Quantum Dilaton Gravity with Fermions

René Meyer

Institute for Theoretical Physics
University of Leipzig, Germany

March 23rd, 2006
Outline

1. First Order Gravity with Matter
 - First Order Gravity
 - Fermions
 - Non-linear gauge theory

2. Quantizing Gravity
 - Three steps to Quantized Gravity
 - The effective action

3. Matter perturbation theory
 - 1-Loop effects
 - 4-Point Vertices & Virtual Black Holes

4. Conclusions & Outlook
Outline

1. First Order Gravity with Matter
 - First Order Gravity
 - Fermions
 - Non-linear gauge theory

2. Quantizing Gravity
 - Three steps to Quantized Gravity
 - The effective action

3. Matter perturbation theory
 - 1-Loop effects
 - 4-Point Vertices & Virtual Black Holes

4. Conclusions & Outlook
First Order Gravity

\[S_{\text{FOG}} = \int X^a (De)_a + X \, d\omega + \epsilon (X^+ X^- U(X) + V(X)) \]

- Classically equivalent to 2D Dilaton Gravity
- Exactly solvable (P\(\sigma\)M)
- Absolute conserved quantity: \(dC(g) = 0\)

\[C(g) = e^{Q(X)} X^+ X^- + w(X) \]

\[Q(X) = \int X U(y) \, dy, \quad w(X) = \int e^{Q(y)} V(y) \, dy \]

\[\Gamma[\langle e^a, \omega, X^a, X \rangle] = S_{\text{FOG}}[\langle e^a, \omega, X^a, X \rangle] \]

<table>
<thead>
<tr>
<th>Model</th>
<th>$U(X)$</th>
<th>$V(X)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schwarzschild</td>
<td>$-\frac{1}{2X}$</td>
<td>$-\frac{\lambda^2}{2}$</td>
</tr>
<tr>
<td>SRG (generic $D > 3$)</td>
<td>$-\frac{D-3}{(D-2)X}$</td>
<td>$-\lambda^2 X^{(D-4)/(D-2)}$</td>
</tr>
<tr>
<td>Jackiw-Teitelboim</td>
<td>0</td>
<td>$-\Lambda X$</td>
</tr>
<tr>
<td>Witten BH/CGHS</td>
<td>$-\frac{1}{X}$</td>
<td>$-2\lambda^2 X$</td>
</tr>
<tr>
<td>(A)dS ground state</td>
<td>$-\frac{a}{X}$</td>
<td>$-\frac{B}{2}X$</td>
</tr>
<tr>
<td>Rindler ground state</td>
<td>$-\frac{a}{X}$</td>
<td>$-\frac{B}{2}Xa$</td>
</tr>
<tr>
<td>BH attractor</td>
<td>0</td>
<td>$-\frac{B}{2}X^{-1}$</td>
</tr>
<tr>
<td>All above: ab-family</td>
<td>$-\frac{a}{X}$</td>
<td>$-\frac{B}{2}X^{a+b}$</td>
</tr>
<tr>
<td>Reissner-Nordström</td>
<td>$-\frac{1}{2X}$</td>
<td>$-\lambda^2 + \frac{Q^2}{X}$</td>
</tr>
<tr>
<td>Schwarzschild-(A)dS</td>
<td>$-\frac{1}{2X}$</td>
<td>$-\lambda^2 - \ell X$</td>
</tr>
<tr>
<td>Katanaev-Volovich</td>
<td>α</td>
<td>$\beta X^2 - \Lambda$</td>
</tr>
<tr>
<td>KK reduced CS</td>
<td>0</td>
<td>$\frac{1}{2}X(c - X^2)$</td>
</tr>
<tr>
<td>Symmetric kink</td>
<td>generic</td>
<td>$-X\prod_{i=1}^{n}(X^2 - X_i^2)$</td>
</tr>
<tr>
<td>2D type 0A/0B</td>
<td>$-\frac{1}{X}$</td>
<td>$-2\lambda^2 X + \frac{\lambda^2 q^2}{8\pi}$</td>
</tr>
<tr>
<td>ESBH</td>
<td>\Rightarrow</td>
<td>solved</td>
</tr>
</tbody>
</table>

\Rightarrow René Meyer (University of Leipzig)
Fermions

\[S_\chi = \frac{i}{2} \int F(X) (*e^a) \wedge (\bar{\chi} \gamma^a \d x) + \int \epsilon H(X) \left(m\bar{\chi}\chi + \lambda (\bar{\chi}\chi)^2 \right) \]

- Spin connection \(\omega \) drops out in D=2.
- Exact solutions for chiral fermions exist, but integrability is lost in general.
- Absolute conservation law: \(0 = d(C^{(g)} + C^{(m)}) \)

\[dC^{(m)} = e^Q(X) \left(X^+ \frac{\delta S_\chi}{\delta e^+} + X^- \frac{\delta S_\chi}{\delta e^-} \right) \]

- 4D minimally coupled Dirac fermions \(\rightarrow \) 2 Dirac Fermions in 2D + intertwiner term
FOG as Non-linear gauge theory

- The system is invariant under: Local SO(1,1) γ, diffeos ξ^μ
- Generated by three 1st class constraints $G_i \approx 0$, $i = 1, 2, 3$
- Hamiltonian Constraint: $\mathcal{H} = - \sum_{i=1}^{3} \bar{q}^i G_i$, $\bar{q}^i = (\omega_0, e^0_-, e^0_+)$
- Symmetry algebra:

 \[
 \{ G_i, G'_i \}^* = 0 \quad \{ G_1, G'_{2/3} \}^* = \mp G_{2/3} \delta
 \]

\[
\{ G_2, G'_3 \}^* = \left[- \sum_{i=1}^{3} \frac{d\gamma}{dp_i} G_i + \left(gH' - \frac{H}{F} F' g' \cdot (\bar{\chi}\chi) \right) G_1 \right] \delta
\]

with $g(\bar{\chi}\chi) = m\bar{\chi}\chi + \lambda(\bar{\chi}\chi)^2$, $g'(\bar{\chi}\chi) = \frac{\partial g}{\partial (\bar{\chi}\chi)}$, $p_i = (\omega_1, e^-_1, e^+_1)$.

- 2nd class constraints: Relate χ to canonical conjugate momentum
FOG as Non-linear gauge theory

- The system is invariant under: Local SO(1,1) γ, diffeos ξ^μ
- Generated by three 1^{st} class constraints $G_i \approx 0$, $i = 1, 2, 3$
- Hamiltonian Constraint: $\mathcal{H} = - \sum_{i=1}^{3} \bar{q}^i G_i$, $\bar{q}^i = (\omega_0, e^-_0, e^+_0)$
- Symmetry algebra:
 \[
 \{ G_i, G'_i \}^* = 0 \quad \quad \{ G_1, G'_{2/3} \}^* = \mp G_{2/3} \delta
 \]
 \[
 \{ G_2, G'_3 \}^* = \left[- \sum_{i=1}^{3} \frac{d\gamma}{dp_i} G_i + \left(gH' - \frac{H}{F} F' g' \cdot (\bar{\chi}\chi) \right) G_1 \right] \delta
 \]
 with $g(\bar{\chi}\chi) = m\bar{\chi}\chi + \lambda(\bar{\chi}\chi)^2$, $g'(\bar{\chi}\chi) = \frac{\partial g}{\partial(\bar{\chi}\chi)}$, $p_i = (\omega_1, e^-_1, e^+_1)$.
- 2^{nd} class constraints: Relate χ to canonical conjugate momentum
FOG as Non-linear gauge theory

- The system is invariant under: Local SO(1,1) γ, diffeos ξ^μ
- Generated by three 1st class constraints $G_i \approx 0, \ i = 1, 2, 3$
- Hamiltonian Constraint: $\mathcal{H} = -\sum_{i=1}^{3} \bar{q}^i G_i, \ \ \ \bar{q}^i = (\omega_0, e^-_0, e^+_0)$
- Symmetry algebra:
 \[
 \{ G_i, G'_i \}^* = 0 \\
 \{ G_1, G'_{2/3} \}^* = \mp G_{2/3} \delta
 \]

\[
 \{ G_2, G'_3 \}^* = \left[-\sum_{i=1}^{3} \frac{d\gamma}{dp_i} G_i + \left(gH' - \frac{H}{F} F' g' \cdot (\bar{\chi}\chi) \right) G_1 \right] \delta
 \]

with $g(\bar{\chi}\chi) = m\bar{\chi}\chi + \lambda(\bar{\chi}\chi)^2, \ g'(\bar{\chi}\chi) = \frac{dg}{d(\bar{\chi}\chi)}, \ p_i = (\omega_1, e^-_1, e^+_1)$.

- 2nd class constraints: Relate χ to canonical conjugate momentum
FOG as Non-linear gauge theory

- The system is invariant under: Local SO(1,1) γ, diffeos ξ^μ
- Generated by three 1st class constraints $G_i \approx 0$, $i = 1, 2, 3$
- Hamiltonian Constraint: $\mathcal{H} = -\sum_{i=1}^{3} \bar{q}^i G_i$, $\bar{q}^i = (\omega_0, e_0^-, e_0^+)$
- Symmetry algebra:

\[
\left\{ G_i, G'_j \right\}^* = 0 \quad \left\{ G_1, G'_{2/3} \right\}^* = \mp G_{2/3} \delta
\]

\[
\left\{ G_2, G'_3 \right\}^* = \left[-\sum_{i=1}^{3} \frac{d\mathcal{V}}{dp_i} G_i + \left(gH' - \frac{H}{F} F' g' \cdot (\bar{\chi}\chi) \right) G_1 \right] \delta
\]

with $g(\bar{\chi}\chi) = m\bar{\chi}\chi + \lambda(\bar{\chi}\chi)^2$, $g'(\bar{\chi}\chi) = \frac{dg}{\partial(\bar{\chi}\chi)}$, $p_i = (\omega_1, e_1^-, e_1^+)$.

- 2nd class constraints: Relate χ to canonical conjugate momentum
FOG as Non-linear gauge theory

- The system is invariant under: Local SO(1,1) \(\gamma \), diffeos \(\xi^\mu \)
- Generated by three 1st class constraints \(G_i \approx 0, \ i = 1, 2, 3 \)
- Hamiltonian Constraint: \(\mathcal{H} = -\sum_{i=1}^{3} \bar{q}^i G_i \), \(\bar{q}^i = (\omega_0, e_0^-, e_0^+) \)
- Symmetry algebra:
 \[
 \{ G_i, G'_j \}^* = 0 \quad \{ G_1, G'_{2/3} \}^* = \mp G_{2/3} \delta
 \]

\[
\{ G_2, G'_3 \}^* = \left[-\sum_{i=1}^{3} \frac{d \nu}{d \rho_i} G_i + \left(g H' - \frac{H}{F} F' g' \cdot (\bar{\chi} \chi) \right) G_1 \right] \delta
\]

with \(g(\bar{\chi} \chi) = m \bar{\chi} \chi + \lambda (\bar{\chi} \chi)^2, \ g'(\bar{\chi} \chi) = \frac{\partial g}{\partial (\bar{\chi} \chi)} \), \(\rho_i = (\omega_1, e_1^-, e_1^+) \).

- 2nd class constraints: Relate \(\chi \) to canonical conjugate momentum
Quantizing Gravity

Outline

1. First Order Gravity with Matter
 - First Order Gravity
 - Fermions
 - Non-linear gauge theory

2. Quantizing Gravity
 - Three steps to Quantized Gravity
 - The effective action

3. Matter perturbation theory
 - 1-Loop effects
 - 4-Point Vertices & Virtual Black Holes

4. Conclusions & Outlook
Three steps to Quantized Gravity

1. Ghosts \((c^i, p^c_j)\) for the \(G_i\), BRST charge \(\Omega = c^i G_i + \frac{1}{2} c^i c^j C^k_{ij} p^c_k\) terminates at Yang-Mills level

2. Fix EF gauge \((\omega_0, e^-_0, e^+_0) = (0, 1, 0)\): \(g_{\mu\nu} = e^+_1 \begin{pmatrix} 0 & 1 \\ 1 & 2e^-_1 \end{pmatrix}\)

3. Path integration:

\[
\mathcal{D}c^i \mathcal{D}p^c_i \rightarrow \mathcal{D}P_\chi \delta(\Phi_\alpha) \rightarrow \mathcal{D}(\omega_1, e^-_1, e^+_1) \rightarrow \mathcal{D}(X, X^+, X^-) \rightarrow \mathcal{D}(\hat{X}, \hat{X}^+, \hat{X}^-)
\]

\[
\text{Det}M \quad \text{trivial} \quad \delta(\text{EOM}(X, X^+X^-)) \quad (\text{Det}M)^{-1}
\]

\[
\partial_0 X = j_1 + X^+
\]

\[
\partial_0 X^+ = j_2 - \frac{i}{\sqrt{2}} F(X) (\chi^*_1 \partial_0 \chi_1)
\]

\[
(\partial_0 + U(X) X^+) X^- = j_3 - V(X) + \frac{i}{\sqrt{2}} F(X) (\chi^*_0 \partial_0 \chi_0) + H(X) g(\chi\chi)
\]
Three steps to Quantized Gravity

1. Ghosts \((c^i, p^c_j)\) for the \(G_i\), BRST charge \(\Omega = c^i G_i + \frac{1}{2} c^i c^j C^k_{ij} p^c_k\) terminates at Yang-Mills level

2. Fix EF gauge \((\omega_0, e_0^-, e_0^+) = (0, 1, 0)\): \(g_{\mu\nu} = e_1^+ \begin{pmatrix} 0 & 1 \\ 1 & 2e_1^- \end{pmatrix}\)

3. Path integration:

\[
\mathcal{D}c^i \mathcal{D}p^c_i \rightarrow \mathcal{D}P_X \delta(\Phi_\alpha) \rightarrow \mathcal{D}(\omega_1, e_1^-, e_1^+) \rightarrow \mathcal{D}(X, X^+, X^-)
\]

\[
\text{Det}M \quad \text{trivial} \quad \delta(\text{EOM}(X, X^+ X^-)) \rightarrow (\hat{X}, \hat{X}^+, \hat{X}^-)
\]

\[
(\text{Det}M)^{-1}
\]

\[
\partial_0 X = j_1 + X^+
\]

\[
\partial_0 X^+ = j_2 - \frac{i}{\sqrt{2}} F(X)(\chi_1^* \partial_0 \chi_1)
\]

\[
(\partial_0 + U(X)X^+)X^- = j_3 - V(X) + \frac{i}{\sqrt{2}} F(X)(\chi_0^* \partial_0 \chi_0) + H(X) g(\chi\chi)
\]
Three steps to Quantized Gravity

1. Ghosts \((c^i, p^c_j)\) for the \(G_i\), BRST charge \(\Omega = c^i G_i + \frac{1}{2} c^i c^j C^k_{ij} p^c_k\) terminates at Yang-Mills level

2. Fix EF gauge \((\omega_0, e_0^-, e_0^+) = (0, 1, 0)\): \(g_{\mu\nu} = e_1^+(0 1 \begin{array}{c} 1 \\ 2e_1^- \end{array})\)

3. Path integration:

\[
\mathcal{D} c^i \mathcal{D} p^c_i \rightarrow \mathcal{D} P \chi \delta(\Phi_\alpha) \rightarrow \mathcal{D}(\omega_1, e_1^-, e_1^+) \rightarrow \mathcal{D}(X, X^+, X^-) \\
\operatorname{Det} M \text{ trivial} \quad \delta(\text{EOM}(X, X^+ X^-)) \quad (\hat{X}, \hat{X}^+, \hat{X}^-) \\
(\operatorname{Det} M)^{-1}
\]

\[
\partial_0 X = j_1 + X^+ \\
\partial_0 X^+ = j_2 - \frac{i}{\sqrt{2}} F(X)(\chi_1^* \xleftarrow{} \partial_0 \chi_1) \\
(\partial_0 + U(X)X^+)X^- = j_3 - V(X) + \frac{i}{\sqrt{2}} F(X)(\chi_0^* \xleftarrow{} \partial_0 \chi_0) + H(X)g(\overline{\chi} \chi)
\]
Three steps to Quantized Gravity

1. Ghosts \((c^i, p_j^c)\) for the \(G_i\), BRST charge \(\Omega = c^i G_i + \frac{1}{2} c^i c^j C^k_{ij} p^c_k\)

 terminates at Yang-Mills level

2. Fix EF gauge \((\omega_0, e_0^-, e_0^+) = (0, 1, 0)\): \(g_{\mu\nu} = e_1^+ \begin{pmatrix} 0 & 1 \\ 1 & 2e_1^- \end{pmatrix}\)

3. Path integration:

 \[
 \mathcal{D} c^i \mathcal{D} p_j^c \rightarrow \mathcal{D} P \delta(\Phi_\alpha) \rightarrow \mathcal{D}(\omega_1, e_1^-, e_1^+) \rightarrow \mathcal{D}(X, X^+, X^-) \\
 \text{Det} M \quad \text{trivial} \quad \delta(\text{EOM}(X, X^+ X^-)) \rightarrow (\hat{X}, \hat{X}^+, \hat{X}^-) \\
 (\text{Det} M)^{-1}
 \]

 \[
 \partial_0 X = j_1 + X^+ \\
 \partial_0 X^+ = j_2 - \frac{i}{\sqrt{2}} F(X) (\chi^*_1 \partial_0 \chi_1) \\
 (\partial_0 + U(X) X^+) X^- = j_3 - V(X) + \frac{i}{\sqrt{2}} F(X) (\chi^*_0 \partial_0 \chi_0) + H(X) g(\bar{\chi} \chi)
 \]
The effective action

\[\mathcal{L}_{\text{eff}} = J^i \hat{X}_i + \frac{i}{\sqrt{2}} F(\hat{X})(\chi^*_1 \partial_1 \chi_1) \]

\[+ e^{Q(\hat{X})} \left(j_3 - V(\hat{X}) + H(\hat{X})g(\chi \chi) + \frac{i}{\sqrt{2}} F(\hat{X})(\chi^*_0 \partial_0 \chi_0) \right) \]

- **Nonlocal:** ∂^{-1}_0
 - Includes all backreactions of matter fields on geometry
 - Procedure is background independent
 - Integration over (ω_0, e^-_1, e^+_1) is not restricted
 - So far: No quantum corrections from matter included, and matter is still off-shell.
The effective action

\[L_{\text{eff}} = J^i \dot{X}_i + \frac{i}{\sqrt{2}} F(\dot{X}) (\chi_1^* \overrightarrow{\partial_1} \chi_1) + e^{Q(\dot{X})} \left(j_3 - V(\dot{X}) + H(\dot{X}) g(\bar{\chi} \chi) + \frac{i}{\sqrt{2}} F(\dot{X}) (\chi_0^* \overrightarrow{\partial_0} \chi_0) \right) \]

- Nonlocal: \(\partial_0^{-1} \)
- Includes all backreactions of matter fields on geometry
- Procedure is background independent
- Integration over \((\omega_0, e_1^-, e_1^+)\) is not restricted
- So far: No quantum corrections from matter included, and matter is still off-shell.
The effective action

\[\mathcal{L}_{\text{eff}} = J^i \hat{X}_i + \frac{i}{\sqrt{2}} F(\hat{X})(\chi_1^* \overrightarrow{\partial_1} \chi_1) \]
\[+ e^{Q(\hat{X})} \left(j_3 - V(\hat{X}) + H(\hat{X})g(\bar{\chi}\chi) + \frac{i}{\sqrt{2}} F(\hat{X})(\chi_0^* \overrightarrow{\partial_0} \chi_0) \right) \]

- Nonlocal: \(\partial_0^{-1} \)
- Includes all backreactions of matter fields on geometry
- Procedure is background independent
- Integration over \((\omega, e_1^-, e_1^+)\) is not restricted
- So far: No quantum corrections from matter included, and matter is still off-shell.
The effective action

\[\mathcal{L}_{\text{eff}} = J^i \dot{X}_i + \frac{i}{\sqrt{2}} F(\dot{X}) (\chi^*_1 \overset{\leftarrow}{\partial_1} \chi_1) \]

\[+ e^{Q(\dot{X})} \left(j_3 - V(\dot{X}) + H(\dot{X}) g(\chi \chi) + \frac{i}{\sqrt{2}} F(\dot{X}) (\chi^*_0 \overset{\leftarrow}{\partial_0} \chi_0) \right) \]

- **Nonlocal:** \(\partial_0^{-1} \)
- Includes all backreactions of matter fields on geometry
- Procedure is background independent
- Integration over \((\omega_0, e_{1^-}, e_{1^+})\) is not restricted
- So far: No quantum corrections from matter included, and matter is still off-shell.
The effective action

\[\mathcal{L}_{\text{eff}} = J^i \dot{X}_i + \frac{i}{\sqrt{2}} F(\dot{X})(\chi_1^* \partial_1 \chi_1) + e^{Q(\dot{X})} \left(j_3 - V(\dot{X}) + H(\dot{X}) g(\bar{\chi} \chi) + \frac{i}{\sqrt{2}} F(\dot{X})(\chi_0^* \partial_0 \chi_0) \right) \]

- Nonlocal: \(\partial_0^{-1} \)
- Includes all backreactions of matter fields on geometry
- Procedure is background independent
- Integration over \((\omega_0, e_1^-, e_1^+)\) is not restricted
- So far: No quantum corrections from matter included, and matter is still off-shell.
Outline

1. First Order Gravity with Matter
 - First Order Gravity
 - Fermions
 - Non-linear gauge theory

2. Quantizing Gravity
 - Three steps to Quantized Gravity
 - The effective action

3. Matter perturbation theory
 - 1-Loop effects
 - 4-Point Vertices & Virtual Black Holes

4. Conclusions & Outlook
1-Loop effects

- Expansion: \(\mathcal{L}_{\text{eff}} = \mathcal{L}^{(0)} + \mathcal{L}^{(2)} + \mathcal{L}_{\text{int}} \)

- Kinetic term (m=0,F(X)=1):

\[
\mathcal{L}^{(2)} = \frac{i}{2} E_{a}[j, J](\bar{\chi} \gamma^a \partial_\mu \chi)
\]

→ effective Background

- Conformal anomaly:

\[
T_\mu^\mu = \frac{R}{24\pi}
\]

- 1-loop in the matter fields:

\[
W_{\text{Poly.}} = - \log \det \mathcal{D} = \frac{1}{96\pi} \int d^2 x \sqrt{-g} R \frac{1}{\Delta} R
\]
1-Loop effects

- Expansion: $\mathcal{L}_{\text{eff}} = \mathcal{L}^{(0)} + \mathcal{L}^{(2)} + \mathcal{L}_{\text{int}}$
- Kinetic term ($m=0, F(X)=1$):

\[
\mathcal{L}^{(2)} = \frac{i}{2} E a^{\mu} [j, J](\chi \gamma^a \overleftarrow{\partial}_\mu \chi)
\]

→ effective Background

- Conformal anomaly:

\[
T^{\mu}_{\mu} = \frac{R}{24 \pi}
\]

- 1-loop in the matter fields:

\[
W_{\text{Poly.}} = - \log \text{Det} \Phi = \frac{1}{96 \pi} \int d^2 x \sqrt{-g} R \frac{1}{\Delta} R
\]
1-Loop effects

- Expansion: \(\mathcal{L}_{\text{eff}} = \mathcal{L}^{(0)} + \mathcal{L}^{(2)} + \mathcal{L}_{\text{int}} \)
- Kinetic term (m=0,F(X)=1):

\[
\mathcal{L}^{(2)} = \frac{i}{2} E_a^\mu [j, J] (\chi \gamma^a \partial_\mu \chi)
\]

→ effective Background
- Conformal anomaly:

\[
T_{\mu}^{\mu} = \frac{R}{24\pi}
\]

- 1-loop in the matter fields:

\[
W_{\text{Poly.}} = -\log \det \mathcal{D} = \frac{1}{96\pi} \int d^2 x \sqrt{-g} R \frac{1}{\Delta} R
\]
1-Loop effects

- Expansion: $\mathcal{L}_{\text{eff}} = \mathcal{L}^{(0)} + \mathcal{L}^{(2)} + \mathcal{L}_{\text{int}}$
- Kinetic term (m=0, F(X)=1):

 $$\mathcal{L}^{(2)} = \frac{i}{2} E_a^\mu [j, J](\bar{\chi} \gamma^a \overleftarrow{\partial}_\mu \chi)$$

 \rightarrow effective Background
- Conformal anomaly:
 $$T^\mu_\mu = \frac{R}{24\pi}$$

- 1-loop in the matter fields:
 $$W_{\text{Poly.}} = - \log \det \mathcal{D} = \frac{1}{96\pi} \int d^2 x \sqrt{-g} R \frac{1}{\Delta} R$$
For free massless fermions:

<table>
<thead>
<tr>
<th></th>
<th>AB</th>
<th>CD</th>
</tr>
</thead>
<tbody>
<tr>
<td>1)</td>
<td>$\chi_1^* \overset{\partial_0}{\leftrightarrow} \chi_1$</td>
<td>$\chi_1^* \overset{\partial_0}{\leftrightarrow} \chi_1$</td>
</tr>
<tr>
<td>2)</td>
<td>$\chi_1^* \overset{\partial_0}{\rightarrow} \chi_1$</td>
<td>$\chi_1^* \overset{\partial_1}{\rightarrow} \chi_1$</td>
</tr>
<tr>
<td>3)</td>
<td>$\chi_1^* \overset{\partial_0}{\rightarrow} \chi_1$</td>
<td>$\chi_0^* \overset{\partial_0}{\rightarrow} \chi_0$</td>
</tr>
</tbody>
</table>

- Nonlocal of form $\int d^2 y \int d^2 x \Theta(y^0 - x^0) \delta(x^1 - y^1) V(x, y)$.
- Vanish for $x^0 = y^0$.
- (1) & (2) same as for a real scalar
- (1) & (2) conformally invariant; (3) not conformally invariant, but external legs χ_0 also have conformal weight -2
- No gravitational interaction of χ_0 with itself in this gauge.
For free massless fermions:

<table>
<thead>
<tr>
<th></th>
<th>AB</th>
<th>CD</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$\chi^*_1 \frac{\partial}{\partial x_0} \chi_1$</td>
<td>$\chi^*_1 \frac{\partial}{\partial x_0} \chi_1$</td>
</tr>
<tr>
<td>2</td>
<td>$\chi^*_1 \frac{\partial}{\partial x_0} \chi_1$</td>
<td>$\chi^*_1 \frac{\partial}{\partial x_1} \chi_1$</td>
</tr>
<tr>
<td>3</td>
<td>$\chi^*_1 \frac{\partial}{\partial x_0} \chi_1$</td>
<td>$\chi^*_0 \frac{\partial}{\partial x_0} \chi_0$</td>
</tr>
</tbody>
</table>

- Nonlocal of form $\int d^2y \int d^2x \Theta(y^0 - x^0) \delta(x^1 - y^1) V(x, y)$.
- Vanish for $x^0 = y^0$.
- (1) & (2) same as for a real scalar.
- (1) & (2) conformally invariant; (3) not conformally invariant, but external legs χ_0 also have conformal weight -2.
- No gravitational interaction of χ_0 with itself in this gauge.
For free massless fermions:

<table>
<thead>
<tr>
<th></th>
<th>AB</th>
<th>CD</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$\chi^*_1 \partial_0 \chi_1$</td>
<td>$\chi^*_1 \partial_0 \chi_1$</td>
</tr>
<tr>
<td>2</td>
<td>$\chi^*_1 \partial_0 \chi_1$</td>
<td>$\chi^*_1 \partial_1 \chi_1$</td>
</tr>
<tr>
<td>3</td>
<td>$\chi^*_1 \partial_0 \chi_1$</td>
<td>$\chi^*_0 \partial_0 \chi_0$</td>
</tr>
</tbody>
</table>

- Nonlocal of form $\int d^2 y \int d^2 x \Theta(y^0 - x^0) \delta(x^1 - y^1) V(x, y)$.
- Vanish for $x^0 = y^0$.
- (1) & (2) same as for a real scalar
- (1) & (2) conformally invariant; (3) not conformally invariant, but external legs χ_0 also have conformal weight -2
- No gravitational interaction of χ_0 with itself in this gauge.
For free massless fermions:

<table>
<thead>
<tr>
<th></th>
<th>AB</th>
<th>CD</th>
</tr>
</thead>
<tbody>
<tr>
<td>1)</td>
<td>$\chi^*_1 \partial_0 \chi_1$</td>
<td>$\chi^*_1 \partial_0 \chi_1$</td>
</tr>
<tr>
<td>2)</td>
<td>$\chi^*_1 \partial_0 \chi_1$</td>
<td>$\chi^*_1 \partial_1 \chi_1$</td>
</tr>
<tr>
<td>3)</td>
<td>$\chi^*_1 \partial_0 \chi_1$</td>
<td>$\chi^*_0 \partial_0 \chi_0$</td>
</tr>
</tbody>
</table>

- Nonlocal of form $\int d^2y \int d^2x \Theta(y^0 - x^0) \delta(x^1 - y^1) V(x, y)$.
- Vanish for $x^0 = y^0$.
- (1) & (2) same as for a real scalar
- (1) & (2) conformally invariant; (3) not conformally invariant, but external legs χ_0 also have conformal weight -2
- No gravitational interaction of χ_0 with itself in this gauge.
For free massless fermions:

<table>
<thead>
<tr>
<th></th>
<th>AB</th>
<th>CD</th>
</tr>
</thead>
<tbody>
<tr>
<td>1)</td>
<td>$\chi^*_1 \partial_0 \chi_1$</td>
<td>$\chi^*_1 \partial_0 \chi_1$</td>
</tr>
<tr>
<td>2)</td>
<td>$\chi^*_1 \partial_0 \chi_1$</td>
<td>$\chi^*_1 \partial_1 \chi_1$</td>
</tr>
<tr>
<td>3)</td>
<td>$\chi^*_1 \partial_0 \chi_1$</td>
<td>$\chi^*_0 \partial_0 \chi_0$</td>
</tr>
</tbody>
</table>

- Nonlocal of form $\int d^2 y \int d^2 x \Theta(y^0 - x^0) \delta(x^1 - y^1) V(x, y)$.
- Vanish for $x^0 = y^0$.
- (1) & (2) same as for a real scalar
- (1) & (2) conformally invariant; (3) not conformally invariant, but external legs χ_0 also have conformal weight -2.
- No gravitational interaction of χ_0 with itself in this gauge.
For free massless fermions:

<table>
<thead>
<tr>
<th></th>
<th>AB</th>
<th>CD</th>
</tr>
</thead>
<tbody>
<tr>
<td>1)</td>
<td>$\chi^*_1 \mathcal{D}_0 \chi_1$</td>
<td>$\chi^*_1 \mathcal{D}_0 \chi_1$</td>
</tr>
<tr>
<td>2)</td>
<td>$\chi^*_1 \mathcal{D}_0 \chi_1$</td>
<td>$\chi^*_1 \mathcal{D}_1 \chi_1$</td>
</tr>
<tr>
<td>3)</td>
<td>$\chi^*_1 \mathcal{D}_0 \chi_1$</td>
<td>$\chi^*_0 \mathcal{D}_0 \chi_0$</td>
</tr>
</tbody>
</table>

- Nonlocal of form $\int d^2y \int d^2x \Theta(y^0 - x^0) \delta(x^1 - y^1) V(x, y)$.
- Vanish for $x^0 = y^0$.
- (1) & (2) same as for a real scalar
- (1) & (2) conformally invariant; (3) not conformally invariant, but external legs χ_0 also have conformal weight -2
- No gravitational interaction of χ_0 with itself in this gauge.
For free massless fermions:

<table>
<thead>
<tr>
<th></th>
<th>AB</th>
<th>CD</th>
</tr>
</thead>
<tbody>
<tr>
<td>1)</td>
<td>$\chi_1^* \partial_0 \chi_1$</td>
<td>$\chi_1^* \partial_0 \chi_1$</td>
</tr>
<tr>
<td>2)</td>
<td>$\chi_1^* \partial_0 \chi_1$</td>
<td>$\chi_1^* \partial_1 \chi_1$</td>
</tr>
<tr>
<td>3)</td>
<td>$\chi_1^* \partial_0 \chi_1$</td>
<td>$\chi_0^* \partial_0 \chi_0$</td>
</tr>
</tbody>
</table>

- Nonlocal of form $\int d^2y \int d^2x \Theta(y^0 - x^0) \delta(x^1 - y^1) V(x, y)$.
- Vanish for $x^0 = y^0$.
- (1) & (2) same as for a real scalar
- (1) & (2) conformally invariant; (3) not conformally invariant, but external legs χ_0 also have conformal weight -2
- No gravitational interaction of χ_0 with itself in this gauge.
Virtual Black Hole

VBH: Intermediary effective geometry in scattering processes encoding the vertices and the classical background
e.g. for Spherical Reduced Gravity:

\[(ds)^2 = 2 \, dr \, du + \left(1 - \theta(r_y - r) \delta(u - u_y) \left(\frac{2m}{r} + ar \right) \right) (du)^2\]

Important: Quantum Triviality in the geometric sector on matter tree level

- Generic to all 2D Dilaton Gravity models, and scalars and fermions.
- Many Worlds?
- Warning: It is virtual!
Virtual Black Hole

VBH: Intermediary effective geometry in scattering processes encoding the vertices and the classical background

e.g. for Spherical Reduced Gravity:

\[(ds)^2 = 2 \, dr \, du + \left(1 - \theta(r_y - r)\delta(u - u_y) \left(\frac{2m}{r} + ar\right)\right) \, (du)^2\]

Important: Quantum
Triviality in the geometric sector on matter tree level

- Generic to all 2D Dilaton Gravity models, and scalars and fermions.
- Many Worlds?
- Warning: It is virtual!
Virtual Black Hole

VBH: Intermediary effective geometry in scattering processes encoding the vertices and the classical background

e.g. for Spherical Reduced Gravity:

\[(ds)^2 = 2 \, dr \, du + \left(1 - \theta(r_y - r) \delta(u - u_y) \left(\frac{2m}{r} + ar \right) \right) (du)^2\]

Important: Quantum Triviality in the geometric sector on matter tree level

- Generic to all 2D Dilaton Gravity models, and scalars and fermions.
- Many Worlds?
- Warning: It is virtual!
Virtual Black Hole

VBH: Intermediary effective geometry in scattering processes encoding the vertices and the classical background

e.g. for Spherical Reduced Gravity:

\[(ds)^2 = 2 \, dr \, du + \left(1 - \theta(r_y - r)\delta(u - u_y) \left(\frac{2m}{r} + ar\right)\right) (du)^2\]

Important: Quantum Triviality in the geometric sector on matter tree level

- Generic to all 2D Dilaton Gravity models, and scalars and fermions.
- Many Worlds?
- Warning: It is virtual!
Virtual Black Hole

VBH: Intermediary effective geometry in scattering processes encoding the vertices and the classical background

e.g. for Spherical Reduced Gravity:

\[(ds)^2 = 2 \, dr \, du + \left(1 - \frac{\theta (r_y - r) \delta (u - u_y)}{r} - \frac{2m}{r} + ar \right) (du)^2\]

Important: Quantum
Triviality in the geometric sector on matter tree level

- Generic to all 2D Dilaton Gravity models, and scalars and fermions.
- Many Worlds?
- Warning: It is virtual!
Virtual Black Hole

VBH: Intermediary effective geometry in scattering processes encoding the vertices and the classical background

e.g. for Spherical Reduced Gravity:

\[(ds)^2 = 2 \, dr \, du + \left(1 - \theta(r_y - r)\delta(u - u_y) \left(\frac{2m}{r} + ar\right)\right) (du)^2\]

Important: Quantum Triviality in the geometric sector on matter tree level

- Generic to all 2D Dilaton Gravity models, and scalars and fermions.
- Many Worlds?
- Warning: It is virtual!
Virtual Black Hole

VBH: Intermediary effective geometry in scattering processes encoding the vertices and the classical background

e.g. for Spherical Reduced Gravity:

\[
(ds)^2 = 2 \, dr \, du + \left(1 - \theta(r_y - r) \delta(u - u_y) \left(\frac{2m}{r} + ar \right) \right) (du)^2
\]

Important: Quantum Triviality in the geometric sector on matter tree level

- Generic to all 2D Dilaton Gravity models, and scalars and fermions.
- Many Worlds?
- Warning: It is virtual!
Outline

1. First Order Gravity with Matter
 - First Order Gravity
 - Fermions
 - Non-linear gauge theory

2. Quantizing Gravity
 - Three steps to Quantized Gravity
 - The effective action

3. Matter perturbation theory
 - 1-Loop effects
 - 4-Point Vertices & Virtual Black Holes

4. Conclusions & Outlook
Conclusions & Outlook

Conclusions:

- Consistent, background independent quantization of geometry, taking into account matter backreactions.
- Nontrivial scattering exists. Off-shell geometries resembling Virtual BHs can be found.
- Crucial: Eddington-Finkelstein gauge

Outlook:

- Tree-level S-Matrix, Unitarity, CPT invariance
- Bosonization in Quantum Gravity?
- One-loop effects: Corrections to the specific heat of the Dilaton BH for fermions
Conclusions & Outlook

Conclusions:

- Consistent, background independent quantization of geometry, taking into account matter backreactions.
- Nontrivial scattering exists. Off-shell geometries resembling Virtual BHs can be found.
- Crucial: Eddington-Finkelstein gauge

Outlook:

- Tree-level S-Matrix, Unitarity, CPT invariance
- Bosonization in Quantum Gravity?
- One-loop effects: Corrections to the specific heat of the Dilaton BH for fermions [D. Grumiller, W. Kummer, D. Vassilevich, hep-th/0305036]
Conclusions:

- Consistent, background independent quantization of geometry, taking into account matter backreactions.
- Nontrivial scattering exists. Off-shell geometries resembling Virtual BHs can be found.
- Crucial: Eddington-Finkelstein gauge

Outlook:

- Tree-level S-Matrix, Unitarity, CPT invariance
- Bosonization in Quantum Gravity?
- One-loop effects: Corrections to the specific heat of the Dilaton BH for fermions [D. Grumiller, W. Kummer, D. Vassilevich, hep-th/0305036]
Conclusions & Outlook

Conclusions:

- Consistent, background independent quantization of geometry, taking into account matter backreactions.
- Nontrivial scattering exists. Off-shell geometries resembling Virtual BHs can be found.
- Crucial: Eddington-Finkelstein gauge

Outlook:

- Tree-level S-Matrix, Unitarity, CPT invariance
- Bosonization in Quantum Gravity?
- One-loop effects: Corrections to the specific heat of the Dilaton BH for fermions
Conclusions:

- Consistent, background independent quantization of geometry, taking into account matter backreactions.
- Nontrivial scattering exists. Off-shell geometries resembling Virtual BHs can be found.
- Crucial: Eddington-Finkelstein gauge

Outlook:

- Tree-level S-Matrix, Unitarity, CPT invariance
- Bosonization in Quantum Gravity?
- One-loop effects: Corrections to the specific heat of the Dilaton BH for fermions Scalars: [D. Grumiller, W. Kummer, D. Vassilevich, hep-th/0305036]