R+

2

`2
+

1

2µ
ελµν Γρλσ

(
∂µΓσνρ +

2

3
ΓσµτΓτ νρ

)]

Equations of motion:

Rµν −
1

2
gµνR−

1

`2
gµν +

1

µ
Cµν = 0

with the Cotton tensor defined as

Cµν =
1

2
εµ
αβ∇αRβν + (µ↔ ν)

I Massive gravitons and black holes

I AdS solutions and asymptotic AdS solutions

I warped AdS solutions and warped AdS black holes

I Schrödinger solutions and Schrödinger pp-waves

Some properties of TMG
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TMG at the chiral point

Definition: TMG at the chiral point is TMG with the tuning

µ ` = 1

between the cosmological constant and the Chern–Simons coupling.

Why special? (Li, Song & Strominger ’08)
Calculating the central charges of the dual boundary CFT yields

cL =
3`

2G

(
1− 1

µ `

)
cR =

3`

2G

(
1 +

1

µ `

)
Thus, at the chiral point we get

cL = 0 cR =
3`

G

I Dual CFT: chiral? (conjecture by Li, Song & Strominger ’08)

I Dual CFT: logarithmic? (conjecture by Grumiller & Johansson ’08)
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Gravitons around AdS3 in TMG

Linearization around AdS background.

gµν = ḡµν + hµν

leads to linearized EOM that are third order PDE

G(1)
µν +

1

µ
C(1)
µν = (DRDLDMh)µν = 0 (1)

with three mutually commuting first order operators

(DL/R)µ
ν = δνµ ± ` εµαν∇̄α (DM )µ

ν = δνµ +
1

µ
εµ
αν∇̄α

Three linearly independent solutions to (1):(
DLhL

)
µν

= 0
(
DRhR

)
µν

= 0
(
DMhM

)
µν

= 0

At chiral point left (L) and massive (M) branches coincide!
First hint that logarithmic CFT could emerge!
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The logarithmic graviton mode
Grumiller & Johansson ’08

Standard construction:

hlog
µν = lim

µ`→1

hMµν(µ`)− hLµν
µ`− 1

with property(
DLhlog

)
µν

=
(
DMhlog

)
µν
6= 0 ,

(
(DL)2hlog

)
µν

= 0

Log mode leads to Jordan cell structure like in LCFT:

H

(
hlog

hL

)
=

(
2 1
0 2

)(
hlog

hL

)
H = L0 + L̄0 ∼ ∂t is Hamilton operator
Motivates LCFT conjecture
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Topologically massive gravity

Logarithmic CFT conjecture

Consequences, Generalizations & Applications
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Early hints for legitimacy of conjecture

Properties of logarithmic mode:

I Perturbative solution of linearized EOM, but not pure gauge
I Energy of logarithmic mode is finite

Elog = − 47

1152G`3

and negative → instability! (Grumiller & Johansson ’08)
I Logarithmic mode is asymptotically AdS

ds2 = dρ2 +
(
γ

(0)
ij e

2ρ/` + γ
(1)
ij ρ+ γ

(0)
ij + γ

(2)
ij e

−2ρ/` + . . .
)

dxi dxj

but violates Brown–Henneaux boundary conditions! (γ
(1)
ij

∣∣
BH

= 0)
I Consistent log boundary conditions replacing Brown–Henneaux

(Grumiller & Johansson ’08, Martinez, Henneaux & Troncoso ’09)
I Brown–York stress tensor is finite and traceless, but not chiral
I Log mode persists non-perturbatively, as shown by Hamilton analysis

(Grumiller, Jackiw & Johansson ’08, Carlip ’08)
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Reminder: Requirements for gravity duals to LCFTs

Checks for purported gravity duals to logarithmic CFTs

I There exists some bulk mode corresponding to the operator Olog OK

I Weights of Olog must degenerate with weights of OL OK

I Jordan cell structure of H ∼ L0 + L̄0 with respect to OL, Olog OK

I Central charges must be tunable to zero by some parameter OK

I Gravity theory should exhibit non-unitarity OK

I Conformal Ward identities must hold ???

Topologically massive gravity looks promising
as candidate for a gravity dual to a logarithmic CFT!
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Check of logarithmic CFT conjecture for 2- and 3-point correlators

If LCFT conjecture is correct then following procedure must work:

I Calculate non-normalizable modes for left, right and logarithmic
branches by solving linearized EOM on gravity side

I According to AdS3/LCFT2 dictionary these non-normalizable modes
are sources for corresponding operators in the dual CFT

I Calculate 2- and 3-point correlators on the gravity side, e.g. by
plugging non-normalizable modes into second and third variation of
the on-shell action

I These correlators must coinicde with the ones of a logarithmic CFT

Except for value of new anomaly bL no freedom in this procedure.
Either it works or it does not work.

I Works at level of 2-point correlators (Skenderis, Taylor & van Rees
’09, Grumiller & Sachs ’09)

I Works at level of 3-point correlators (Grumiller & Sachs ’09)
I Value of new anomaly: bL = −cR = −3`/G
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Alternative calculation of new anomaly bL

As final consistency check perform the following short-cut.

I Consider small but non-vanising central charge cL
I Then weights h = 2 + ε and h̄ = ε of massive modes differ

infinitesimally from weights 2 and 0 of left mode
I The new anomaly is given by the ratio of these two small quantities

bL = lim
ε→0
−cL
ε

I Result obtained in this way must coincide with result for bL from the
2- and 3-point correlators

Recover the result (Grumiller & Hohm ’09, Grumiller, Johansson &
Zojer, to appear)

bL = −3`

G

Conclusion: all consistency tests show validity of LCFT conjecture!
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Outline

Motivation for 3D massive gravity and introduction to LCFTs

Topologically massive gravity

Logarithmic CFT conjecture

Consequences, Generalizations & Applications
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Summary and comments

TMG at the chiral/logarithmic point µ` = 1:

I 3D gravity theory with black holes and massive graviton excitations

I Conjectured to be dual to logarithmic CFT

I Conjecture passed several independent consistency tests

I Non-trivial Jordan cell structure on gravity side, like in LCFT

I Operator degenerates with energy-momentum tensor at the point
where central charge vanishes → good indication for a LCFT

I Correlators on gravity side match precisely those of LCFT

I Central charges: cL = 0, cR = 3`/G, new anomaly: bL = −3`/G

I LCFTs non-unitary ↔ bulk gravitons negative energy

I LCFTs cannot be chiral ↔ Brown–York stress tensor not chiral

If conjecture true: first example of AdS3/LCFT2 correspondence!

Note: 1-loop calculations with Vassilevich ’10 provide further indication
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Generalizations to new massive gravity and generalized massive gravity

New massive gravity (Bergshoeff, Hohm & Townsend ’09):

INMG =
1

16πG

∫
d3x
√
−g
[
σR+

1

m2

(
RµνRµν −

3

8
R2

)
− 2λm2

]
Similar story (Grumiller & Hohm ’09, Alishahiha & Naseh ’10):

I Linearized EOM around AdS3 (g = ḡ + h)(
DRDLDMDM̄h

)
µν

= 0

I Logarithmic point for λ = 3: cL = cR = 0

I Massive modes degenerate with left and right boundary gravitons

I 2-point correlators on gravity side match precisely those of a LCFT

I New anomalies: bL = bR = −σ12`/G

Further generalizations: Higher derivative theories (Sinha ’10, Paulos ’10):
similar story seems likely (but potentially with higher order Jordan cells)

D. Grumiller — AdS3/LCFT2 correspondence Consequences, Generalizations & Applications 21/24



Generalizations to new massive gravity and generalized massive gravity

New massive gravity (Bergshoeff, Hohm & Townsend ’09):

INMG =
1

16πG

∫
d3x
√
−g
[
σR+

1

m2

(
RµνRµν −

3

8
R2

)
− 2λm2

]
Similar story (Grumiller & Hohm ’09, Alishahiha & Naseh ’10):

I Linearized EOM around AdS3 (g = ḡ + h)(
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Potential applications in condensed matter physics

LCFTs arise in systems with quenched disorder.

I Quenched disorder: systems with random variable that does not
evolve in time

I Examples: spin glasses, quenched random magnets, ...

I For sufficient amount of disorder perturbation theory breaks down —
random critical point

I Infamous denominator in correlators:

〈O(z)O(0)〉 =

∫
DV P [V ]

∫
Dφ exp

(
− I[φ]−

∫
d2z′V (z′)O(z′)

)
O(z)O(0)∫

Dφ exp
(
− I[φ]−

∫
d2z′V (z′)O(z′)

)
I Different ways to deal with denominator (replica trick, SUSY)

I Result: operators degenerate and correlators acquire logarithmic
behavior, exactly as in LCFT (Cardy ’99)

I Exploit LCFTs to compute correlators of quenched random systems

I Apply AdS3/LCFT2 to describe strongly coupled LCFTs!
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Thanks for your attention!
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