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Statement of the main result

Hot flat space (ϕ ∼ ϕ+ 2π)

ds2 = ±dt2 + dr2 + r2 dϕ2
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Statement of the main result

Hot flat space (ϕ ∼ ϕ+ 2π)

ds2 = ±dt2 + dr2 + r2 dϕ2

ds2 = ±dτ2 +
(Eτ)2 dx2

1 + (Eτ)2
+
(
1 + (Eτ)2

) (
dy +

(Eτ)2

1 + (Eτ)2
dx
)2

Flat space cosmology (y ∼ y + 2πr0)
Bagchi, Detournay, Grumiller & Simon ’13
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Motivation for studying gravity in 2 and 3 dimensions

I Quantum gravity
I Address conceptual issues of quantum gravity
I Black hole evaporation, information loss, black hole microstate

counting, virtual black hole production, ...
I Technically much simpler than 4D or higher D gravity
I Integrable models: powerful tools in physics
I Models should be as simple as possible, but not simpler

I Gauge/gravity duality + indirect physics applications
I Deeper understanding of black hole holography
I AdS3/CFT2 correspondence best understood
I Quantum gravity via AdS/CFT
I Applications to 2D condensed matter systems
I Gauge gravity duality beyond standard AdS/CFT: warped AdS, Lifshitz,

Schrödinger, non-relativistic or log CFTs, higher spin holography ...
I Flat space holography

I Direct physics applications
I Cosmic strings
I Black hole analog systems in condensed matter physics
I Effective theory for gravity at large distances
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Holographic algorithm from gravity point of view

Universal recipe:

1. Identify bulk theory and variational principle
Example: Einstein gravity with Dirichlet boundary conditions

I = − 1

16πGN

∫
d3x
√
|g|
(
R+

2

`2
)

with δg = fixed at the boundary

2. Fix background and impose suitable boundary conditions
3. Perform canonical analysis and check consistency of bc’s
4. Derive (classical) asymptotic symmetry algebra and central charges
5. Improve to quantum ASA
6. Study unitary representations of quantum ASA
7. Identify/constrain dual field theory
8. If unhappy with result go back to previous items and modify

Apply algorithm above to flat space holography in 3D gravity

Goal of this talk:
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Universal recipe:

1. Identify bulk theory and variational principle
2. Fix background and impose suitable boundary conditions

Example: asymptotically AdS

ds2 = dρ2 +
(
e2ρ/` γ

(0)
ij + γ

(2)
ij + . . .

)
dxi dxj

with δγ(0) = 0 for ρ→∞
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Holographic algorithm from gravity point of view

Universal recipe:

1. Identify bulk theory and variational principle
2. Fix background and impose suitable boundary conditions
3. Perform canonical analysis and check consistency of bc’s

Example: Brown–Henneaux analysis for 3D Einstein gravity

{Q[ε], Q[η]} = δεQ[η]

with

Q[ε] ∼
∮

dϕL(ϕ)ε(ϕ)

and

δεL = −L ε− 2L ε′ − `

16πGN
ε′′′
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Holographic algorithm from gravity point of view

Universal recipe:

1. Identify bulk theory and variational principle
2. Fix background and impose suitable boundary conditions
3. Perform canonical analysis and check consistency of bc’s
4. Derive (classical) asymptotic symmetry algebra and central charges

Example: Two copies of Virasoro algebra

[Ln, Lm] = (n−m)Ln+m +
c

12
(n3 − n) δn+m, 0

with Brown–Henneaux central charge

c =
3`

2GN
Reminder: ASA = quotient algebra of asymptotic symmetries by
‘trivial’ asymptotic symmetries with zero canonical charges
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Holographic algorithm from gravity point of view

Universal recipe:

1. Identify bulk theory and variational principle
2. Fix background and impose suitable boundary conditions
3. Perform canonical analysis and check consistency of bc’s
4. Derive (classical) asymptotic symmetry algebra and central charges
5. Improve to quantum ASA

Example: semi-classical ASA in spin-3 gravity (Henneaux, Rey ’10;
Campoleoni, Pfenninger, Fredenhagen, Theisen ’10)

[Wn, Wm] =
16

5c

∑
p

LpLn+m−p + . . .

quantum ASA

[Wn, Wm] =
16

5c+ 22

∑
p

: LpLn+m−p : + . . .

6. Study unitary representations of quantum ASA
7. Identify/constrain dual field theory
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Holographic algorithm from gravity point of view

Universal recipe:

1. Identify bulk theory and variational principle
2. Fix background and impose suitable boundary conditions
3. Perform canonical analysis and check consistency of bc’s
4. Derive (classical) asymptotic symmetry algebra and central charges
5. Improve to quantum ASA
6. Study unitary representations of quantum ASA

Example:

0.0 0.2 0.4 0.6 0.8 1.0
Α0

5

10

15

20

25

c

Afshar et al ’12
Discrete set of Newton
constant values compatible
with unitarity
(3D spin-N gravity in
next-to-principal embedding)
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Holographic algorithm from gravity point of view

Universal recipe:

1. Identify bulk theory and variational principle
2. Fix background and impose suitable boundary conditions
3. Perform canonical analysis and check consistency of bc’s
4. Derive (classical) asymptotic symmetry algebra and central charges
5. Improve to quantum ASA
6. Study unitary representations of quantum ASA
7. Identify/constrain dual field theory

Example: Monster CFT in (flat space) chiral gravity
Witten ’07
Li, Song & Strominger ’08
Bagchi, Detournay & Grumiller ’12

Z(q) = J(q) =
1

q
+ (1 + 196883) q +O(q2)

Note: ln 196883 ≈ 12.2 = 4π + quantum corrections
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5. Improve to quantum ASA
6. Study unitary representations of quantum ASA
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Examples: too many!

Apply algorithm above to flat space holography in 3D gravity
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Flat space from contraction of AdS

Idea: take `→∞ limit of AdS results!

I Works straightforwardly sometimes, otherwise not
I Example where it works nicely: asymptotic symmetry algebra
I Take linear combinations of Virasoro generators Ln, L̄n

Ln = Ln − L̄−n Mn =
1

`

(
Ln + L̄−n

)
I Make Inönü–Wigner contraction `→∞ on ASA

[Ln, Lm] = (n−m)Ln+m +
cL
12

(n3 − n) δn+m, 0

[Ln, Mm] = (n−m)Mn+m +
cM
12

(n3 − n) δn+m, 0

[Mn, Mm] = 0

I This is nothing but the BMS3 algebra (or GCA2)!
Ashtekar, Bicak & Schmidt ’96

I Example where it does not work easily: boundary conditions!
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Apply algorithm just described

1. Identify bulk theory and variational principle
Topologically massive gravity with mixed boundary conditions

I = IEH +
1

32πGµ

∫
d3x
√
−g ελµν Γρλσ

(
∂µΓσνρ +

2

3
ΓσµτΓτ νρ

)
with δg = fixed and δKL = fixed at the boundary
Deser, Jackiw & Templeton ’82

2. Fix background and impose suitable boundary conditions
3. Perform canonical analysis and check consistency of bc’s
4. Derive (classical) asymptotic symmetry algebra and central charges
5. Improve to quantum ASA
6. Study unitary representations of quantum ASA
7. Identify/constrain dual field theory
8. If unhappy with result go back to previous items and modify

What about non-perturbative states analogue to BTZ black holes?
Where/what are they in flat space (chiral) gravity?

But...:
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Apply algorithm just described

1. Identify bulk theory and variational principle
2. Fix background and impose suitable boundary conditions

asymptotically flat adapted to lightlike infinity (ϕ ∼ ϕ+ 2π)

ds̄2 = −du2 − 2 dudr + r2 dϕ2

guu = huu +O(1
r )

gur = −1 + hur/r +O( 1
r2 )

guϕ = huϕ +O(1
r )

grr = hrr/r
2 +O( 1

r3 )

grϕ = h1(ϕ) + hrϕ/r +O( 1
r2 )

gϕϕ = r2 + (h2(ϕ) + uh3(ϕ))r +O(1)

Barnich & Compere ’06
Bagchi, Detournay & Grumiller ’12

3. Perform canonical analysis and check consistency of bc’s
4. Derive (classical) asymptotic symmetry algebra and central charges
5. Improve to quantum ASA
6. Study unitary representations of quantum ASA
7. Identify/constrain dual field theory
8. If unhappy with result go back to previous items and modify

What about non-perturbative states analogue to BTZ black holes?
Where/what are they in flat space (chiral) gravity?

But...:
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Apply algorithm just described

1. Identify bulk theory and variational principle
2. Fix background and impose suitable boundary conditions
3. Perform canonical analysis and check consistency of bc’s

Obtain canonical boundary charges

QMn =
1

16πG

∫
dϕeinϕ

(
huu + h3

)
QLn =

1

16πGµ

∫
dϕeinϕ

(
huu + ∂uhur + 1

2∂
2
uhrr + h3

)
+

1

16πG

∫
dϕeinϕ

(
inuhuu + inhur + 2huϕ + ∂uhrϕ

− (n2 + h3)h1 − inh2 − in∂ϕh1

)
Bagchi, Detournay & Grumiller ’12
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6. Study unitary representations of quantum ASA
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Apply algorithm just described

1. Identify bulk theory and variational principle
2. Fix background and impose suitable boundary conditions
3. Perform canonical analysis and check consistency of bc’s
4. Derive (classical) asymptotic symmetry algebra and central charges

[Ln, Lm] = (n−m)Ln+m +
cL
12

(n3 − n) δn+m, 0

[Ln, Mm] = (n−m)Mn+m +
cM
12

(n3 − n) δn+m, 0

[Mn, Mm] = 0

with central charges

cL =
3

µG
cM =

3

G

Note:
I cL = 0 in Einstein gravity
I cM = 0 in conformal Chern–Simons gravity (µ→ 0, µG = 1

8k )
Flat space chiral gravity!
Bagchi, Detournay & Grumiller ’12

5. Improve to quantum ASA
6. Study unitary representations of quantum ASA
7. Identify/constrain dual field theory
8. If unhappy with result go back to previous items and modify

What about non-perturbative states analogue to BTZ black holes?
Where/what are they in flat space (chiral) gravity?

But...:
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Apply algorithm just described

1. Identify bulk theory and variational principle

2. Fix background and impose suitable boundary conditions

3. Perform canonical analysis and check consistency of bc’s

4. Derive (classical) asymptotic symmetry algebra and central charges

5. Improve to quantum ASA
Trivial here

6. Study unitary representations of quantum ASA

7. Identify/constrain dual field theory

8. If unhappy with result go back to previous items and modify

What about non-perturbative states analogue to BTZ black holes?
Where/what are they in flat space (chiral) gravity?

But...:
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Apply algorithm just described

1. Identify bulk theory and variational principle
2. Fix background and impose suitable boundary conditions
3. Perform canonical analysis and check consistency of bc’s
4. Derive (classical) asymptotic symmetry algebra and central charges
5. Improve to quantum ASA
6. Study unitary representations of quantum ASA

I Straightforward in flat space chiral gravity
I Difficult/impossible otherwise

7. Identify/constrain dual field theory
8. If unhappy with result go back to previous items and modify
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Apply algorithm just described

1. Identify bulk theory and variational principle
2. Fix background and impose suitable boundary conditions
3. Perform canonical analysis and check consistency of bc’s
4. Derive (classical) asymptotic symmetry algebra and central charges
5. Improve to quantum ASA
6. Study unitary representations of quantum ASA
7. Identify/constrain dual field theory

Monster CFT in flat space chiral gravity
Witten ’07
Li, Song & Strominger ’08
Bagchi, Detournay & Grumiller ’12

Z(q) = J(q) =
1

q
+ (1 + 196883) q +O(q2)

Note: ln 196883 ≈ 12.2 = 4π + quantum corrections

8. If unhappy with result go back to previous items and modify
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Flat space cosmologies (Cornalba & Costa ’02)

I Start with BTZ in AdS:

ds2 = −
(r2 −R2

+)(r2 − r2
−)

r2`2
dt2+

r2`2 dr2

(r2 −R2
+)(r2 − r2

−)
+r2

(
dϕ−R+r−

`r2
dt
)2

I Consider region between the two horizons r− < r < R+

I Take the `→∞ limit (with R+ = `r̂+ and r− = r0)

ds2 = r̂2
+

(
1− r2

0

r2

)
dt2 − r2 dr2

r̂2
+ (r2 − r2

0)
+ r2

(
dϕ− r̂+r0

r2
dt
)2

I Go to Euclidean signature (t = iτE , r̂+ = −ir+)

ds2 = r2
+

(
1− r2

0

r2

)
dτ2

E +
r2 dr2

r2
+ (r2 − r2

0)
+ r2

(
dϕ− r+r0

r2
dτE

)2
I Note peculiarity: no conical singularity, but asymptotic conical defect!

Is FSC or HFS the preferred Euclidean saddle?

Question we want to address:
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0

r2

)
dτ2

E +
r2 dr2

r2
+ (r2 − r2

0)
+ r2

(
dϕ− r+r0

r2
dτE

)2
I Note peculiarity: no conical singularity, but asymptotic conical defect!

Is FSC or HFS the preferred Euclidean saddle?
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Euclidean path integral

Evaluate Euclidean partition function in semi-classical limit

Z(T, Ω) =

∫
Dg e−Γ[g] =

∑
gc

e−Γ[gc(T,Ω)] × Zfluct.

boundary conditions specified by temperature T and angular velocity Ω

Two Euclidean saddle points in same ensemble if

I same temperature T and angular velocity Ω

I obey flat space boundary conditions

I solutions without conical singularities

HFS:
(τE , ϕ) ∼ (τE + β, ϕ+ βΩ) ∼ (τE , ϕ+ 2π)

FSC:
(τE , ϕ) ∼ (τE + β, ϕ+ βΩ) ∼ (τE , ϕ+ 2π)
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Results

On-shell action (1/2 Gibbons–Hawking–York boundary term!):

Γ = − 1

16πGN

∫
d3x
√
g R− 1

16πGN

∫
d2x
√
γ K

=− 1

16πGN

∫
d2x
√
γ K

Free energy:

FHFS = − 1

8GN
FFSC = − r+

8GN

I r+ > 1: FSC dominant saddle

I r+ < 1: HFS dominant saddle

Critical temperature:

Tc =
1

2πr0
=

Ω

2π
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Discussion and generalization

I Free energy of FSC: F (T, Ω) = − πT
4GNΩ

I Entropy: S = 2πr0
4GN

(BH area law)

I First law: dF = −S dT − J dΩ

I Some unusual signs reminiscent of inner horizon black hole mechanics

I Critical temperature: self-dual point (w.r.t. flat-space “S-trafo”)

I Generalization to TMG straightforward

I Consistency with flat space chiral gravity Cardy formula:

S = 2π
√

ch
6 = 4π kr+

I Non-negative specific heat

I Generalizations: should be easy to consider NMG, GMG, ... in 3D

I Higher dimensions?
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Summary of the main result

Hot flat space (ϕ ∼ ϕ+ 2π)

ds2 = dt2 + dr2 + r2 dϕ2

ds2 = dτ2 +
(Eτ)2 dx2

1 + (Eτ)2
+
(
1 + (Eτ)2

) (
dy +

(Eτ)2

1 + (Eτ)2
dx
)2

Flat space cosmology (y ∼ y + 2πr0)

Daniel Grumiller — Flat space holography Novel result: Cosmic phase transition 16/18



Literature

S. Detournay, D. Grumiller, F. Schöller and J. Simon, “Variational
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Appendix: Coordinate transformation to Cornalba–Costa line-element

FSC in BTZ coordinates:

ds2 = r̂2
+

(
1− r2

0

r2

)
dt2 − r2 dr2

r̂2
+ (r2 − r2

0)
+ r2

(
dϕ− r̂+r0

r2
dt
)2

Coordinate trafo:

r̂+t = −x
r0ϕ = x+ y

(r/r0)2 = 1 + (Eτ)2

E = r̂+/r0

FSC in CC coordinates:

ds2 = −dτ2 +
(Eτ)2 dx2

1 + (Eτ)2
+
(
1 + (Eτ)2

) (
dy +

(Eτ)2

1 + (Eτ)2
dx
)2
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