

Flat space holography and complex SYK

Daniel Grumiller

Institute for Theoretical Physics
TU Wien

Quantum Gravity Seminar
e-Lyon, February 2021

with Afshar, González, Vassilevich 1911.05739

Outline

Motivation for BMS_2

Kinematics and BMS_2

Dynamics yielding BMS_2

Relation to SYK/JT

Outlook

Outline

Motivation for BMS_2

Kinematics and BMS_2

Dynamics yielding BMS_2

Relation to SYK/JT

Outlook

Asymptotic symmetries in gravity

- ▶ Natural boundary conditions not applicable in gravity:
metric must not vanish asymptotically

Asymptotic symmetries in gravity

- ▶ Natural boundary conditions not applicable in gravity:
metric must not vanish asymptotically
- ▶ Gravity (or gauge) theories in presence of (asymptotic) boundaries:

Asymptotic symmetries

All boundary condition preserving transformations
modulo proper gauge transformations

Asymptotic symmetries in gravity

- ▶ Natural boundary conditions not applicable in gravity
- ▶ Gravity (or gauge) theories in presence of (asymptotic) boundaries:

Asymptotic symmetries

All boundary condition preserving transformations
modulo proper gauge transformations

- ▶ Choice of boundary conditions determines asymptotic symmetries

$$\lim_{r \rightarrow r_b} g_{\mu\nu}(r, x^i) = \bar{g}_{\mu\nu}(r_b, x^i) + \delta g_{\mu\nu}(r_b, x^i)$$

Asymptotic symmetries in gravity

- ▶ Natural boundary conditions not applicable in gravity
- ▶ Gravity (or gauge) theories in presence of (asymptotic) boundaries:

Asymptotic symmetries

All boundary condition preserving transformations
modulo proper gauge transformations

- ▶ Choice of boundary conditions determines asymptotic symmetries

$$\lim_{\mathbf{r} \rightarrow r_b} g_{\mu\nu}(\mathbf{r}, x^i) = \bar{g}_{\mu\nu}(r_b, x^i) + \delta g_{\mu\nu}(r_b, x^i)$$

r : some convenient ("radial") coordinate

Asymptotic symmetries in gravity

- ▶ Natural boundary conditions not applicable in gravity
- ▶ Gravity (or gauge) theories in presence of (asymptotic) boundaries:

Asymptotic symmetries

All boundary condition preserving transformations
modulo proper gauge transformations

- ▶ Choice of boundary conditions determines asymptotic symmetries

$$\lim_{r \rightarrow r_b} g_{\mu\nu}(r, x^i) = \bar{g}_{\mu\nu}(r_b, x^i) + \delta g_{\mu\nu}(r_b, x^i)$$

r : some convenient ("radial") coordinate

r_b : value of r at boundary (could be ∞)

Asymptotic symmetries in gravity

- ▶ Natural boundary conditions not applicable in gravity
- ▶ Gravity (or gauge) theories in presence of (asymptotic) boundaries:

Asymptotic symmetries

All boundary condition preserving transformations
modulo proper gauge transformations

- ▶ Choice of boundary conditions determines asymptotic symmetries

$$\lim_{r \rightarrow r_b} g_{\mu\nu}(r, \mathbf{x}^i) = \bar{g}_{\mu\nu}(r_b, \mathbf{x}^i) + \delta g_{\mu\nu}(r_b, \mathbf{x}^i)$$

r : some convenient ("radial") coordinate

r_b : value of r at boundary (could be ∞)

\mathbf{x}^i : remaining coordinates ("boundary" coordinates)

Asymptotic symmetries in gravity

- ▶ Natural boundary conditions not applicable in gravity
- ▶ Gravity (or gauge) theories in presence of (asymptotic) boundaries:

Asymptotic symmetries

All boundary condition preserving transformations
modulo proper gauge transformations

- ▶ Choice of boundary conditions determines asymptotic symmetries

$$\lim_{r \rightarrow r_b} g_{\mu\nu}(r, x^i) = \bar{g}_{\mu\nu}(r_b, x^i) + \delta g_{\mu\nu}(r_b, x^i)$$

r : some convenient ("radial") coordinate

r_b : value of r at boundary (could be ∞)

x^i : remaining coordinates

$g_{\mu\nu}$: metric compatible with bc's

Asymptotic symmetries in gravity

- ▶ Natural boundary conditions not applicable in gravity
- ▶ Gravity (or gauge) theories in presence of (asymptotic) boundaries:

Asymptotic symmetries

All boundary condition preserving transformations
modulo proper gauge transformations

- ▶ Choice of boundary conditions determines asymptotic symmetries

$$\lim_{r \rightarrow r_b} g_{\mu\nu}(r, x^i) = \bar{g}_{\mu\nu}(r_b, x^i) + \delta g_{\mu\nu}(r_b, x^i)$$

r : some convenient ("radial") coordinate

r_b : value of r at boundary (could be ∞)

x^i : remaining coordinates

$g_{\mu\nu}$: metric compatible with bc's

$\bar{g}_{\mu\nu}$: (asymptotic) background metric

Asymptotic symmetries in gravity

- ▶ Natural boundary conditions not applicable in gravity
- ▶ Gravity (or gauge) theories in presence of (asymptotic) boundaries:

Asymptotic symmetries

All boundary condition preserving transformations
modulo proper gauge transformations

- ▶ Choice of boundary conditions determines asymptotic symmetries

$$\lim_{r \rightarrow r_b} g_{\mu\nu}(r, x^i) = \bar{g}_{\mu\nu}(r_b, x^i) + \delta g_{\mu\nu}(r_b, x^i)$$

r : some convenient ("radial") coordinate

r_b : value of r at boundary (could be ∞)

x^i : remaining coordinates

$g_{\mu\nu}$: metric compatible with bc's

$\bar{g}_{\mu\nu}$: (asymptotic) background metric

$\delta g_{\mu\nu}$: fluctuations permitted by bc's

Asymptotic symmetries in gravity

- ▶ Natural boundary conditions not applicable in gravity
- ▶ Gravity (or gauge) theories in presence of (asymptotic) boundaries:

Asymptotic symmetries

All boundary condition preserving transformations
modulo proper gauge transformations

- ▶ Choice of boundary conditions determines asymptotic symmetries

$$\lim_{r \rightarrow r_b} g_{\mu\nu}(r, x^i) = \bar{g}_{\mu\nu}(r_b, x^i) + \delta g_{\mu\nu}(r_b, x^i)$$

r : some convenient ("radial") coordinate

r_b : value of r at boundary (could be ∞)

x^i : remaining coordinates

$g_{\mu\nu}$: metric compatible with bc's

$\bar{g}_{\mu\nu}$: (asymptotic) background metric

$\delta g_{\mu\nu}$: fluctuations permitted by bc's

Asymptotic symmetries in gravity

- ▶ Natural boundary conditions not applicable in gravity
- ▶ Gravity (or gauge) theories in presence of (asymptotic) boundaries:

Asymptotic symmetries

All boundary condition preserving transformations
modulo proper gauge transformations

- ▶ Choice of boundary conditions determines asymptotic symmetries

$$\lim_{r \rightarrow r_b} g_{\mu\nu}(r, x^i) = \bar{g}_{\mu\nu}(r_b, x^i) + \delta g_{\mu\nu}(r_b, x^i)$$

- ▶ bc-preserving trasfos generated by asymptotic Killing vectors ξ :

$$\mathcal{L}_\xi g_{\mu\nu} \stackrel{!}{=} \mathcal{O}(\delta g_{\mu\nu})$$

Asymptotic symmetries

All boundary condition preserving transformations
modulo proper gauge transformations

- ▶ Choice of boundary conditions determines asymptotic symmetries

$$\lim_{r \rightarrow r_b} g_{\mu\nu}(r, x^i) = \bar{g}_{\mu\nu}(r_b, x^i) + \delta g_{\mu\nu}(r_b, x^i)$$

- ▶ bc-preserving trasfos generated by asymptotic Killing vectors ξ :

$$\mathcal{L}_\xi g_{\mu\nu} \stackrel{!}{=} \mathcal{O}(\delta g_{\mu\nu})$$

- ▶ typically, asymptotic Killing vectors can be expanded radially

$$\xi^\mu(r_b, x^i) = \xi_{(0)}^\mu(r_b, x^i) + \text{subleading terms}$$

$\xi_{(0)}^\mu(r_b, x^i)$: generates asymptotic symmetries (improper diffeos)
subleading terms: generate proper diffeos

Asymptotic symmetries in gravity

Asymptotic symmetries

All boundary condition preserving transformations
modulo proper gauge transformations

- ▶ Choice of boundary conditions determines asymptotic symmetries

$$\lim_{r \rightarrow r_b} g_{\mu\nu}(r, x^i) = \bar{g}_{\mu\nu}(r_b, x^i) + \delta g_{\mu\nu}(r_b, x^i)$$

- ▶ bc-preserving trasfos generated by asymptotic Killing vectors ξ :

$$\mathcal{L}_\xi g_{\mu\nu} \stackrel{!}{=} \mathcal{O}(\delta g_{\mu\nu})$$

- ▶ typically, asymptotic Killing vectors can be expanded radially

$$\xi^\mu(r_b, x^i) = \xi_{(0)}^\mu(r_b, x^i) + \text{proper diffeos}$$

Definition of asymptotic symmetry algebra

Lie bracket quotient algebra of asymptotic
Killing vectors modulo proper diffeos

Asymptotic symmetries = boundary condition preserving transformations modulo proper gauge transformations

Some references:

- ▶ covariant phase space: Lee, Wald '90, Iyer, Wald '94 and Barnich, Brandt '02
- ▶ reviews: see Compère, Fiorucci '18, Harlow, Wu '19 and refs. therein
- ▶ canonical analysis: Arnowitt, Deser, Misner '59, Regge, Teitelboim '74 and Brown, Henneaux '86
- ▶ review: see Bañados, Reyes '16 and refs. therein
- ▶ boundary excitations/edge modes: see e.g. Balachandran et al '91, Carlip '94
- ▶ more recent work: Freidel, Livine, Pranzetti '19; Freidel, Geiller, Pranzetti '20

Asymptotic symmetries = boundary condition preserving transformations modulo proper gauge transformations

► AdS/CFT

- basic ingredient of AdS/CFT tests based on symmetries
- captures universal UV features of QFTs (conformal symmetries)
- Brown–Henneaux precursor for $\text{AdS}_3/\text{CFT}_2$

Asymptotic symmetries = boundary condition preserving transformations modulo proper gauge transformations

- ▶ AdS/CFT
 - ▶ basic ingredient of AdS/CFT tests based on symmetries
 - ▶ captures universal UV features of QFTs (conformal symmetries)
 - ▶ Brown–Henneaux precursor for $\text{AdS}_3/\text{CFT}_2$
- ▶ Flat space
 - ▶ basic ingredient of flat space holography tests based on symmetries
 - ▶ captures universal IR features of QFTs (Ward id's \leftrightarrow soft theorems)
 - ▶ Barnich–Compère precursor for $\text{FS}_3/\text{CCFT}_2$

Asymptotic symmetries = boundary condition preserving transformations modulo proper gauge transformations

- ▶ **AdS/CFT**
 - ▶ basic ingredient of AdS/CFT tests based on symmetries
 - ▶ captures universal UV features of QFTs (conformal symmetries)
 - ▶ Brown–Henneaux precursor for $\text{AdS}_3/\text{CFT}_2$
- ▶ **Flat space**
 - ▶ basic ingredient of flat space holography tests based on symmetries
 - ▶ captures universal IR features of QFTs (Ward id's \leftrightarrow soft theorems)
 - ▶ Barnich–Compère precursor for $\text{FS}_3/\text{CCFT}_2$
- ▶ **Holography beyond AdS/CFT**
 - ▶ asymptotic holography beyond AdS/CFT?
 - ▶ near horizon holography?
 - ▶ asymptotic symmetries important input for structure of dual QFT

Brief history:

- ▶ general relativity in limit of low curvature $\stackrel{?}{=}$ special relativity

Brief history:

- ▶ general relativity in limit of low curvature $\stackrel{?}{=}$ special relativity
- ▶ if yes, expect Poincaré as asymptotic symmetries

Brief history:

- ▶ general relativity in limit of low curvature \neq special relativity
- ▶ if yes, expect Poincaré as asymptotic symmetries
- ▶ Bondi, van der Burgh, Metzner and Sachs '62 (BMS):
no, get infinite extension of Poincaré by super-translations $P(x)$

x : angular coordinates

Brief history:

- ▶ general relativity in limit of low curvature \neq special relativity
- ▶ if yes, expect Poincaré as asymptotic symmetries
- ▶ Bondi, van der Burgh, Metzner and Sachs '62 (BMS):
no, get infinite extension of Poincaré by super-translations $P(x)$
- ▶ (extended) BMS₄ algebra ($J_a(x)$: diff S^2 or restriction thereof)

$$\{J_a(x), J_b(x')\} = (J_a(x')\partial_b - J_b(x)\partial'_a) \delta(x - x')$$

$$\{J_a(x), P(x')\} = \left(\frac{s}{2} P(x')\partial_a - P(x)\partial'_a\right) \delta(x - x')$$

$$\{P(x), P(x')\} = 0$$

s : spin of super-translations (in original BMS₄: $s = 1$)

Brief history:

- ▶ general relativity in limit of low curvature \neq special relativity
- ▶ if yes, expect Poincaré as asymptotic symmetries
- ▶ Bondi, van der Burgh, Metzner and Sachs '62 (BMS):
no, get infinite extension of Poincaré by super-translations $P(x)$
- ▶ (extended) BMS₄ algebra ($J_a(x)$: diff S^2 or restriction thereof)

$$\begin{aligned}\{J_a(x), J_b(x')\} &= (J_a(x')\partial_b - J_b(x)\partial'_a) \delta(x - x') \\ \{J_a(x), P(x')\} &= \left(\frac{s}{2} P(x')\partial_a - P(x)\partial'_a\right) \delta(x - x') \\ \{P(x), P(x')\} &= 0\end{aligned}$$

s : spin of super-translations (in original BMS₄: $s = 1$)

- ▶ get same algebra as near horizon symmetries (in any dimension ≥ 3)
Donnay, Giribet, González, Pino '15 $s = 0$ ('scalar super-translations')
DG, Perez, Troncoso, Sheikh-Jabbari, Zwickel '19 arbitrary s

BMS₃

- ▶ Barnich, Gomberoff, González '12 BMS₃ from CFT₂ by contraction

- ▶ Barnich, Gomberoff, González '12 BMS₃ from CFT₂ by contraction
- ▶ Change the Virasoro basis $\mathcal{L}_n, \bar{\mathcal{L}}_n$

$$L_n = \mathcal{L}_n - \bar{\mathcal{L}}_{-n} \quad M_n = \frac{1}{\ell} (\mathcal{L}_n + \bar{\mathcal{L}}_{-n})$$

- Barnich, Gomberoff, González '12 BMS₃ from CFT₂ by contraction
- Change the Virasoro basis $\mathcal{L}_n, \bar{\mathcal{L}}_n$

$$L_n = \mathcal{L}_n - \bar{\mathcal{L}}_{-n} \quad M_n = \frac{1}{\ell} (\mathcal{L}_n + \bar{\mathcal{L}}_{-n})$$

- In this new basis Virasoro algebras reads

$$[L_n, L_m] = (n - m) L_{n+m} + \frac{c_L}{12} (n^3 - n) \delta_{n+m, 0}$$

$$[L_n, M_m] = (n - m) M_{n+m} + \frac{c_M}{12} (n^3 - n) \delta_{n+m, 0}$$

$$[M_n, M_m] = \mathcal{O}(1/\ell^2)$$

with central charges $c_L = c - \bar{c}$ and $c_M = \frac{1}{\ell} (c + \bar{c})$

- ▶ Barnich, Gomberoff, González '12 BMS₃ from CFT₂ by contraction
- ▶ Change the Virasoro basis $\mathcal{L}_n, \bar{\mathcal{L}}_n$

$$L_n = \mathcal{L}_n - \bar{\mathcal{L}}_{-n} \quad M_n = \frac{1}{\ell} (\mathcal{L}_n + \bar{\mathcal{L}}_{-n})$$

- ▶ In this new basis Virasoro algebras reads

$$[L_n, L_m] = (n - m) L_{n+m} + \frac{c_L}{12} (n^3 - n) \delta_{n+m, 0}$$

$$[L_n, M_m] = (n - m) M_{n+m} + \frac{c_M}{12} (n^3 - n) \delta_{n+m, 0}$$

$$[M_n, M_m] = \mathcal{O}(1/\ell^2)$$

with central charges $c_L = c - \bar{c}$ and $c_M = \frac{1}{\ell} (c + \bar{c})$

- ▶ Contraction means $\ell \rightarrow \infty$ and yields BMS₃ (M_n : super-translations)

- Barnich, Gomberoff, González '12 BMS₃ from CFT₂ by contraction
- Change the Virasoro basis $\mathcal{L}_n, \bar{\mathcal{L}}_n$

$$L_n = \mathcal{L}_n - \bar{\mathcal{L}}_{-n} \quad M_n = \frac{1}{\ell} (\mathcal{L}_n + \bar{\mathcal{L}}_{-n})$$

- In this new basis Virasoro algebras reads

$$[L_n, L_m] = (n - m) L_{n+m} + \frac{c_L}{12} (n^3 - n) \delta_{n+m, 0}$$

$$[L_n, M_m] = (n - m) M_{n+m} + \frac{c_M}{12} (n^3 - n) \delta_{n+m, 0}$$

$$[M_n, M_m] = \mathcal{O}(1/\ell^2)$$

with central charges $c_L = c - \bar{c}$ and $c_M = \frac{1}{\ell} (c + \bar{c})$

- Contraction means $\ell \rightarrow \infty$ and yields BMS₃ (M_n : super-translations)
- Example: Einstein gravity

$$c = \bar{c} = \frac{3\ell}{2G} \quad \Rightarrow \quad c_L = 0 \quad c_M = \frac{3}{G}$$

Status of 3d flat space holography

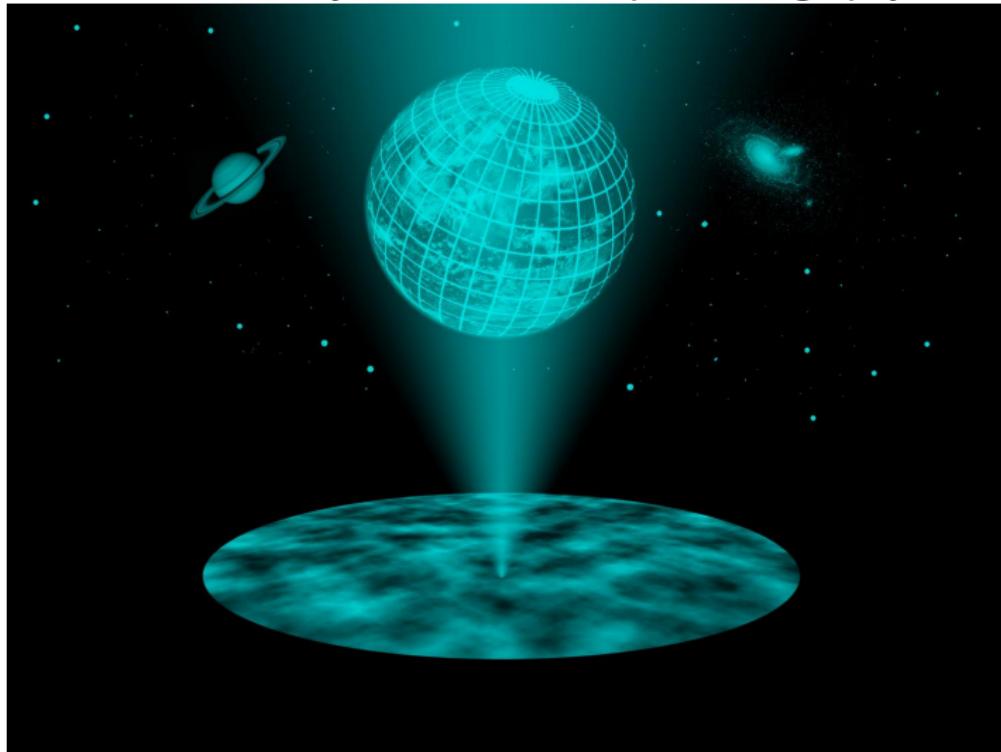
- ▶ asymptotic symmetries (Ashtekar, Bicak, Schmidt '96)
- ▶ central extensions in asymptotic symmetries (Barnich, Compère '06)
- ▶ dual field theory: **BMS-invariant QFT (Carrollian CFT₂)**
- ▶ concrete proposal: flat space chiral gravity (Bagchi, Detournay, DG '12)
- ▶ Cardyology works (Bagchi et al '12; Barnich '12)
- ▶ Hawking–Page-like phase transitions (Bagchi, Detournay, DG, Simón '13)
- ▶ (holographic) entanglement entropy (Basu, Bagchi, DG, Riegler '14)
- ▶ 1-loop part. fct. \simeq BMS character (Barnich, Gonzalez, Maloney, Oblak '15)
- ▶ stress “tensor” correlators match (Bagchi, DG, Merbis '15)
- ▶ BMS bootstrap (Bagchi, Gary, Zodinmawia '16)
- ▶ most general boundary conditions (DG, Merbis, Riegler '17)
- ▶ HEE via geodesics (Jiang, Song, Wen '17; Hijano, Rabideau '17)
- ▶ Semi-classical BMS₃ blocks (Hijano '18)
- ▶ BMS characters & modular invariance (Bagchi, Saha, Zodinmawia '19)
- ▶ quantum energy conditions (DG, Parekh, Riegler '19)
- ▶ geometric actions (Merbis, Riegler '19)
- ▶ ...

Motivation for BMS₂

- ▶ because it is there (maybe)

Motivation for BMS₂

- ▶ because it is there (maybe)
- ▶ BMS₂ useful for toy models of flat space holography



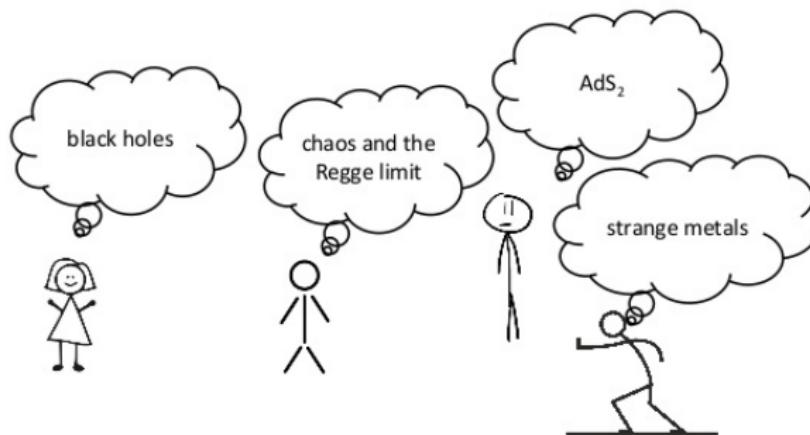
Motivation for BMS_2

- ▶ because it is there (maybe)
- ▶ BMS_2 useful for toy models of flat space holography
- ▶ BMS_2 perhaps useful for near horizon holography

Motivation for BMS_2

- ▶ because it is there (maybe)
- ▶ BMS_2 useful for toy models of flat space holography
- ▶ BMS_2 perhaps useful for near horizon holography
- ▶ construct SYK-like models with asymptotically flat gravity side

The SYK model is a **strongly interacting** quantum system that is **solvable** at large N .



slide from Stanford's talk at Strings 2017

Difficulties with BMS_2

- ▶ general point in 2d: co-dimension 2 structureless

Difficulties with BMS_2

- ▶ general point in 2d: co-dimension 2 structureless
sort of ok in AdS_2 , so maybe 'sort of' ok for BMS_2 as well

Difficulties with BMS_2

- ▶ general point in 2d: co-dimension 2 structureless
sort of ok in AdS_2 , so maybe 'sort of' ok for BMS_2 as well
- ▶ AdS_2 algebra is half of AdS_3 algebra
same cannot be true for BMS_2/BMS_3 relation

Difficulties with BMS_2

- ▶ general point in 2d: co-dimension 2 structureless
sort of ok in AdS_2 , so maybe 'sort of' ok for BMS_2 as well
- ▶ AdS_2 algebra is half of AdS_3 algebra
same cannot be true for BMS_2/BMS_3 relation
just means we have no quick way of cheating towards BMS_2

Difficulties with BMS₂

- ▶ general point in 2d: co-dimension 2 structureless
sort of ok in AdS₂, so maybe 'sort of' ok for BMS₂ as well
- ▶ AdS₂ algebra is half of AdS₃ algebra
same cannot be true for BMS₂/BMS₃ relation
just means we have no quick way of cheating towards BMS₂
- ▶ super-rotations can only be in time direction

Difficulties with BMS₂

- ▶ general point in 2d: co-dimension 2 structureless
sort of ok in AdS₂, so maybe 'sort of' ok for BMS₂ as well
- ▶ AdS₂ algebra is half of AdS₃ algebra
same cannot be true for BMS₂/BMS₃ relation
just means we have no quick way of cheating towards BMS₂
- ▶ super-rotations can only be in time direction
ok at least in Euclidean theory

Difficulties with BMS₂

- ▶ general point in 2d: co-dimension 2 structureless
sort of ok in AdS₂, so maybe 'sort of' ok for BMS₂ as well
- ▶ AdS₂ algebra is half of AdS₃ algebra
same cannot be true for BMS₂/BMS₃ relation
just means we have no quick way of cheating towards BMS₂
- ▶ super-rotations can only be in time direction
ok at least in Euclidean theory
- ▶ super-translations can only be radial super-translations

Difficulties with BMS₂

- ▶ general point in 2d: co-dimension 2 structureless
sort of ok in AdS₂, so maybe 'sort of' ok for BMS₂ as well
- ▶ AdS₂ algebra is half of AdS₃ algebra
same cannot be true for BMS₂/BMS₃ relation
just means we have no quick way of cheating towards BMS₂
- ▶ super-rotations can only be in time direction
ok at least in Euclidean theory
- ▶ super-translations can only be radial super-translations
ok, why not?

Difficulties with BMS₂

- ▶ general point in 2d: co-dimension 2 structureless
sort of ok in AdS₂, so maybe 'sort of' ok for BMS₂ as well
- ▶ AdS₂ algebra is half of AdS₃ algebra
same cannot be true for BMS₂/BMS₃ relation
just means we have no quick way of cheating towards BMS₂
- ▶ super-rotations can only be in time direction
ok at least in Euclidean theory
- ▶ super-translations can only be radial super-translations
ok, why not?

Ignore difficulties and proceed*

* van Nieuwenhuizen: task of theoretical physicists is to break no-go theorems

Outline

Motivation for BMS_2

Kinematics and BMS_2

Dynamics yielding BMS_2

Relation to SYK/JT

Outlook

Asymptotically Ricci-flat metrics

- Gauge-fix to Eddington–Finkelstein coordinates

$$ds^2 = -2 \, du \, dr + K(u, r) \, du^2$$

Not obvious that this is possible with proper gauge trasfos!

Same remark applies to *any* gauge fixing, e.g. in AdS_3

Asymptotically Ricci-flat metrics

- Gauge-fix to Eddington–Finkelstein coordinates

$$ds^2 = -2 \, du \, dr + K(u, r) \, du^2$$

- Demand Ricci-flatness

$$K(u, r) = 2\mathcal{P}(u) r + 2\mathcal{T}(u)$$

Note: for constant \mathcal{P} and \mathcal{T} Killing horizon

$$r_h = -\frac{\mathcal{T}}{\mathcal{P}}$$

Assume in most of talk constant \mathcal{P} and \mathcal{T}

Asymptotically Ricci-flat metrics

- ▶ Gauge-fix to Eddington–Finkelstein coordinates

$$ds^2 = -2 du dr + K(u, r) du^2$$

- ▶ Demand Ricci-flatness

$$K(u, r) = 2\mathcal{P}(u) r + 2\mathcal{T}(u)$$

- ▶ Allow most general fluctuations $\delta\mathcal{P} \neq 0 \neq \delta\mathcal{T}$

Asymptotically Ricci-flat metrics

- ▶ Gauge-fix to Eddington–Finkelstein coordinates

$$ds^2 = -2 du dr + K(u, r) du^2$$

- ▶ Demand Ricci-flatness

$$K(u, r) = 2\mathcal{P}(u) r + 2\mathcal{T}(u)$$

- ▶ Allow most general fluctuations $\delta\mathcal{P} \neq 0 \neq \delta\mathcal{T}$
- ▶ Whatever the gravity theory is going to be, require the following boundary conditions for metric

$$ds^2 = -2 du dr + \underbrace{(\mathcal{O}(r) + \mathcal{O}(1) + o(1))}_{\text{state-dependent}} du^2$$

Asymptotically Ricci-flat metrics

- Gauge-fix to Eddington–Finkelstein coordinates

$$ds^2 = -2 du dr + K(u, r) du^2$$

- Demand Ricci-flatness

$$K(u, r) = 2\mathcal{P}(u) r + 2\mathcal{T}(u)$$

- Allow most general fluctuations $\delta\mathcal{P} \neq 0 \neq \delta\mathcal{T}$
- Whatever the gravity theory is going to be, require the following boundary conditions for metric

$$ds^2 = -2 du dr + \underbrace{(\mathcal{O}(r) + \mathcal{O}(1) + o(1))}_{\text{state-dependent}} du^2$$

Determine next asymptotic Killing vectors

Asymptotic Killing vectors

► Class of metrics

$$ds^2 = -2 du dr + 2 (\mathcal{P}(u) r + \mathcal{T}(u)) du^2$$

preserved by asymptotic Killing vectors

$$\xi(\epsilon, \eta) = \epsilon(u) \partial_u - (\epsilon'(u) r + \eta(u)) \partial_r$$

Asymptotic Killing vectors

- ▶ Class of metrics

$$ds^2 = -2 \, du \, dr + 2 \left(\mathcal{P}(u) \, r + \mathcal{T}(u) \right) \, du^2$$

preserved by asymptotic Killing vectors

$$\xi(\epsilon, \eta) = \epsilon(u) \partial_u - (\epsilon'(u) r + \eta(u)) \partial_r$$

- ▶ $\epsilon(u)$ generates 'super-rotations'

Asymptotic Killing vectors

- ▶ Class of metrics

$$ds^2 = -2 du dr + 2 (\mathcal{P}(u) r + \mathcal{T}(u)) du^2$$

preserved by asymptotic Killing vectors

$$\xi(\epsilon, \eta) = \epsilon(u) \partial_u - (\epsilon'(u) r + \eta(u)) \partial_r$$

- ▶ $\epsilon(u)$ generates 'super-rotations'
- ▶ $\eta(u)$ generates radial 'super-translations'

Asymptotic Killing vectors

► Class of metrics

$$ds^2 = -2 du dr + 2 (\mathcal{P}(u) r + \mathcal{T}(u)) du^2$$

preserved by asymptotic Killing vectors

$$\xi(\epsilon, \eta) = \epsilon(u) \partial_u - (\epsilon'(u) r + \eta(u)) \partial_r$$

- $\epsilon(u)$ generates 'super-rotations'
- $\eta(u)$ generates radial 'super-translations'
- Metric functions transform non-trivially

$$\mathcal{L}_\xi \mathcal{P} = \epsilon \mathcal{P}' + \epsilon' \mathcal{P} + \epsilon''$$

$$\mathcal{L}_\xi \mathcal{T} = \epsilon \mathcal{T}' + 2\epsilon' \mathcal{T} + \eta' - \eta \mathcal{P}$$

Asymptotic Killing vectors

- ▶ Class of metrics

$$ds^2 = -2 du dr + 2 (\mathcal{P}(u) r + \mathcal{T}(u)) du^2$$

preserved by asymptotic Killing vectors

$$\xi(\epsilon, \eta) = \epsilon(u) \partial_u - (\epsilon'(u) r + \eta(u)) \partial_r$$

- ▶ $\epsilon(u)$ generates 'super-rotations'
- ▶ $\eta(u)$ generates radial 'super-translations'
- ▶ Metric functions transform non-trivially

$$\mathcal{L}_\xi \mathcal{P} = \epsilon \mathcal{P}' + \epsilon' \mathcal{P} + \epsilon''$$

$$\mathcal{L}_\xi \mathcal{T} = \epsilon \mathcal{T}' + 2\epsilon' \mathcal{T} + \eta' - \eta \mathcal{P}$$

- ▶ Looks promising!

\mathcal{P} like $u(1)$ current
 \mathcal{T} like Virasoro generator

- ▶ Lie-bracket algebra of asymptotic Killing vectors

$$[\xi(\epsilon_1, \eta_1), \xi(\epsilon_2, \eta_2)] = \xi(\epsilon_1 \epsilon'_2 - \epsilon_2 \epsilon'_1, (\epsilon_1 \eta_2 - \epsilon_2 \eta_1)')$$

- ▶ Lie-bracket algebra of asymptotic Killing vectors

$$[\xi(\epsilon_1, \eta_1), \xi(\epsilon_2, \eta_2)] = \xi(\epsilon_1 \epsilon'_2 - \epsilon_2 \epsilon'_1, (\epsilon_1 \eta_2 - \epsilon_2 \eta_1)')$$

- ▶ Algebra for Laurent modes $L_n = \xi(-u^{n+1}, 0)$, $M_n = \xi(0, u^{n-1})$

$$[L_n, L_m] = (n - m) L_{n+m}$$

$$[L_n, M_m] = (-n - m) M_{n+m}$$

$$[M_n, M_m] = 0$$

- ▶ Lie-bracket algebra of asymptotic Killing vectors

$$[\xi(\epsilon_1, \eta_1), \xi(\epsilon_2, \eta_2)] = \xi(\epsilon_1 \epsilon'_2 - \epsilon_2 \epsilon'_1, (\epsilon_1 \eta_2 - \epsilon_2 \eta_1)')$$

- ▶ Algebra for Laurent modes $L_n = \xi(-u^{n+1}, 0)$, $M_n = \xi(0, u^{n-1})$

$$[L_n, L_m] = (n - m) L_{n+m}$$

$$[L_n, M_m] = (-n - m) M_{n+m}$$

$$[M_n, M_m] = 0$$

- ▶ Witt subalgebra generated by L_n
spin-0 super-translations generated by M_n

- ▶ Lie-bracket algebra of asymptotic Killing vectors

$$[\xi(\epsilon_1, \eta_1), \xi(\epsilon_2, \eta_2)] = \xi(\epsilon_1 \epsilon'_2 - \epsilon_2 \epsilon'_1, (\epsilon_1 \eta_2 - \epsilon_2 \eta_1)')$$

- ▶ Algebra for Laurent modes $L_n = \xi(-u^{n+1}, 0)$, $M_n = \xi(0, u^{n-1})$

$$[L_n, L_m] = (n - m) L_{n+m}$$

$$[L_n, M_m] = (-n - m) M_{n+m}$$

$$[M_n, M_m] = 0$$

- ▶ Witt subalgebra generated by L_n
spin-0 super-translations generated by M_n

Call this algebra BMS₂

Can (and will) have non-trivial central extensions

Global aspects

- ▶ Redefine function generating super-translations, $\eta = \sigma'$

Global aspects

- ▶ Redefine function generating super-translations, $\eta = \sigma'$
- ▶ Redefine corresponding generators $J_n = \xi(0, \sigma = u^n)$

$$[L_n, L_m] = (n - m) L_{n+m}$$

$$[L_n, J_m] = -m J_{n+m}$$

$$[J_n, J_m] = 0$$

Global aspects

- ▶ Redefine function generating super-translations, $\eta = \sigma'$
- ▶ Redefine corresponding generators $J_n = \xi(0, \sigma = u^n)$

$$[L_n, L_m] = (n - m) L_{n+m}$$

$$[L_n, J_m] = -m J_{n+m}$$

$$[J_n, J_m] = 0$$

- ▶ Warped Witt algebra (J_n : spin-1 current)

Global aspects

- ▶ Redefine function generating super-translations, $\eta = \sigma'$
- ▶ Redefine corresponding generators $J_n = \xi(0, \sigma = u^n)$

$$[L_n, L_m] = (n - m) L_{n+m}$$

$$[L_n, J_m] = -m J_{n+m}$$

$$[J_n, J_m] = 0$$

- ▶ Warped Witt algebra (J_n : spin-1 current)
- ▶ Relation to old super-translation generators (M_n : spin-0 current)

$$J_n = n M_n \quad n \neq 0$$

Global aspects

- ▶ Redefine function generating super-translations, $\eta = \sigma'$
- ▶ Redefine corresponding generators $J_n = \xi(0, \sigma = u^n)$

$$[L_n, L_m] = (n - m) L_{n+m}$$

$$[L_n, J_m] = -m J_{n+m}$$

$$[J_n, J_m] = 0$$

- ▶ Warped Witt algebra (J_n : spin-1 current)
- ▶ Relation to old super-translation generators (M_n : spin-0 current)

$$J_n = n M_n \quad n \neq 0$$

- ▶ Almost basis change, but J_0 mapped to zero and nothing maps to M_0

Global aspects

- ▶ Redefine function generating super-translations, $\eta = \sigma'$
- ▶ Redefine corresponding generators $J_n = \xi(0, \sigma = u^n)$

$$[L_n, L_m] = (n - m) L_{n+m}$$

$$[L_n, J_m] = -m J_{n+m}$$

$$[J_n, J_m] = 0$$

- ▶ Warped Witt algebra (J_n : spin-1 current)
- ▶ Relation to old super-translation generators (M_n : spin-0 current)

$$J_n = n M_n \quad n \neq 0$$

- ▶ Almost basis change, but J_0 mapped to zero and nothing maps to M_0
- ▶ Later: M_0 interpretable as winding mode of Maxwell field

Global aspects

- ▶ Redefine function generating super-translations, $\eta = \sigma'$
- ▶ Redefine corresponding generators $J_n = \xi(0, \sigma = u^n)$

$$[L_n, L_m] = (n - m) L_{n+m}$$

$$[L_n, J_m] = -m J_{n+m}$$

$$[J_n, J_m] = 0$$

- ▶ Warped Witt algebra (J_n : spin-1 current)
- ▶ Relation to old super-translation generators (M_n : spin-0 current)

$$J_n = n M_n \quad n \neq 0$$

- ▶ Almost basis change, but J_0 mapped to zero and nothing maps to M_0
- ▶ Later: M_0 interpretable as winding mode of Maxwell field

Dismiss winding mode and focus on warped Witt algebra

Outline

Motivation for BMS_2

Kinematics and BMS_2

Dynamics yielding BMS_2

Relation to SYK/JT

Outlook

Dilaton gravity in two dimensions (review [hep-th/0204253](#))

- ▶ Candidate for gravity theory realizing our bc's:
Einstein–dilaton–Maxwell in 2d (see e.g. [DG](#), [McNees, Salzer '14](#))

Dilaton gravity in two dimensions (review [hep-th/0204253](#))

- ▶ Candidate for gravity theory realizing our bc's:
Einstein–dilaton–Maxwell in 2d (see e.g. [DG, McNees, Salzer '14](#))
- ▶ Second order action

$$I = \frac{1}{16\pi G_2} \int_{\mathcal{M}} d^2x \sqrt{|g|} [XR - U(X)(\nabla X)^2 - V(X)]$$
$$- \frac{1}{8\pi G_2} \int_{\partial\mathcal{M}} dx \sqrt{|\gamma|} [XK - S(X)] + I^{(m)}$$

Dilaton gravity in two dimensions (review [hep-th/0204253](#))

- ▶ Candidate for gravity theory realizing our bc's:
Einstein–dilaton–Maxwell in 2d (see e.g. [DG, McNees, Salzer '14](#))
- ▶ Second order action

$$I = \frac{1}{16\pi G_2} \int_{\mathcal{M}} d^2x \sqrt{|g|} [\textcolor{red}{X}R - U(X)(\nabla X)^2 - V(X)]$$
$$- \frac{1}{8\pi G_2} \int_{\partial\mathcal{M}} dx \sqrt{|\gamma|} [XK - S(X)] + I^{(m)}$$

- ▶ Dilaton $\textcolor{red}{X}$ defined by its coupling to curvature $\textcolor{red}{R}$

Dilaton gravity in two dimensions (review [hep-th/0204253](#))

- ▶ Candidate for gravity theory realizing our bc's:
Einstein–dilaton–Maxwell in 2d (see e.g. [DG](#), [McNees](#), [Salzer '14](#))
- ▶ Second order action

$$I = \frac{1}{16\pi G_2} \int_{\mathcal{M}} d^2x \sqrt{|g|} [XR - \textcolor{red}{U}(X)(\nabla X)^2 - V(X)]$$
$$- \frac{1}{8\pi G_2} \int_{\partial\mathcal{M}} dx \sqrt{|\gamma|} [XK - S(X)] + I^{(m)}$$

- ▶ Dilaton X defined by its coupling to curvature R
- ▶ Kinetic term $(\nabla X)^2$ contains coupling function $\textcolor{red}{U}(X)$

Dilaton gravity in two dimensions (review [hep-th/0204253](#))

- ▶ Candidate for gravity theory realizing our bc's:
Einstein–dilaton–Maxwell in 2d (see e.g. **DG, McNees, Salzer '14**)
- ▶ Second order action

$$I = \frac{1}{16\pi G_2} \int_{\mathcal{M}} d^2x \sqrt{|g|} [XR - U(X)(\nabla X)^2 - \mathcal{V}(X)]$$
$$- \frac{1}{8\pi G_2} \int_{\partial\mathcal{M}} dx \sqrt{|\gamma|} [XK - S(X)] + I^{(m)}$$

- ▶ Dilaton X defined by its coupling to curvature R
- ▶ Kinetic term $(\nabla X)^2$ contains coupling function $U(X)$
- ▶ Self-interaction potential $\mathcal{V}(X)$ leads to non-trivial geometries

- ▶ Candidate for gravity theory realizing our bc's:
Einstein–dilaton–Maxwell in 2d (see e.g. [DG](#), [McNees, Salzer '14](#))
- ▶ Second order action

$$I = \frac{1}{16\pi G_2} \int_{\mathcal{M}} d^2x \sqrt{|g|} [XR - U(X)(\nabla X)^2 - V(X)]$$
$$- \frac{1}{8\pi G_2} \int_{\partial\mathcal{M}} dx \sqrt{|\gamma|} [\textcolor{red}{XK} - S(X)] + I^{(m)}$$

- ▶ Dilaton X defined by its coupling to curvature R
- ▶ Kinetic term $(\nabla X)^2$ contains coupling function $U(X)$
- ▶ Self-interaction potential $V(X)$ leads to non-trivial geometries
- ▶ **Gibbons–Hawking–York boundary term** for Dirichlet boundary problem

Dilaton gravity in two dimensions (review [hep-th/0204253](#))

- ▶ Candidate for gravity theory realizing our bc's:
Einstein–dilaton–Maxwell in 2d (see e.g. **DG, McNees, Salzer '14**)
- ▶ Second order action

$$I = \frac{1}{16\pi G_2} \int_{\mathcal{M}} d^2x \sqrt{|g|} [XR - U(X)(\nabla X)^2 - V(X)] - \frac{1}{8\pi G_2} \int_{\partial\mathcal{M}} dx \sqrt{|\gamma|} [XK - \mathcal{S}(X)] + I^{(m)}$$

- ▶ Dilaton X defined by its coupling to curvature R
- ▶ Kinetic term $(\nabla X)^2$ contains coupling function $U(X)$
- ▶ Self-interaction potential $V(X)$ leads to non-trivial geometries
- ▶ Gibbons–Hawking–York boundary term for Dirichlet boundary problem
- ▶ **Hamilton–Jacobi counterterm** contains superpotential $\mathcal{S}(X)$

$$S(X)^2 = e^{-\int^X U(y) dy} \int^X V(y) e^{\int^y U(z) dz} dy$$

and guarantees well-defined variational principle $\delta I = 0$ with fineprint

Dilaton gravity in two dimensions (review [hep-th/0204253](#))

- ▶ Candidate for gravity theory realizing our bc's:
Einstein–dilaton–Maxwell in 2d (see e.g. **DG, McNees, Salzer '14**)
- ▶ Second order action

$$I = \frac{1}{16\pi G_2} \int_{\mathcal{M}} d^2x \sqrt{|g|} [XR - U(X)(\nabla X)^2 - V(X)]$$

$$I^{(m)} = \int_{\mathcal{M}} d^2x \sqrt{|g|} f(X) F^{\mu\nu} F_{\mu\nu} \quad F_{\mu\nu} = \partial_\mu A_\nu - \partial_\nu A_\mu$$

- ▶ Dilaton X defined by its coupling to curvature R
- ▶ Kinetic term $(\nabla X)^2$ contains coupling function $U(X)$
- ▶ Self-interaction potential $V(X)$ leads to non-trivial geometries
- ▶ Gibbons–Hawking–York boundary term for Dirichlet boundary problem
- ▶ Hamilton–Jacobi counterterm contains superpotential $S(X)$

$$S(X)^2 = e^{- \int^X U(y) dy} \int^X V(y) e^{\int^y U(z) dz} dy$$

and guarantees well-defined variational principle $\delta I = 0$ with fineprint

- ▶ Interesting option: couple 2d dilaton gravity to **matter**

Selected list of models (see review [hep-th/0604049](#))

Black holes in (A)dS₂, asymptotically flat or arbitrary spaces (Wheeler property)

Model	$U(X)$	$V(X)$
1. Schwarzschild (1916)	$-\frac{1}{2X}$	$-\lambda^2$
2. Jackiw-Teitelboim (1984)	0	ΛX
3. Witten Black Hole (1991)	$-\frac{1}{X}$	$-2b^2 X$
4. CGHS (1992)	0	-2Λ
5. (A)dS ₂ ground state (1994)	$-\frac{a}{X}$	BX
6. Rindler ground state (1996)	$-\frac{a}{X}$	BX^a
7. Black Hole attractor (2003)	0	BX^{-1}
8. Spherically reduced gravity ($N > 3$)	$-\frac{N-3}{(N-2)X}$	$-\lambda^2 X^{(N-4)/(N-2)}$
9. All above: ab -family (1997)	$-\frac{a}{X}$	BX^{a+b}
10. Liouville gravity	a	$be^{\alpha X}$
11. Reissner-Nordström (1916)	$-\frac{1}{2X}$	$-\lambda^2 + \frac{Q^2}{X}$
12. Schwarzschild-(A)dS	$-\frac{1}{2X}$	$-\lambda^2 - \ell X$
13. Katanaev-Volovich (1986)	α	$\beta X^2 - \Lambda$
14. BTZ/Achucarro-Ortiz (1993)	0	$\frac{Q^2}{X} - \frac{J}{4X^3} - \Lambda X$
15. KK reduced CS (2003)	0	$\frac{1}{2}X(c - X^2)$
16. KK red. conf. flat (2006)	$-\frac{1}{2} \tanh(X/2)$	$A \sinh X$
17. 2D type 0A string Black Hole	$-\frac{1}{X}$	$-2b^2 X + \frac{b^2 q^2}{8\pi}$
18. exact string Black Hole (2005)	lengthy	lengthy

Gauge theoretic formulation as Poisson-sigma model (PSM)

- ▶ 2d analogue of Chern–Simons formulation of 3d gravity: PSM
Ikeda '93; Schaller, Strobl '94 (non-linear gauge theory)

Gauge theoretic formulation as Poisson-sigma model (PSM)

- ▶ 2d analogue of Chern–Simons formulation of 3d gravity: PSM
Ikeda '93; Schaller, Strobl '94 (non-linear gauge theory)
- ▶ for our purposes: linear, non-abelian gauge theory sufficient

Gauge theoretic formulation as Poisson-sigma model (PSM)

- ▶ 2d analogue of Chern–Simons formulation of 3d gravity: PSM
Ikeda '93; Schaller, Strobl '94 (non-linear gauge theory)
- ▶ for our purposes: linear, non-abelian gauge theory sufficient
- ▶ non-abelian BF action

$$I_{\text{BF}}[B, \mathcal{A}] = \kappa \int \langle B, F \rangle \quad F = d\mathcal{A} + \mathcal{A} \wedge \mathcal{A}$$

Gauge theoretic formulation as Poisson-sigma model (PSM)

- ▶ 2d analogue of Chern–Simons formulation of 3d gravity: PSM
Ikeda '93; Schaller, Strobl '94 (non-linear gauge theory)
- ▶ for our purposes: linear, non-abelian gauge theory sufficient
- ▶ non-abelian BF action

$$I_{\text{BF}}[B, \mathcal{A}] = \kappa \int \langle B, F \rangle \quad F = d\mathcal{A} + \mathcal{A} \wedge \mathcal{A}$$

- ▶ connection 1-form chosen as

$$\mathcal{A} = \omega J + e^a P_a + A Z$$

ω : (dualized) spin-connection, e^a : zweibein, A : Maxwell connection

Gauge theoretic formulation as Poisson-sigma model (PSM)

- ▶ 2d analogue of Chern–Simons formulation of 3d gravity: PSM
Ikeda '93; Schaller, Strobl '94 (non-linear gauge theory)
- ▶ for our purposes: linear, non-abelian gauge theory sufficient
- ▶ non-abelian BF action

$$I_{\text{BF}}[B, \mathcal{A}] = \kappa \int \langle B, F \rangle \quad F = d\mathcal{A} + \mathcal{A} \wedge \mathcal{A}$$

- ▶ connection 1-form chosen as

$$\mathcal{A} = \omega J + e^a P_a + A Z$$

ω : (dualized) spin-connection, e^a : zweibein, A : Maxwell connection

- ▶ scalar field chosen as

$$B = X Z + X^a \epsilon_a^b P_b + Y J$$

X : dilaton, X^a , Y : auxiliary fields

Gauge theoretic formulation as Poisson-sigma model (PSM)

- ▶ 2d analogue of Chern–Simons formulation of 3d gravity: PSM
Ikeda '93; Schaller, Strobl '94 (non-linear gauge theory)
- ▶ for our purposes: linear, non-abelian gauge theory sufficient
- ▶ non-abelian BF action

$$I_{\text{BF}}[B, \mathcal{A}] = \kappa \int \langle B, F \rangle \quad F = d\mathcal{A} + \mathcal{A} \wedge \mathcal{A}$$

- ▶ connection 1-form chosen as

$$\mathcal{A} = \omega J + e^a P_a + A Z$$

ω : (dualized) spin-connection, e^a : zweibein, A : Maxwell connection

- ▶ scalar field chosen as

$$B = X Z + X^a \epsilon_a^b P_b + Y J$$

X : dilaton, X^a , Y : auxiliary fields

- ▶ still need to choose gauge algebra and bilinear form

Cangemi–Jackiw version of Callan–Giddings–Harvey–Strominger

- ▶ Choose Maxwell algebra

$$[P_a, P_b] = \epsilon_{ab} Z \quad [P_a, J] = \epsilon_a{}^b P_b$$

with bilinear form

$$\langle J, Z \rangle = -1 \quad \langle P_a, P_b \rangle = \eta_{ab}$$

Cangemi–Jackiw version of Callan–Giddings–Harvey–Strominger

- ▶ Choose Maxwell algebra

$$[P_a, P_b] = \epsilon_{ab} Z \quad [P_a, J] = \epsilon_a{}^b P_b$$

with bilinear form

$$\langle J, Z \rangle = -1 \quad \langle P_a, P_b \rangle = \eta_{ab}$$

- ▶ corresponding action (after integrating out X^a and ω)

$$I[X, Y, g_{\mu\nu}, A_\mu] = \frac{\kappa}{2} \int_{\mathcal{M}} d^2x \sqrt{|g|} (XR - 2Y + 2Y\epsilon^{\mu\nu}\partial_\mu A_\nu)$$

Cangemi–Jackiw version of Callan–Giddings–Harvey–Strominger

- ▶ Choose Maxwell algebra

$$[P_a, P_b] = \epsilon_{ab} Z \quad [P_a, J] = \epsilon_a{}^b P_b$$

with bilinear form

$$\langle J, Z \rangle = -1 \quad \langle P_a, P_b \rangle = \eta_{ab}$$

- ▶ corresponding action (after integrating out X^a and ω)

$$I[X, Y, g_{\mu\nu}, A_\mu] = \frac{\kappa}{2} \int_{\mathcal{M}} d^2x \sqrt{|g|} (XR - 2Y + 2Y\epsilon^{\mu\nu}\partial_\mu A_\nu)$$

- ▶ EOM

$$R = 0 \quad \Rightarrow \quad \text{Ricci-flat}$$

$$\epsilon^{\mu\nu}\partial_\mu A_\nu = 1$$

$$\nabla_\mu \nabla_\nu X - g_{\mu\nu} \nabla^2 X = g_{\mu\nu} Y$$

$$Y = \Lambda = \text{const.}$$

Cangemi–Jackiw version of Callan–Giddings–Harvey–Strominger

- ▶ Choose Maxwell algebra

$$[P_a, P_b] = \epsilon_{ab} Z \quad [P_a, J] = \epsilon_a{}^b P_b$$

with bilinear form

$$\langle J, Z \rangle = -1 \quad \langle P_a, P_b \rangle = \eta_{ab}$$

- ▶ corresponding action (after integrating out X^a and ω)

$$I[X, Y, g_{\mu\nu}, A_\mu] = \frac{\kappa}{2} \int_{\mathcal{M}} d^2x \sqrt{|g|} (XR - 2Y + 2Y\epsilon^{\mu\nu}\partial_\mu A_\nu)$$

- ▶ EOM

$$R = 0 \quad \Rightarrow \quad \text{Ricci-flat}$$

$$\epsilon^{\mu\nu}\partial_\mu A_\nu = 1$$

$$\nabla_\mu \nabla_\nu X - g_{\mu\nu} \nabla^2 X = g_{\mu\nu} Y$$

$$Y = \Lambda = \text{const.}$$

- ▶ translate our bc's into BF-formulation

Boundary conditions in BF formulation

- ▶ Ansatz (worked nicely for Jackiw–Teitelboim; inspired by 3d)

$$\mathcal{A} = b^{-1}(\mathbf{d} + a)b \quad B = b^{-1}xb$$

with group element $b = \exp(-r P_+)$ and

$$\begin{aligned} a &= (\mathcal{T}(u)P_+ + P_- + \mathcal{P}(u)J) \, du \\ x &= x^+(u)P_+ + x_1(u)P_- + YJ + x_0(u)Z \end{aligned}$$

where $\delta\mathcal{T} \neq 0 \neq \delta\mathcal{P}$

Boundary conditions in BF formulation

- ▶ Ansatz (worked nicely for Jackiw–Teitelboim; inspired by 3d)

$$\mathcal{A} = b^{-1}(\mathbf{d} + \mathbf{a})b \quad B = b^{-1}x b$$

with group element $b = \exp(-r P_+)$ and

$$\begin{aligned} \mathbf{a} &= (\mathcal{T}(u)P_+ + P_- + \mathcal{P}(u)J) \, du \\ x &= x^+(u)P_+ + x_1(u)P_- + YJ + x_0(u)Z \end{aligned}$$

where $\delta\mathcal{T} \neq 0 \neq \delta\mathcal{P}$

- ▶ yields metric shown before, dilaton

$$X = x_1(u)r + x_0(u)$$

and Maxwell field $A = r \, du$

get BMS_2 asymptotic symmetries!

Boundary conditions in BF formulation

- ▶ Ansatz (worked nicely for Jackiw–Teitelboim; inspired by 3d)

$$\mathcal{A} = b^{-1}(\mathbf{d} + \mathbf{a})b \quad B = b^{-1}x b$$

with group element $b = \exp(-r P_+)$ and

$$\begin{aligned} \mathbf{a} &= (\mathcal{T}(u)P_+ + P_- + \mathcal{P}(u)J) \, du \\ x &= x^+(u)P_+ + x_1(u)P_- + YJ + x_0(u)Z \end{aligned}$$

where $\delta\mathcal{T} \neq 0 \neq \delta\mathcal{P}$

- ▶ yields metric shown before, dilaton

$$X = x_1(u)r + x_0(u)$$

and Maxwell field $A = r \, du$

- ▶ Maxwell field preserved by combined diffeos and gauge trasfos

$$\delta A_\nu = \xi^\mu \partial_\mu A_\nu + A_\mu \partial_\nu \xi^\mu + \partial_\nu \sigma \quad \xi(\epsilon, \eta) = \epsilon(u) \partial_u - (\epsilon'(u)r + \eta(u)) \partial_r$$

provided $\eta = \sigma'$

either η has no 0-mode or σ not single-valued (winding modes)

Boundary conditions in BF formulation

- ▶ Ansatz (worked nicely for Jackiw–Teitelboim; inspired by 3d)

$$\mathcal{A} = b^{-1}(\mathbf{d} + \mathbf{a})b \quad B = b^{-1}xb$$

with group element $b = \exp(-r P_+)$ and

$$\begin{aligned} \mathbf{a} &= (\mathcal{T}(u)P_+ + P_- + \mathcal{P}(u)J) \, du \\ x &= x^+(u)P_+ + x_1(u)P_- + YJ + x_0(u)Z \end{aligned}$$

where $\delta\mathcal{T} \neq 0 \neq \delta\mathcal{P}$

- ▶ yields metric shown before, dilaton

$$X = x_1(u)r + x_0(u)$$

and Maxwell field $A = r \, du$

- ▶ Maxwell field preserved by combined diffeos and gauge trasfos

$$\delta A_\nu = \xi^\mu \partial_\mu A_\nu + A_\mu \partial_\nu \xi^\mu + \partial_\nu \sigma \quad \xi(\epsilon, \eta) = \epsilon(u) \partial_u - (\epsilon'(u)r + \eta(u)) \partial_r$$

provided $\eta = \sigma'$

- ▶ focus on case $\delta_\sigma \oint A = 0$ (no winding modes) \Rightarrow warped Witt algebra

Twisted warped boundary action (see also Afshar '19)

- ▶ Variation of Euclidean BF action ($t = iu$)

$$\delta I_{\text{BF}} = \text{bulk-EOM} - \kappa \oint dt \langle x, \delta a_t \rangle$$

Twisted warped boundary action (see also Afshar '19)

- ▶ Variation of Euclidean BF action ($t = iu$)

$$\delta I_{\text{BF}} = \text{bulk-EOM} - \kappa \oint dt \langle x, \delta a_t \rangle$$

- ▶ Goal: cancel boundary term by adding boundary action I_{tw}

Physical interpretation:

Gravity: I_{tw} describes dynamics of edge modes

Field theory: I_{tw} describes dynamics of collective low T modes
(in large N limit)

Twisted warped boundary action (see also Afshar '19)

- ▶ Variation of Euclidean BF action ($t = iu$)

$$\delta I_{\text{BF}} = \text{bulk-EOM} - \kappa \oint dt \langle x, \delta a_t \rangle$$

- ▶ Goal: cancel boundary term by adding boundary action I_{tw}
- ▶ follow JT story in BF formulation González, DG, Salzer '18

Twisted warped boundary action (see also Afshar '19)

- ▶ Variation of Euclidean BF action ($t = iu$)

$$\delta I_{\text{BF}} = \text{bulk-EOM} - \kappa \oint dt \langle x, \delta a_t \rangle$$

- ▶ Goal: cancel boundary term by adding boundary action I_{tw}
- ▶ follow JT story in BF formulation González, DG, Salzer '18
- ▶ defining $1/x_1 \sim \partial_t f$ and $x_0/x_1 \sim \partial_t g$ result is

$$I_{\text{tw}}[h, g] = \kappa \int_0^\beta d\tau \left(\mathcal{T}h'^2 - g' \left(i\mathcal{P}h' + \frac{h''}{h'} \right) \right)$$

with $\tau := f(t)$, $h(\tau) := -f^{-1}(\tau)$ and $\tau \sim \tau + \beta$ (prime means $d/d\tau$)

Twisted warped boundary action (see also Afshar '19)

- ▶ Variation of Euclidean BF action ($t = iu$)

$$\delta I_{\text{BF}} = \text{bulk-EOM} - \kappa \oint dt \langle x, \delta a_t \rangle$$

- ▶ Goal: cancel boundary term by adding boundary action I_{tw}
- ▶ follow JT story in BF formulation González, DG, Salzer '18
- ▶ defining $1/x_1 \sim \partial_t f$ and $x_0/x_1 \sim \partial_t g$ result is

$$I_{\text{tw}}[h, g] = \kappa \int_0^\beta d\tau \left(\mathcal{T}h'^2 - g' \left(i\mathcal{P}h' + \frac{h''}{h'} \right) \right)$$

twisted warped action is flat space analogue of Schwarzian action!

- ▶ Schwarzian action: group action for Virasoro coadjoint orbits
- ▶ twisted warped action: group action for twisted warped coadjoint orbits

$$[L_n, L_m] = (n - m) L_{n+m}$$

$$[L_n, J_m] = -m J_{n+m} - i\kappa(n^2 - n) \delta_{n+m, 0}$$

$$[J_n, J_m] = 0$$

Twisted warped boundary action (see also Afshar '19)

- ▶ Variation of Euclidean BF action ($t = iu$)

$$\delta I_{\text{BF}} = \text{bulk-EOM} - \kappa \oint dt \langle x, \delta a_t \rangle$$

- ▶ Goal: cancel boundary term by adding boundary action I_{tw}
- ▶ follow JT story in BF formulation González, DG, Salzer '18
- ▶ defining $1/x_1 \sim \partial_t f$ and $x_0/x_1 \sim \partial_t g$ result is

$$I_{\text{tw}}[h, g] = \kappa \int_0^{\beta} d\tau \left(\mathcal{T}h'^2 - g' \left(i\mathcal{P}h' + \frac{h''}{h'} \right) \right)$$

- ▶ asymptotic symmetries: h, g boundary scalars under diffeos and g phase under $u(1)$ trasfos

Twisted warped boundary action (see also Afshar '19)

- ▶ Variation of Euclidean BF action ($t = iu$)

$$\delta I_{\text{BF}} = \text{bulk-EOM} - \kappa \oint dt \langle x, \delta a_t \rangle$$

- ▶ Goal: cancel boundary term by adding boundary action I_{tw}
- ▶ follow JT story in BF formulation González, DG, Salzer '18
- ▶ defining $1/x_1 \sim \partial_t f$ and $x_0/x_1 \sim \partial_t g$ result is

$$I_{\text{tw}}[h, g] = \kappa \int_0^\beta d\tau \left(\mathcal{T}h'^2 - g' \left(i\mathcal{P}h' + \frac{h''}{h'} \right) \right)$$

- ▶ asymptotic symmetries: h, g boundary scalars under diffeos and g phase under $u(1)$ trasfos

Twisted warped action resembles effective action for complex SYK

Outline

Motivation for BMS_2

Kinematics and BMS_2

Dynamics yielding BMS_2

Relation to SYK/JT

Outlook

Hamiltonian formulation

- ▶ twisted warped Hamiltonian action

$$I_{\text{tw}} = -\kappa \int_0^\beta dt (p_i \dot{q}_i - p_1 p_2 - e^{q_1} p_3) \quad i = 1, 2, 3$$

where $q_3 = \exp(i\mathcal{P}h)$ and $q_2 = g + ih\mathcal{T}/\mathcal{P}$ (rest: auxiliary fields)

Hamiltonian formulation

- ▶ twisted warped Hamiltonian action

$$I_{\text{tw}} = -\kappa \int_0^\beta dt (p_i \dot{q}_i - p_1 p_2 - e^{q_1} p_3) \quad i = 1, 2, 3$$

where $q_3 = \exp(i\mathcal{P}h)$ and $q_2 = g + ih\mathcal{T}/\mathcal{P}$ (rest: auxiliary fields)

- ▶ similar to Schwarzian Hamiltonian action

$$I_{\text{sch}} = -\kappa \int_0^\beta dt (p_i \dot{q}_i - p_1^2 - e^{q_1} p_3)$$

Hamiltonian formulation

- ▶ twisted warped Hamiltonian action

$$I_{\text{tw}} = -\kappa \int_0^\beta dt (p_i \dot{q}_i - p_1 p_2 - e^{q_1} p_3) \quad i = 1, 2, 3$$

where $q_3 = \exp(i\mathcal{P}h)$ and $q_2 = g + ih\mathcal{T}/\mathcal{P}$ (rest: auxiliary fields)

- ▶ similar to Schwarzian Hamiltonian action

$$I_{\text{sch}} = -\kappa \int_0^\beta dt (p_i \dot{q}_i - p_1^2 - e^{q_1} p_3)$$

- ▶ solutions

$$q_3 = h_0 + h_1 e^{i\tau/\tau_0} \Rightarrow \mathcal{P} \quad q_2 = g_0 - ig_1 \tau + g_2 e^{i\tau/\tau_0} \Rightarrow \mathcal{T}$$

five integration constants g_0, g_1, g_2, h_0, h_1 ; periodicity $\tau_0 = \beta/(2\pi)$

Hamiltonian formulation

- ▶ twisted warped Hamiltonian action

$$I_{\text{tw}} = -\kappa \int_0^\beta dt (p_i \dot{q}_i - p_1 p_2 - e^{q_1} p_3) \quad i = 1, 2, 3$$

where $q_3 = \exp(i\mathcal{P}h)$ and $q_2 = g + ih\mathcal{T}/\mathcal{P}$ (rest: auxiliary fields)

- ▶ similar to Schwarzian Hamiltonian action

$$I_{\text{sch}} = -\kappa \int_0^\beta dt (p_i \dot{q}_i - p_1^2 - e^{q_1} p_3)$$

- ▶ solutions

$$q_3 = h_0 + h_1 e^{i\tau/\tau_0} \Rightarrow \mathcal{P} \quad q_2 = g_0 - ig_1 \tau + g_2 e^{i\tau/\tau_0} \Rightarrow \mathcal{T}$$

five integration constants g_0, g_1, g_2, h_0, h_1 ; periodicity $\tau_0 = \beta/(2\pi)$

- ▶ on-shell action $I_{\text{tw}}|_{\text{EOM}} = -2\pi\kappa g_1$

Thermodynamics

- ▶ Assuming g_1 independent from temperature get entropy

$$S = -I_{\text{tw}}|_{\text{EOM}} = 2\pi\kappa g_1$$

Thermodynamics

- ▶ Assuming g_1 independent from temperature get entropy

$$S = -I_{\text{tw}}|_{\text{EOM}} = 2\pi\kappa g_1$$

- ▶ Using result for dilaton $g_1 = X|_{\text{horizon}}$ yields

$$S = 2\pi\kappa X|_{\text{horizon}}$$

standard result (Wald entropy applied to 2d dilaton gravity)

Thermodynamics

- ▶ Assuming g_1 independent from temperature get entropy

$$S = -I_{\text{tw}}|_{\text{EOM}} = 2\pi\kappa g_1$$

- ▶ Using result for dilaton $g_1 = X|_{\text{horizon}}$ yields

$$S = 2\pi\kappa X|_{\text{horizon}}$$

standard result (Wald entropy applied to 2d dilaton gravity)

- ▶ assumption above derivable from regularity condition

$$\mathcal{P} = 2\pi T \quad \mathcal{T} \text{ arbitrary}$$

- ▶ Assuming g_1 independent from temperature get entropy

$$S = -I_{\text{tw}}|_{\text{EOM}} = 2\pi\kappa g_1$$

- ▶ Using result for dilaton $g_1 = X|_{\text{horizon}}$ yields

$$S = 2\pi\kappa X|_{\text{horizon}}$$

standard result (Wald entropy applied to 2d dilaton gravity)

- ▶ assumption above derivable from regularity condition

$$\mathcal{P} = 2\pi T \quad \mathcal{T} \text{ arbitrary}$$

- ▶ on-shell $\mathcal{P} = Y$ is $u(1)$ charge, while \mathcal{T} is mass

Thermodynamics

- ▶ Assuming g_1 independent from temperature get entropy

$$S = -I_{\text{tw}}|_{\text{EOM}} = 2\pi\kappa g_1$$

- ▶ Using result for dilaton $g_1 = X|_{\text{horizon}}$ yields

$$S = 2\pi\kappa X|_{\text{horizon}}$$

standard result (Wald entropy applied to 2d dilaton gravity)

- ▶ assumption above derivable from regularity condition

$$\mathcal{P} = 2\pi T \quad \mathcal{T} \text{ arbitrary}$$

- ▶ on-shell $\mathcal{P} = Y$ is $u(1)$ charge, while \mathcal{T} is mass
- ▶ peculiarity: inverse specific vanishes (well-known property of CGHS)

$$C^{-1} = \frac{1}{T} \frac{dT}{dS} \Big|_{\delta\mathcal{P}=0} = 0$$

- ▶ Assuming g_1 independent from temperature get entropy

$$S = -I_{\text{tw}}|_{\text{EOM}} = 2\pi\kappa g_1$$

- ▶ Using result for dilaton $g_1 = X|_{\text{horizon}}$ yields

$$S = 2\pi\kappa X|_{\text{horizon}}$$

standard result (Wald entropy applied to 2d dilaton gravity)

- ▶ assumption above derivable from regularity condition

$$\mathcal{P} = 2\pi T \quad \mathcal{T} \text{ arbitrary}$$

- ▶ on-shell $\mathcal{P} = Y$ is $u(1)$ charge, while \mathcal{T} is mass
- ▶ peculiarity: inverse specific vanishes (well-known property of CGHS)

$$C^{-1} = \frac{1}{T} \frac{dT}{dS} \Big|_{\delta\mathcal{P}=0} = 0$$

- ▶ useful property for scaling limit from complex SYK

- Effective action governing collective low T modes of complex SYK

$$I_{\text{cSYK}}[h, g] = \frac{NK}{2} \int_0^\beta d\tau \left(g' + \frac{2\pi i \mathcal{E}}{\beta} h' \right)^2 - \frac{N\gamma}{4\pi^2} \int_0^\beta d\tau \left\{ \tan \left(\frac{\pi}{\beta} h \right); \tau \right\}$$

- Effective action governing collective low T modes of complex SYK

$$I_{\text{cSYK}}[h, g] = \frac{NK}{2} \int_0^\beta d\tau \left(g' + \frac{2\pi i \mathcal{E}}{\beta} h' \right)^2 - \frac{N\gamma}{4\pi^2} \int_0^\beta d\tau \left\{ \tan \left(\frac{\pi}{\beta} h \right); \tau \right\}$$

$\{f; \tau\} := f'''/f' - \frac{3}{2}(f''/f')^2$ Schwarzian derivative

N (large) number of complex fermions

$N\gamma$ specific heat at fixed charge

K zero temperature compressibility

\mathcal{E} spectral asymmetry parameter

$h(\tau)$ time-reparametrization field (quasi-periodic, $h(\tau + \beta) = h(\tau) + \beta$)

$g(\tau)$ phase field (periodic in absence of winding)

- Effective action governing collective low T modes of complex SYK

$$I_{\text{cSYK}}[h, g] = \frac{NK}{2} \int_0^\beta d\tau \left(g' + \frac{2\pi i \mathcal{E}}{\beta} h' \right)^2 - \frac{N\gamma}{4\pi^2} \int_0^\beta d\tau \left\{ \tan \left(\frac{\pi}{\beta} h \right); \tau \right\}$$

$\{f; \tau\} := f'''/f' - \frac{3}{2}(f''/f')^2$ Schwarzian derivative

N (large) number of complex fermions

$N\gamma$ specific heat at fixed charge

K zero temperature compressibility

\mathcal{E} spectral asymmetry parameter

$h(\tau)$ time-reparametrization field (quasi-periodic, $h(\tau + \beta) = h(\tau) + \beta$)

$g(\tau)$ phase field (periodic in absence of winding)

- according to our thermodynamics need limit $N\gamma \rightarrow \infty$ (infinite specific heat)

- ▶ Effective action governing collective low T modes of complex SYK

$$I_{\text{cSYK}}[h, g] = \frac{NK}{2} \int_0^\beta d\tau \left(g' + \frac{2\pi i \mathcal{E}}{\beta} h' \right)^2 - \frac{N\gamma}{4\pi^2} \int_0^\beta d\tau \left\{ \tan \left(\frac{\pi}{\beta} h \right); \tau \right\}$$

- ▶ according to our thermodynamics need limit $N\gamma \rightarrow \infty$ (infinite specific heat)
- ▶ turns out additionally need limit $K \rightarrow 0$ (vanishing zero temperature compressibility)

- Effective action governing collective low T modes of complex SYK

$$I_{\text{cSYK}}[h, g] = \frac{NK}{2} \int_0^\beta d\tau \left(g' + \frac{2\pi i \mathcal{E}}{\beta} h' \right)^2 - \frac{N\gamma}{4\pi^2} \int_0^\beta d\tau \left\{ \tan \left(\frac{\pi}{\beta} h \right); \tau \right\}$$

- according to our thermodynamics need limit $N\gamma \rightarrow \infty$ (infinite specific heat)
- turns out additionally need limit $K \rightarrow 0$ (vanishing zero temperature compressibility)
- inserting these limits into $I_{\text{cSYK}}[h, g]$ yields twisted warped action

$$\lim_{N\gamma \rightarrow \infty, K \rightarrow 0} I_{\text{cSYK}}[h, g] = I_{\text{tw}}[h, g] = \kappa \int_0^\beta d\tau \left(\mathcal{T}h'^2 - g' \left(i\mathcal{P}h' + \frac{h''}{h'} \right) \right)$$

with $\kappa^2 \sim N^a \gamma K$ kept finite

Asymptotic symmetries

- ▶ can see same singular limit at level of asymptotic symmetry algebras

Asymptotic symmetries

- ▶ can see same singular limit at level of asymptotic symmetry algebras
- ▶ twisted warped Virasoro algebra (warped Witt with all cocycles)

$$[L_n, L_m] = (n - m) L_{n+m} + \frac{c}{12} (n^3 - n) \delta_{n+m, 0}$$

$$[L_n, J_m] = -m J_{n+m} - i\kappa (n^2 - n) \delta_{n+m, 0}$$

$$[J_n, J_m] = \frac{\hat{K}}{2} n \delta_{n+m, 0}$$

c : Virasoro central charge; κ : twist; \hat{K} : level of $u(1)$ current

Asymptotic symmetries

- ▶ can see same singular limit at level of asymptotic symmetry algebras
- ▶ twisted warped Virasoro algebra (warped Witt with all cocycles)

$$[L_n, L_m] = (n - m) L_{n+m} + \frac{c}{12} (n^3 - n) \delta_{n+m,0}$$

$$[L_n, J_m] = -m J_{n+m} - i\kappa (n^2 - n) \delta_{n+m,0}$$

$$[J_n, J_m] = \frac{\hat{K}}{2} n \delta_{n+m,0}$$

c : Virasoro central charge; κ : twist; \hat{K} : level of $u(1)$ current

- ▶ complex SYK: warped Virasoro algebra ($c \neq 0 \neq \hat{K}$; $\kappa = 0$)

Asymptotic symmetries

- ▶ can see same singular limit at level of asymptotic symmetry algebras
- ▶ twisted warped Virasoro algebra (warped Witt with all cocycles)

$$[L_n, L_m] = (n - m) L_{n+m} + \frac{c}{12} (n^3 - n) \delta_{n+m,0}$$

$$[L_n, J_m] = -m J_{n+m} - i\kappa (n^2 - n) \delta_{n+m,0}$$

$$[J_n, J_m] = \frac{\hat{K}}{2} n \delta_{n+m,0}$$

c : Virasoro central charge; κ : twist; \hat{K} : level of $u(1)$ current

- ▶ complex SYK: warped Virasoro algebra ($c \neq 0 \neq \hat{K}$; $\kappa = 0$)
- ▶ our model: twisted warped algebra ($c = 0 = \hat{K}$; $\kappa \neq 0$)

Asymptotic symmetries

- ▶ can see same singular limit at level of asymptotic symmetry algebras
- ▶ twisted warped Virasoro algebra (warped Witt with all cocycles)

$$[L_n, L_m] = (n - m) L_{n+m} + \frac{c}{12} (n^3 - n) \delta_{n+m,0}$$

$$[L_n, J_m] = -m J_{n+m} - i\kappa (n^2 - n) \delta_{n+m,0}$$

$$[J_n, J_m] = \frac{\hat{K}}{2} n \delta_{n+m,0}$$

c : Virasoro central charge; κ : twist; \hat{K} : level of $u(1)$ current

- ▶ complex SYK: warped Virasoro algebra ($c \neq 0 \neq \hat{K}$; $\kappa = 0$)
- ▶ our model: twisted warped algebra ($c = 0 = \hat{K}$; $\kappa \neq 0$)
- ▶ map first between twisted warped Virasoro and warped Virasoro

$$c \rightarrow c - \frac{24\kappa^2}{\hat{K}}$$

by change of basis $L_n \rightarrow L_n + i\frac{2\kappa}{\hat{K}} n J_n$ and shift of 0-modes

Asymptotic symmetries

- ▶ can see same singular limit at level of asymptotic symmetry algebras
- ▶ twisted warped Virasoro algebra (warped Witt with all cocycles)

$$[L_n, L_m] = (n - m) L_{n+m} + \frac{c}{12} (n^3 - n) \delta_{n+m,0}$$

$$[L_n, J_m] = -m J_{n+m} - i\kappa (n^2 - n) \delta_{n+m,0}$$

$$[J_n, J_m] = \frac{\hat{K}}{2} n \delta_{n+m,0}$$

c : Virasoro central charge; κ : twist; \hat{K} : level of $u(1)$ current

- ▶ complex SYK: warped Virasoro algebra ($c \neq 0 \neq \hat{K}$; $\kappa = 0$)
- ▶ our model: twisted warped algebra ($c = 0 = \hat{K}$; $\kappa \neq 0$)
- ▶ map first between twisted warped Virasoro and warped Virasoro

$$c \rightarrow c - \frac{24\kappa^2}{\hat{K}}$$

by change of basis $L_n \rightarrow L_n + i\frac{2\kappa}{\hat{K}} n J_n$ and shift of 0-modes

- ▶ then take limit $\hat{K} \rightarrow 0$, $c \rightarrow \infty$ keeping fixed $\kappa = \sqrt{-\frac{c\hat{K}}{24}}$

Conclusions

For more details see Afshar, González, DG, Vassilevich 1911.05739

- ▶ CGHS a la Cangemi–Jackiw bulk model for flat space holography

$$I[X, Y, g_{\mu\nu}, A_\mu] = \frac{\kappa}{2} \int_{\mathcal{M}} d^2x \sqrt{|g|} (XR - 2Y + 2Y\epsilon^{\mu\nu}\partial_\mu A_\nu)$$

Conclusions

For more details see Afshar, González, DG, Vassilevich 1911.05739

- ▶ CGHS a la Cangemi–Jackiw bulk model for flat space holography

$$I[X, Y, g_{\mu\nu}, A_\mu] = \frac{\kappa}{2} \int_{\mathcal{M}} d^2x \sqrt{|g|} (XR - 2Y + 2Y\epsilon^{\mu\nu}\partial_\mu A_\nu)$$

- ▶ asymptotically flat boundary conditions yield BMS_2

Conclusions

For more details see Afshar, González, DG, Vassilevich 1911.05739

- ▶ CGHS a la Cangemi–Jackiw bulk model for flat space holography

$$I[X, Y, g_{\mu\nu}, A_\mu] = \frac{\kappa}{2} \int_{\mathcal{M}} d^2x \sqrt{|g|} (XR - 2Y + 2Y\epsilon^{\mu\nu}\partial_\mu A_\nu)$$

- ▶ asymptotically flat boundary conditions yield BMS₂
- ▶ boundary action is twisted warped action

$$I_{\text{tw}}[h, g] = \kappa \int_0^\beta d\tau \left(\mathcal{T}h'^2 - g' \left(i\mathcal{P}h' + \frac{h''}{h'} \right) \right)$$

Conclusions

For more details see Afshar, González, DG, Vassilevich 1911.05739

- ▶ CGHS a la Cangemi–Jackiw bulk model for flat space holography

$$I[X, Y, g_{\mu\nu}, A_\mu] = \frac{\kappa}{2} \int_{\mathcal{M}} d^2x \sqrt{|g|} (XR - 2Y + 2Y\epsilon^{\mu\nu}\partial_\mu A_\nu)$$

- ▶ asymptotically flat boundary conditions yield BMS_2
- ▶ boundary action is twisted warped action

$$I_{\text{tw}}[h, g] = \kappa \int_0^\beta d\tau \left(\mathcal{T}h'^2 - g' \left(i\mathcal{P}h' + \frac{h''}{h'} \right) \right)$$

- ▶ follows as singular limit from complex SYK
(large specific heat, small compressibility)

Conclusions

For more details see Afshar, González, DG, Vassilevich 1911.05739

- ▶ CGHS a la Cangemi–Jackiw bulk model for flat space holography

$$I[X, Y, g_{\mu\nu}, A_\mu] = \frac{\kappa}{2} \int_{\mathcal{M}} d^2x \sqrt{|g|} (XR - 2Y + 2Y\epsilon^{\mu\nu}\partial_\mu A_\nu)$$

- ▶ asymptotically flat boundary conditions yield BMS_2
- ▶ boundary action is twisted warped action

$$I_{\text{tw}}[h, g] = \kappa \int_0^\beta d\tau \left(\mathcal{T}h'^2 - g' \left(i\mathcal{P}h' + \frac{h''}{h'} \right) \right)$$

- ▶ follows as singular limit from complex SYK
(large specific heat, small compressibility)
- ▶ asymptotic symmetries also from singular limit of warped Virasoro

Conclusions

For more details see Afshar, González, DG, Vassilevich 1911.05739

- ▶ CGHS a la Cangemi–Jackiw bulk model for flat space holography

$$I[X, Y, g_{\mu\nu}, A_\mu] = \frac{\kappa}{2} \int_{\mathcal{M}} d^2x \sqrt{|g|} (XR - 2Y + 2Y\epsilon^{\mu\nu}\partial_\mu A_\nu)$$

- ▶ asymptotically flat boundary conditions yield BMS_2
- ▶ boundary action is twisted warped action

$$I_{\text{tw}}[h, g] = \kappa \int_0^\beta d\tau \left(\mathcal{T}h'^2 - g' \left(i\mathcal{P}h' + \frac{h''}{h'} \right) \right)$$

- ▶ follows as singular limit from complex SYK
(large specific heat, small compressibility)
- ▶ asymptotic symmetries also from singular limit of warped Virasoro
- ▶ could be useful toy model for flat space holography

Outline

Motivation for BMS_2

Kinematics and BMS_2

Dynamics yielding BMS_2

Relation to SYK/JT

Outlook

Future developments

- ▶ Flat space holography in 2d

Future developments

- ▶ Flat space holography in 2d
- ▶ Cardyology

Future developments

- ▶ Flat space holography in 2d
- ▶ Cardyology
- ▶ Chaos bound saturation

Future developments

- ▶ Flat space holography in 2d
- ▶ Cardyology
- ▶ Chaos bound saturation
- ▶ Experimental realization

Future developments

- ▶ Flat space holography in 2d
- ▶ Cardiology
- ▶ Chaos bound saturation
- ▶ Experimental realization

Thanks for your attention!

