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Asymptotic symmetries in gravity

» Natural boundary conditions not applicable in gravity:
metric must not vanish asymptotically
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Asymptotic symmetries in gravity

» Natural boundary conditions not applicable in gravity
» Gravity (or gauge) theories in presence of (asymptotic) boundaries:

Asymptotic symmetries }

All boundary condition preserving transformations
modulo proper gauge transformations

» Choice of boundary conditions determines asymptotic symmetries

TILI% guu(T7 xz) = guu(rln xz) + 5guu(rb, xl)
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Asymptotic symmetries in gravity

» Natural boundary conditions not applicable in gravity
» Gravity (or gauge) theories in presence of (asymptotic) boundaries:

Asymptotic symmetries }

All boundary condition preserving transformations
modulo proper gauge transformations

» Choice of boundary conditions determines asymptotic symmetries

TILHle guu(T7 tLl) = guu(rln tLl) + 5guu(rb, LLL)

r: some convenient ( “radial”) coordinate
rp: value of r at boundary (could be )

x': remaining coordinates (“boundary” coordinates)

Daniel Grumiller — Flat space holography and complex SYK Motivation for BMSo 4/30



Asymptotic symmetries in gravity

» Natural boundary conditions not applicable in gravity
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Asymptotic symmetries in gravity

» Natural boundary conditions not applicable in gravity
» Gravity (or gauge) theories in presence of (asymptotic) boundaries:
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All boundary condition preserving transformations
modulo proper gauge transformations

» Choice of boundary conditions determines asymptotic symmetries
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Asymptotic symmetries in gravity

» Natural boundary conditions not applicable in gravity
» Gravity (or gauge) theories in presence of (asymptotic) boundaries:

Asymptotic symmetries }

All boundary condition preserving transformations
modulo proper gauge transformations

» Choice of boundary conditions determines asymptotic symmetries

lim guu(T7 xz) = guu(rln xz) + 59;11/(7'1)-, 117i)

=Ty

r: some convenient ( “radial”) coordinate
rp: value of r at boundary (could be )
x': remaining coordinates
guv: metric compatible with bc's
G (asymptotic) background metric
0g,u: fluctuations permitted by bc's
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Asymptotic symmetries in gravity

» Natural boundary conditions not applicable in gravity
» Gravity (or gauge) theories in presence of (asymptotic) boundaries:

Asymptotic symmetries }

All boundary condition preserving transformations
modulo proper gauge transformations

» Choice of boundary conditions determines asymptotic symmetries

TILHle g/w(ra r') = guu(rln z') + 5!]/11/(7"()-, ')

r: some convenient ( “radial”) coordinate
rp: value of r at boundary (could be )
x': remaining coordinates
guv: Metric compatible with bc's
G (asymptotic) background metric
dg,u: fluctuations permitted by bc's

Daniel Grumiller — Flat space holography and complex SYK Motivation for BMSo 4/30



Asymptotic symmetries in gravity

» Natural boundary conditions not applicable in gravity
» Gravity (or gauge) theories in presence of (asymptotic) boundaries:

Asymptotic symmetries }

All boundary condition preserving transformations
modulo proper gauge transformations

» Choice of boundary conditions determines asymptotic symmetries
TILI% guu(ra lz) = guu(rln xz) + 5!]/11/(7'()-, 1175)

P> bc-preserving trafos generated by asymptotic Killing vectors &:

N !
Legu = O(0gu)
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Asymptotic symmetries in gravity

Asymptotic symmetries }

All boundary condition preserving transformations
modulo proper gauge transformations

» Choice of boundary conditions determines asymptotic symmetries

'r‘h—>n"r’lb g;w<r7 "El) = g,u,l/(’rbv xl) + (Sg;w(rb' Il/)

P> bc-preserving trafos generated by asymptotic Killing vectors ¢:

!
[{g,ul/ = O((Sg;w)
P typically, asymptotic Killing vectors can be expanded radially

E(ry, b)) = {é:])(/'/). z') 4 subleading terms

&Z:n(”" x'): generates asymptotic symmetries (improper diffeos)

subleading terms: generate proper diffeos
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Asymptotic symmetries in gravity

Asymptotic symmetries }

All boundary condition preserving transformations
modulo proper gauge transformations

» Choice of boundary conditions determines asymptotic symmetries

lim g;w<T: "EL) = g,uu("“bv -Tl) + (Sg“,,(f‘{,. -17i)

T—Tp
» bc-preserving trafos generated by asymptotic Killing vectors ¢:

. ! -
LeGu = O(Og/u/)
P typically, asymptotic Killing vectors can be expanded radially

i

H(ry, ') = L{:”(;-/,‘ 1') + proper diffeos

Definition of asymptotic symmetry algebra

Lie bracket quotient algebra of asymptotic
Killing vectors modulo proper diffeos
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Asymptotic symmetries and holography

Asymptotic symmetries = boundary condition preserving
transformations modulo proper gauge transformations

Some references:

» covariant phase space: Lee, Wald '90, lyer, Wald '94 and Barnich,
Brandt '02

> reviews: see Compere, Fiorucci '18, Harlow, Wu '19 and refs. therein

P canonical analysis: Arnowitt, Deser, Misner '59, Regge, Teitelboim
'"74 and Brown, Henneaux '86

> review: see Bafiados, Reyes '16 and refs. therein

» boundary excitations/edge modes: see e.g. Balachandran et al '91,
Carlip '94

» more recent work: Freidel, Livine, Pranzetti '19; Freidel, Geiller,
Pranzetti '20
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https://arxiv.org/abs/2006.12527
https://arxiv.org/abs/2006.12527

Asymptotic symmetries and holography

Asymptotic symmetries = boundary condition preserving
transformations modulo proper gauge transformations

» AdS/CFT
> basic ingredient of AdS/CFT tests based on symmetries
> captures universal UV features of QFTs (conformal symmetries)
> Brown—Henneaux precursor for AdS3/CFT,
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» AdS/CFT
> basic ingredient of AdS/CFT tests based on symmetries
> captures universal UV features of QFTs (conformal symmetries)
> Brown—Henneaux precursor for AdS3/CFT,

> Flat space
» basic ingredient of flat space holography tests based on symmetries
> captures universal IR features of QFTs (Ward id's <> soft theorems)
» Barnich—Compere precursor for FS3/CCFTs
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Asymptotic symmetries and holography

Asymptotic symmetries = boundary condition preserving
transformations modulo proper gauge transformations

» AdS/CFT
> basic ingredient of AdS/CFT tests based on symmetries
> captures universal UV features of QFTs (conformal symmetries)
> Brown—Henneaux precursor for AdS3/CFT,
» Flat space
» basic ingredient of flat space holography tests based on symmetries
> captures universal IR features of QFTs (Ward id's <> soft theorems)
» Barnich—Compere precursor for FS3/CCFTs
» Holography beyond AdS/CFT
> asymptotic holography beyond AdS/CFT?
» near horizon holography?
P asymptotic symmetries important input for structure of dual QFT
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BMS,

Brief history:

> general relativity in limit of low curvature = special relativity
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Brief history:
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BMS,

Brief history:
> general relativity in limit of low curvature # special relativity
> if yes, expect Poincaré as asymptotic symmetries
» Bondi, van der Burgh, Metzner and Sachs '62 (BMS):
no, get infinite extension of Poincaré by super-translations P(x)

x: angular coordinates
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BMS,

Brief history:

> general relativity in limit of low curvature # special relativity
> if yes, expect Poincaré as asymptotic symmetries

» Bondi, van der Burgh, Metzner and Sachs '62 (BMS):
no, get infinite extension of Poincaré by super-translations P(x)

> (extended) BMSy algebra (J,(z): diff S? or restriction thereof)
{al@), Ba)} = (Ju(a)0h — Jy(2)2]) 8(x — o)
{Ual@), P} = (5 P2 = P@)3,) d(x — ')
{P(z), P(2')} =0

s: spin of super-translations (in original BMS,: s = 1)

i)
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BMS,

Brief history:
> general relativity in limit of low curvature # special relativity
> if yes, expect Poincaré as asymptotic symmetries

» Bondi, van der Burgh, Metzner and Sachs '62 (BMS):
no, get infinite extension of Poincaré by super-translations P(x)

> (extended) BMSy algebra (J,(z): diff S? or restriction thereof)
{al@), Ba)} = (Ju(a)0h — Jy(2)2]) 8(x — o)
Ual@), P')} = (5 P(a)0s — P(@)3,) 8(z — )
{P(z), P(2')} =0

s: spin of super-translations (in original BMS,: s = 1)

i)

> get same algebra as near horizon symmetries (in any dimension > 3)
Donnay, Giribet, Gonzélez, Pino '15 s = 0 (‘scalar super-translations’)
DG, Perez, Troncoso, Sheikh-Jabbari, Zwikel '19 arbitrary s
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BMS3

» Barnich, Gomberoff, Gonzélez '12 BMS3 from CFTs by contraction
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BMS3

» Barnich, Gomberoff, Gonzélez '12 BMS3 from CFTs by contraction
» Change the Virasoro basis £, £,

L,=L,—L_, M, =
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BMS3

» Barnich, Gomberoff, Gonzédlez '12 BMS3 from CFTs by contraction
» Change the Virasoro basis £, £,

Ly=Lo—Loy My =+ (Lo + L)

~|

» In this new basis Virasoro algebras reads

C

(L, My] = (n —m) My + %4 (n® = 1) 6ppm.0
[Mna Mm] = O(l/ﬁ)

with central charges c;, =c— ¢ and ¢py = % (C + 6)
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» Change the Virasoro basis £, £,

Ly=Lo—Loy My =+ (Lo + L)

~|

» In this new basis Virasoro algebras reads

C

(L, My] = (n —m) My + %4 (n® = 1) 6ppm.0
[Mna Mm] = O(l/ﬁ)
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Daniel Grumiller — Flat space holography and complex SYK Motivation for BMSo 7/30



BMS3

» Barnich, Gomberoff, Gonzédlez '12 BMS3 from CFTs by contraction
» Change the Virasoro basis £, £,

Ly=Lo—Loy My =+ (Lo + L)

|

» In this new basis Virasoro algebras reads

C

(L, My] = (n —m) My + %4 (n® = 1) 6ppm.0
[Mm Mm] = O(l/ﬁ)

with central charges c;, =c— ¢ and ¢py = % (c + 6)
» Contraction means ¢ — oo and yields BMS3 (M,,: super-translations)
» Example: Einstein gravity
3¢
2G

c=cC=

3
= CLZO CMZE
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Status of 3d flat space holography

v

VVVVVYVVVYVYVYVVVYVYYVYYVYY

asymptotic symmetries (Ashtekar, Bicak, Schmidt '96)

central extensions in asymptotic symmetries (Barnich, Compere '06)
dual field theory: BMS-invariant QFT (Carrollian CFT)

concrete proposal: flat space chiral gravity (Bagchi, Detournay, DG '12)
Cardyology works (Bagchi et al '12; Barnich '12)

Hawking—Page-like phase transitions (Bagchi, Detournay, DG, Simén '13)
(holographic) entanglement entropy (Basu, Bagchi, DG, Riegler '14)
1-loop part. fct. ~ BMS character (Barnich, Gonzalez, Maloney, Oblak '15)
stress “tensor” correlators match (Bagchi, DG, Merbis '15)

BMS bootstrap (Bagchi, Gary, Zodinmawia '16)

most general boundary conditions (DG, Merbis, Riegler '17)

HEE via geodesics (Jiang, Song, Wen '17; Hijano, Rabideau '17)
Semi-classical BMS3 blocks (Hijano '18)

BMS characters & modular invariance (Bagchi, Saha, Zodinmawia '19)
quantum energy conditions (DG, Parekh, Riegler '19)

geometric actions (Merbis, Riegler '19)

v
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https://arxiv.org/abs/1609.06203
https://arxiv.org/abs/1208.1658
https://arxiv.org/abs/1208.4372
https://arxiv.org/abs/1208.4371
https://arxiv.org/abs/1305.2919
https://arxiv.org/abs/1410.4089
https://arxiv.org/abs/1502.06185
https://arxiv.org/abs/1507.05620
https://arxiv.org/abs/1612.01730
https://arxiv.org/abs/1704.07419
https://arxiv.org/abs/1706.07552
https://arxiv.org/abs/1712.07131
https://arxiv.org/abs/1805.00949
https://arxiv.org/abs/1902.07066
https://arxiv.org/abs/1907.06650
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» because it is there (maybe)
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> because it is there (maybe)
» BMS, useful for toy models of flat space holography
» BMS, perhaps useful for near horizon holography
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Motivation for BMSy

» because it is there (maybe)
» BMSs useful for toy models of flat space holography
» BMSsy perhaps useful for near horizon holography

» construct SYK-like models with asymptotically flat gravity side

The SYK model is a strongly interacting quantum system that is
solvable at large N.

black holes

slide from Stanford'’s talk at Strings 2017

chaos and the
Regge limit
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Difficulties with BMS,

P general point in 2d: co-dimension 2 structureless
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Daniel Grumiller — Flat space holography and complex SYK Motivation for BMSo 10/30



Difficulties with BMS,

P general point in 2d: co-dimension 2 structureless
sort of ok in AdSs, so maybe ‘sort of' ok for BMSs as well

» AdSs algebra is half of AdS;3 algebra
same cannot be true for BMSy/BMS;3 relation
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Difficulties with BMS,

P general point in 2d: co-dimension 2 structureless
sort of ok in AdSs, so maybe ‘sort of' ok for BMSs as well

» AdSs algebra is half of AdS;3 algebra
same cannot be true for BMSy/BMS;3 relation

just means we have no quick way of cheating towards BMS,
P super-rotations can only be in time direction

ok at least in Euclidean theory
P super-translations can only be radial super-translations

ok, why not?
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Difficulties with BMS,

P general point in 2d: co-dimension 2 structureless
sort of ok in AdSs, so maybe ‘sort of' ok for BMSs as well

» AdSs algebra is half of AdS;3 algebra
same cannot be true for BMSy/BMS;3 relation

just means we have no quick way of cheating towards BMS,
P super-rotations can only be in time direction

ok at least in Euclidean theory
P super-translations can only be radial super-translations

ok, why not?

[ Ignore difficulties and proceed* ]

* van Nieuwenhuizen: task of theoretical physicists is to break no-go theorems
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Outline

Kinematics and BMS,
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Asymptotically Ricci-flat metrics

» Gauge-fix to Eddington—Finkelstein coordinates
ds? = —2dudr + K (u, r) du?

Not obvious that this is possible with proper gauge trafos!

Same remark applies to any gauge fixing, e.g. in AdSs3
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Asymptotically Ricci-flat metrics

> Gauge-fix to Eddington—Finkelstein coordinates
ds* = —2dudr + K (u, r) du?
» Demand Ricci-flatness
K(u, r) =2P(u)r + 2T (u)

Note: for constant P and 7 Killing horizon
T

T = ——

P

Assume in most of talk constant P and T

Daniel Grumiller — Flat space holography and complex SYK Kinematics and BMSo
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Asymptotically Ricci-flat metrics
» Gauge-fix to Eddington—Finkelstein coordinates
ds? = —2dudr + K (u, r) du?
» Demand Ricci-flatness
K(u, r)=2P(u)r + 27 (u)
> Allow most general fluctuations 6P # 0 # 0T
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Asymptotically Ricci-flat metrics
» Gauge-fix to Eddington—Finkelstein coordinates
ds? = —2dudr + K (u, r) du?
» Demand Ricci-flatness
K(u, r)=2P(u)r+ 27 (u)

> Allow most general fluctuations 6P # 0 # 0T
» Whatever the gravity theory is going to be, require the following
boundary conditions for metric
ds* = —2dudr + (O(r) + O(1) +o(1)) du®
N——

state-dependent
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Asymptotically Ricci-flat metrics
» Gauge-fix to Eddington—Finkelstein coordinates
ds? = —2dudr + K (u, r) du?
» Demand Ricci-flatness
K(u, r) =2P(u)r + 27 (u)

> Allow most general fluctuations 6P # 0 # 0T
» Whatever the gravity theory is going to be, require the following
boundary conditions for metric
ds* = —2dudr + (O(r) + O(1) +o(1)) du®
N————

state-dependent

[ Determine next asymptotic Killing vectors ]
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Asymptotic Killing vectors

> Class of metrics
ds® = —2dudr + 2 (P(u) r + T (u)) du®
preserved by asymptotic Killing vectors

E(e, n) = e(u)dy — (e’(u)?" + n(u))ar
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Asymptotic Killing vectors

> Class of metrics
ds® = —2dudr + 2 (P(u) r + T (u)) du®
preserved by asymptotic Killing vectors
§(e, m) = e(u)du — (€ (w)r + n(w))or

> ¢(u) generates ‘super-rotations’
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Asymptotic Killing vectors
» Class of metrics
ds® = —2dudr + 2 (P(u) r + T (u)) du®
preserved by asymptotic Killing vectors
§(e, m) = e(u)du — (€ (w)r + n(w))or

> ¢(u) generates ‘super-rotations’
» 1n(u) generates radial ‘super-translations’
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Asymptotic Killing vectors

> Class of metrics
ds® = —2dudr + 2 (P(u) r + T (u)) du®
preserved by asymptotic Killing vectors
£, m) = e(w)Ou — (¢'(w)r +n(w))or

> ¢(u) generates ‘super-rotations’
» 1n(u) generates radial ‘super-translations’
» Metric functions transform non-trivially

LP=€eP +€P+ €

LT =€T' +26T +0 —nP
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Asymptotic Killing vectors

» Class of metrics
ds® = —2dudr + 2 (P(u) r + T (u)) du®
preserved by asymptotic Killing vectors
(e, 1) = e(w)dy — (¢ (u)r +n(w)d,
> ¢(u) generates ‘super-rotations’

» 1n(u) generates radial ‘super-translations’
» Metric functions transform non-trivially

LP=€eP +€P+ €
LT =€T' +26T +0 —nP

» Looks promising!

P like u(1) current
T like Virasoro generator
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BMS; algebra

> Lie-bracket algebra of asymptotic Killing vectors

[€(e1, m), &(e2, m2)] = E(e1€y — e2¢€l, (€12 — eamy)’)
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BMS; algebra

> Lie-bracket algebra of asymptotic Killing vectors

[€(e1, m), &(e2, m2)] = E(e1€y — e2¢€l, (€12 — eamy)’)

» Algebra for Laurent modes L, = &(—u"*1,0), M, = £(0,u™"1)
[Ln, L] = (n —m) Lyim
[Lpn, M) = (—n —m) My
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» Algebra for Laurent modes L, = &(—u"*1,0), M, = £(0,u™"1)
[Ln, L] = (n —m) Lyim
[Lpn, M) = (—n —m) My

> Witt subalgebra generated by L,
spin-0 super-translations generated by M,
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BMS; algebra

> Lie-bracket algebra of asymptotic Killing vectors

[€(e1, m), &(e2, m2)] = E(e1€y — e2¢€l, (€12 — eamy)’)

» Algebra for Laurent modes L, = &(—u"*1,0), M, = £(0,u™"1)
[Ln, L] = (n —m) Lyim
[Lpn, M) = (—n —m) My

> Witt subalgebra generated by L,
spin-0 super-translations generated by M,

Call this algebra BMSs
Can (and will) have non-trivial central extensions
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Global aspects

> Redefine function generating super-translations, n = ¢’
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Global aspects

> Redefine function generating super-translations, n = ¢’
> Redefine corresponding generators .J, = £(0, o = u")

[Lny Lin] = (n —m) Lpim
(L, Im] = —m Jnm
[Jn, Jm] =0
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Global aspects

> Redefine function generating super-translations, n = ¢’
> Redefine corresponding generators .J, = £(0, o = u")
[Lna Lm] = (7’L - m) Lyym
(L, Im] = —m Jnm
[Jna Jm] =0

» Warped Witt algebra (J,,: spin-1 current)
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Global aspects

> Redefine function generating super-translations, n = ¢’
> Redefine corresponding generators .J, = £(0, o = u")
[Lns Lin] = (n —m) Lpym
(L, Im] = —m Jnm
[Jna Jm] =0
» Warped Witt algebra (J,,: spin-1 current)
> Relation to old super-translation generators (M,,: spin-0 current)

Jh=nM, n#0
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Global aspects

> Redefine function generating super-translations, n = ¢’

v

Redefine corresponding generators J,, = £(0, 0 = u™)
[Lny Lin] = (n —m) Lpim
[Ln, Jm] = —m Jner
[Jna Jm] =0

v

Warped Witt algebra (J,,: spin-1 current)
» Relation to old super-translation generators (M,,: spin-0 current)

Jh=nM, n#0

P Almost basis change, but Jy mapped to zero and nothing maps to My
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Global aspects

> Redefine function generating super-translations, n = ¢’
> Redefine corresponding generators .J, = £(0, o = u")

[Lna Lm] =(mn—m)Lnym
[Ln, Jm] = —m Jner
[Jny Jm] =0
» Warped Witt algebra (J,,: spin-1 current)
> Relation to old super-translation generators (M,,: spin-0 current)

Jh=nM, n#0

P Almost basis change, but Jy mapped to zero and nothing maps to My
> Later: My interpretable as winding mode of Maxwell field
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Global aspects

> Redefine function generating super-translations, n = ¢’

v

Redefine corresponding generators J,, = £(0, 0 = u™)
[Lny Lin] = (n —m) Lpim
[Ln, Jm] = —m Jner
[Jna Jm] =0

v

Warped Witt algebra (J,,: spin-1 current)
> Relation to old super-translation generators (M,,: spin-0 current)

Jh=nM, n#0

P Almost basis change, but Jy mapped to zero and nothing maps to My
> Later: My interpretable as winding mode of Maxwell field

[ Dismiss winding mode and focus on warped Witt algebra ]
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Outline

Dynamics yielding BMSq
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Dilaton gravity in two dimensions (review hep-th/0204253)

» Candidate for gravity theory realizing our bc's:
Einstein—dilaton—Maxwell in 2d (see e.g. DG, McNees, Salzer '14)
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Dilaton gravity in two dimensions (review hep-th/0204253)

» Candidate for gravity theory realizing our bc's:
Einstein—dilaton—Maxwell in 2d (see e.g. DG, McNees, Salzer '14)
» Second order action

- 167302 /MdeU lg| [XR—U(X)(VX)? - V(X)]
- : x _ (m)
87 G /{9Md VIl (XK —S(X)|+1
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Dilaton gravity in two dimensions (review hep-th/0204253)

» Candidate for gravity theory realizing our bc's:
Einstein—dilaton—Maxwell in 2d (see e.g. DG, McNees, Salzer '14)
» Second order action

- 167302 /MdeU gl [XR—U(X)(VX)? - V(X)]
- : x _ (m)
87 G /{9Md VIl (XK —S(X)|+1

» Dilaton X defined by its coupling to curvature R
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Dilaton gravity in two dimensions (review hep-th/0204253)

» Candidate for gravity theory realizing our bc's:
Einstein—dilaton—Maxwell in 2d (see e.g. DG, McNees, Salzer '14)
» Second order action
1 .
d? XR—-U(X)(VX)?-V(X
g [ oVl [XR— U0V V()

1
- dz/y] [XK — S(X)] + 1™
v |, VAl XK =500+

» Dilaton X defined by its coupling to curvature R
» Kinetic term (V.X)? contains coupling function U(X)
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Dilaton gravity in two dimensions (review hep-th/0204253)

» Candidate for gravity theory realizing our bc's:
Einstein—dilaton—Maxwell in 2d (see e.g. DG, McNees, Salzer '14)
» Second order action
1
d? XR-UX)(VX)?-V(X
g [ oVl [XR— U0V = V()

1
- dz/y] [XK — S(X)] + 1™
v |, VAl XK =500+

» Dilaton X defined by its coupling to curvature R
» Kinetic term (V.X)? contains coupling function U(X)
» Self-interaction potential 1/ (X') leads to non-trivial geometries
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Dilaton gravity in two dimensions (review hep-th/0204253)

» Candidate for gravity theory realizing our bc's:
Einstein—dilaton—Maxwell in 2d (see e.g. DG, McNees, Salzer '14)
» Second order action

N 167302 /MdeU 9l [XR — U(X)(VX)* = V(X)]
- T  — (m)
87 G /8Md VI [XE = S(X)]+1

» Dilaton X defined by its coupling to curvature R

» Kinetic term (V.X)? contains coupling function U(X)

» Self-interaction potential V' (X) leads to non-trivial geometries

» Gibbons—Hawking—York boundary term for Dirichlet boundary problem
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Dilaton gravity in two dimensions (review hep-th/0204253)

» Candidate for gravity theory realizing our bc's:
Einstein—dilaton—Maxwell in 2d (see e.g. DG, McNees, Salzer '14)
» Second order action

N 167302 /Md% 9l [XR ~U(X)(VX)? - V(X)]
- : x _ (m)
87 G /aMd Vil [XK = S(X)]+1

» Dilaton X defined by its coupling to curvature R

» Kinetic term (V.X)? contains coupling function U(X)

» Self-interaction potential V' (X) leads to non-trivial geometries

» Gibbons—Hawking—York boundary term for Dirichlet boundary problem
» Hamilton—Jacobi counterterm contains superpotential S(X)

X
S(X)? = e I" U(y)dy/ Vig)el Vs gy

and guarantees well-defined variational principle 61 = 0 with fineprint
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Dilaton gravity in two dimensions (review hep-th/0204253)

>

>

vVVvyYVvyYVYYy

>

Candidate for gravity theory realizing our bc's:
Einstein—dilaton—Maxwell in 2d (see e.g. DG, McNees, Salzer '14)
Second order action

/ d*z+/|g| [XR - U(X)(VX)? - V(X)]

- 167 G2
7m) — / d?z/|g| f(X)F*™E,, F = 0,4, — 0,4,

Dilaton X defined by its coupling to curvature R

Kinetic term (V.X)? contains coupling function U(X)

Self-interaction potential V(X)) leads to non-trivial geometries
Gibbons—Hawking—York boundary term for Dirichlet boundary problem
Hamilton—Jacobi counterterm contains superpotential S(X)

X
S(X)? = e I" U(y)dy/ Vig)el Vs gy

and guarantees well-defined variational principle 61 = 0 with fineprint
Interesting option: couple 2d dilaton gravity to matter
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Selected list of models (see review hep-th/0604049)
Black holes in (A)dS2, asymptotically flat or arbitrary spaces (Wheeler property)

| Model U(X) \ V(X)
1. Schwarzschild (1916) = %
2. Jackiw-Teitelboim (1984) 0 AX
3. Witten Black Hole (1991) -+ —20°X
4. CGHS (1992) 0 —2A
5. (A)dS> ground state (1994) —% BX
6. Rindler ground state (1996) -% BX“
7. Black Hole attractor (2003) 0 BXx™!
8. Spherically reduced gravity (N > 3) _(NN—_Q?X N2 X (N=0)/(N=2)
9. All above: ab-family (1997) —2 BX*tt
10. Liouville gravity a be™™
11. Reissner-Nordstrom (1916) -5 -2\ 4 %2
12. Schwarzschild-(A)dS % -2 —iX
13. Katanaev-Volovich (1986) a BX?—A
14. BTZ/Achucarro-Ortiz (1993) 0 &L _ L AX
15. KK reduced CS (2003) 0 1X(c—X?)
16. KK red. conf. flat (2006) —1 tanh (X/2) Asinh X
17. 2D type OA string Black Hole —% —20°X + %
18. exact string Black Hole (2005) lengthy lengthy
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https://arxiv.org/abs/hep-th/0604049

Gauge theoretic formulation as Poisson-sigma model (PSM)

» 2d analogue of Chern—Simons formulation of 3d gravity: PSM
Ikeda '93; Schaller, Strobl '94 (non-linear gauge theory)
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Gauge theoretic formulation as Poisson-sigma model (PSM)

» 2d analogue of Chern—Simons formulation of 3d gravity: PSM
Ikeda '93; Schaller, Strobl '94 (non-linear gauge theory)

> for our purposes: linear, non-abelian gauge theory sufficient
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Gauge theoretic formulation as Poisson-sigma model (PSM)

» 2d analogue of Chern—Simons formulation of 3d gravity: PSM
Ikeda '93; Schaller, Strobl '94 (non-linear gauge theory)

> for our purposes: linear, non-abelian gauge theory sufficient
» non-abelian BF action

Loe[B, A :n/(B, F)  F—dA+AArA
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Gauge theoretic formulation as Poisson-sigma model (PSM)

» 2d analogue of Chern—Simons formulation of 3d gravity: PSM
Ikeda '93; Schaller, Strobl '94 (non-linear gauge theory)

» for our purposes: linear, non-abelian gauge theory sufficient
P non-abelian BF action

» connection 1-form chosen as

A=wJ+e*P,+AZ

w: (dualized) spin-connection, e®: zweibein, A: Maxwell connection
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Gauge theoretic formulation as Poisson-sigma model (PSM)

» 2d analogue of Chern—Simons formulation of 3d gravity: PSM
Ikeda '93; Schaller, Strobl '94 (non-linear gauge theory)

» for our purposes: linear, non-abelian gauge theory sufficient

P non-abelian BF action

» connection 1-form chosen as
A=wJ+e*P,+AZ

w: (dualized) spin-connection, e®: zweibein, A: Maxwell connection
> scalar field chosen as

B=XZ+X%"P,+YJ
X: dilaton, X, Y auxiliary fields

Daniel Grumiller — Flat space holography and complex SYK Dynamics yielding BMSo 19/30



Gauge theoretic formulation as Poisson-sigma model (PSM)

» 2d analogue of Chern—Simons formulation of 3d gravity: PSM
Ikeda '93; Schaller, Strobl '94 (non-linear gauge theory)

» for our purposes: linear, non-abelian gauge theory sufficient
» non-abelian BF action

IBF[B,.A]:F;/<B,F> F=dA+ AN A
» connection 1-form chosen as
A=wJ+e*P,+AZ

w: (dualized) spin-connection, e®: zweibein, A: Maxwell connection
> scalar field chosen as

B=XZ+X%P,+YJ

X: dilaton, X, Y auxiliary fields
> still need to choose gauge algebra and bilinear form
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Cangemi—Jackiw version of Callan—-Giddings—Harvey—Strominger

» Choose Maxwell algebra

b
[Paan]:EabZ [Pa,J]:Ga B,
with bilinear form
<‘]a Z>:_1 <Paa Pb>:77ab
Daniel Grumiller — Flat space holography and complex SYK Dynamics yielding BMSo 20/30



Cangemi—Jackiw version of Callan—-Giddings—Harvey—Strominger
» Choose Maxwell algebra
[Pa, Py = €av Z [Pas J) =" Py
with bilinear form
(J, 2) = -1 (Pas Py) = Nab

> corresponding action (after integrating our X® and w)

IIX,Y, g, Ay = g /M d®z+/|g| (XR —2Y +2Y e 0,4A,)
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Cangemi—Jackiw version of Callan—-Giddings—Harvey—Strominger

» Choose Maxwell algebra
[Pa, Py = €ap Z [P, J] = e” P,
with bilinear form
(J; 2) =1 (Pa, Py) = Mab

> corresponding action (after integrating our X® and w)

IIX,Y, g, Ay = r /M d®z+/|g| (XR —2Y +2Y e 0,4A,)

2
> EOM
R=0 = Ricci-flat
oA, =1
V. Vo X = VX = g, Y
Y = A = const.
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Cangemi—Jackiw version of Callan—-Giddings—Harvey—Strominger

» Choose Maxwell algebra
[Pa, Py = €ap Z [P, J] = e” P,
with bilinear form
(J; 2) =1 (Pa, Py) = Mab

> corresponding action (after integrating our X® and w)

IIX,Y, g, Ay = r /M d®z+/|g| (XR —2Y +2Y e 0,4A,)

2
> EOM
R=0 = Ricci-flat
oA, =1
V. Vo X = VX = g, Y
Y = A = const.

» translate our bc's into BF-formulation
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Boundary conditions in BF formulation

» Ansatz (worked nicely for Jackiw—Teitelboim; inspired by 3d)
A=b"1(d+a)b B=>b"lab
with group element b = exp(—r P4 ) and
a= (T(wPy+ P-+Pu)J) du
z=at(u)Py +21(u)P- +YJ +x0(u)Z
where 67 # 0 # 6P
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Boundary conditions in BF formulation

» Ansatz (worked nicely for Jackiw—Teitelboim; inspired by 3d)
A=b"1(d+a)b B=b"lab
with group element b = exp(—r P4 ) and
a= (T(w)Py+P-+Pu)J) du
v=at(u)Py +21(w)P- +YJ +x0(u)Z

where 6T # 0 # 6P
> yields metric shown before, dilaton

X =z1(u)r+ zo(u)
and Maxwell field A = r du

get BMSy asymptotic symmetries!
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Boundary conditions in BF formulation

» Ansatz (worked nicely for Jackiw—Teitelboim; inspired by 3d)
A=b"1(d+a)b B=b"lab
with group element b = exp(—r P4 ) and
a= (T(w)Py+P-+Pu)J) du
v=at(u)Py +21(w)P- +YJ +x0(u)Z

where 6T # 0 # 6P
> yields metric shown before, dilaton

X =z1(u)r+ zo(u)
and Maxwell field A = r du
> Maxwell field preserved by combined diffeos and gauge trafos
0Ay = §"0, A+ A, 0,1 +0,0 E(e, ) = e(u)u— (€ (w)r+n(u))O;
provided n = o’
either 7 has no 0-mode or o not single-valued (winding modes)

Daniel Grumiller — Flat space holography and complex SYK Dynamics yielding BMSo 21/30



Boundary conditions in BF formulation

» Ansatz (worked nicely for Jackiw—Teitelboim; inspired by 3d)
A=b"1(d+a)b B=>b"lab
with group element b = exp(—r P4 ) and
a= (T(wPy+ P-+Pu)J) du
z=at(u)Py +21(u)P- +YJ +x0(u)Z

where 6T # 0 # 0P
> yields metric shown before, dilaton

X =z1(u)r + zo(u)

and Maxwell field A = r du
» Maxwell field preserved by combined diffeos and gauge trafos

0A, = guauAu‘f’Auaugu"‘auo— 5(67 77) = 6(“)6u_(6/(u>r+n(u))ar

provided n = o’
» focus on case d, § A =0 (no winding modes) = warped Witt algebra
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Twisted warped boundary action (see also Afshar '19)

» Variation of Euclidean BF action (¢t = iu)

01lgr = bulk-EOM — Ii%dt (x, dag)
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Twisted warped boundary action (see also Afshar '19)

» Variation of Euclidean BF action (¢t = iu)
0lgr = bulk-EOM — H%dt (x, day)
» Goal: cancel boundary term by adding boundary action I,

Physical interpretation:
Gravity: I,,, describes dynamics of edge modes

Field theory: I, describes dynamics of collective low T' modes
(in large N limit)
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Twisted warped boundary action (see also Afshar '19)

» Variation of Euclidean BF action (¢t = iu)
01lgr = bulk-EOM — Ii%dt (x, dag)

» Goal: cancel boundary term by adding boundary action I,
» follow JT story in BF formulation Gonzéalez, DG, Salzer '18
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Twisted warped boundary action (see also Afshar '19)

» Variation of Euclidean BF action (¢t = iu)
dIgr = bulk-EOM — m%dt (x, day)

» Goal: cancel boundary term by adding boundary action I,
» follow JT story in BF formulation Gonzélez, DG, Salzer '18
» defining 1/x1 ~ O,f and zo/x1 ~ O result is

16}

"

L.[h, g] = & / dr (Th’2 _y (ﬂ?h’ + ’L))

h'
0

with 7 := f(t), h(7) := —f~1(7) and 7 ~ 7+ 3 (prime means d/ dr)
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Twisted warped boundary action (see also Afshar '19)

» Variation of Euclidean BF action (¢t = iu)
0lgr = bulk-EOM — H%dt (x, day)

» Goal: cancel boundary term by adding boundary action I,
» follow JT story in BF formulation Gonzélez, DG, Salzer '18
» defining 1/x1 ~ 0,f and zo/x1 ~ O.g result is
1]
g . ]I///
Lulh, gl = & / dr (Th’Z —q (iPh’ + 7))
)
0
twisted warped action is flat space analogue of Schwarzian action!

» Schwarzian action: group action for Virasoro coadjoint orbits
> twisted warped action: group action for twisted warped coadjoint orbits

[Ly, Lin] = (n—m) Lyym
[Lna Jm} =—-m Jn-‘ﬂnfihﬂ’(‘n2 - TI,) (571,+7n,.0
[Jn, Jm] =0
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Twisted warped boundary action (see also Afshar '19)

» Variation of Euclidean BF action (¢t = iu)
01lgr = bulk-EOM — Ii%dt (x, dag)

» Goal: cancel boundary term by adding boundary action I,
» follow JT story in BF formulation Gonzéalez, DG, Salzer '18
» defining 1/x1 ~ O0,f and zo/x1 ~ O.g result is

B
7

h
L.[h, g] —h/dT Th’2 (IPh + ;},))

0

P> asymptotic symmetries: h, g boundary scalars under diffeos and g
phase under u(1) trafos
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Twisted warped boundary action (see also Afshar '19)

» Variation of Euclidean BF action (¢t = iu)
01lgr = bulk-EOM — Ii%dt (x, dag)

» Goal: cancel boundary term by adding boundary action I,
» follow JT story in BF formulation Gonzéalez, DG, Salzer '18
» defining 1/x1 ~ O0,f and zo/x1 ~ O.g result is

B
1Z

h
L.[h, g] —h/dT Th’2 (IPh + ;},))

0

P> asymptotic symmetries: h, g boundary scalars under diffeos and g
phase under u(1) trafos

[ Twisted warped action resembles effective action for complex SYK

)

Daniel Grumiller — Flat space holography and complex SYK Dynamics yielding BMSo

22/30



Outline

Relation to SYK/JT
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Hamiltonian formulation

» twisted warped Hamiltonian action
B

Iy = —ﬁ:/dt (pidi — pip2 —e%'p3)  1=1,2,3
0

where g3 = exp(iPh) and g2 = g+ ihT /P (rest: auxiliary fields)
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Hamiltonian formulation

» twisted warped Hamiltonian action
B
I, = —ﬁ:/dt (pigi —pip2 —e®p3)  i=1,2,3
0
where g3 = exp(iPh) and g2 = g + ihT /P (rest: auxiliary fields)
» similar to Schwarzian Hamiltonian action
B
L, = —H/dt (pidi — pt — e ps3)
0
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Hamiltonian formulation

» twisted warped Hamiltonian action
B

Lw:‘*i/dt@ﬁi—PﬂQ—emP@ i=1,2,3
0

where g3 = exp(iPh) and g2 = g + ihT /P (rest: auxiliary fields)
» similar to Schwarzian Hamiltonian action
B

Qm?%/&@@—ﬁ—wm)
0

» solutions
q;),:h()—l-hleiT/To = P qugg—ing—l-ngiT/To = T

five integration constants go, g1, g2, ho, h1; periodicity 7o = 5/(27)
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Hamiltonian formulation

» twisted warped Hamiltonian action

| 2

8
Lw:‘*i/dt@ﬁi—PﬂQ—emP@ i=1,2,3
0

where g3 = exp(iPh) and g2 = g+ ihT /P (rest: auxiliary fields)

similar to Schwarzian Hamiltonian action

B

Qm?%/&@@—ﬁ—wm)

0
solutions
g3 = ho+ h1e™/™ = P G2=go—igiT+ g2 = T
five integration constants go, g1, g2, ho, h1; periodicity 7o = 5/(27)
on-shell action I, |gon = —27KG1
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Thermodynamics
» Assuming g1 independent from temperature get entropy

S = _Itw‘EOM = 2TKg1
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Thermodynamics
» Assuming g1 independent from temperature get entropy
S = _Itw‘EOM = 2TKg1

» Using result for dilaton g; = X

yields

horizon

S =2rx X

horizon

standard result (Wald entropy applied to 2d dilaton gravity)

Daniel Grumiller — Flat space holography and complex SYK Relation to SYK/JT 25/30



Thermodynamics
» Assuming g1 independent from temperature get entropy
S = _Itw‘EOM = 2TKg1

» Using result for dilaton g; = X

yields

horizon

S =2rx X

horizon

standard result (Wald entropy applied to 2d dilaton gravity)
P assumption above derivable from regularity condition

P =2nT T arbitrary
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Thermodynamics
» Assuming g1 independent from temperature get entropy

S = _Itw‘EOM = 2TKg1

» Using result for dilaton g1 = X yields

horizon

S =2rx X

horizon

standard result (Wald entropy applied to 2d dilaton gravity)
P assumption above derivable from regularity condition

P =2nT T arbitrary

» on-shell P =Y is u(1) charge, while 7 is mass
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Thermodynamics
» Assuming g1 independent from temperature get entropy

S = _Itw‘EOM = 2TKg1

» Using result for dilaton g1 = X yields

horizon

S =2rx X

horizon

standard result (Wald entropy applied to 2d dilaton gravity)
P assumption above derivable from regularity condition

P =2nT T arbitrary

» on-shell P =Y is u(1) charge, while 7 is mass
» peculiarity: inverse specific vanishes (well-known property of CGHS)

1 dT

cl==" =
T dS lsp=0
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» Assuming g1 independent from temperature get entropy

S = _Itw‘EOM = 2TKg1

» Using result for dilaton g1 = X yields

horizon

S =2rx X

horizon

standard result (Wald entropy applied to 2d dilaton gravity)
P assumption above derivable from regularity condition

P =2nT T arbitrary
» on-shell P =Y is u(1) charge, while 7 is mass
» peculiarity: inverse specific vanishes (well-known property of CGHS)

_1dT _
T dSlsp=0

» useful property for scaling limit from complex SYK

C—l
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Scaling limit from complex SYK (see e.g. Gu, Kitaev, Sachdev, Tarnopolsky '19)

> Effective action governing collective low T" modes of complex SYK

B

B
Lol ol = 25 [ ar (g 2502~ 20 [ ar {ean (5)s 7}

0 0
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Scaling limit from complex SYK (see e.g. Gu, Kitaev, Sachdev, Tarnopolsky '19)

> Effective action governing collective low T' modes of complex SYK

B
_NK g+ 27715 n2 Ny T\
CSYK[h g / h ) 47[_ O/dT { tan (Bh>’ ’T}
{fsry=f"]f - Q(f"/f) Schwarzian derivative

N (large) number of complex fermions

N~ specific heat at fixed charge

K zero temperature compressibility

& spectral asymmetry parameter

h(7) time-reparametrization field (quasi-periodic, h(7 + 8) = h(r) + j)
g(7) phase field (periodic in absence of winding)
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Scaling limit from complex SYK (see e.g. Gu, Kitaev, Sachdev, Tarnopolsky '19)

> Effective action governing collective low T' modes of complex SYK

B
Lsyk[h, 9] N / g+ 27”5 h')2 i\;fy /dT { tan (%h); T}
0

{fsry=f"]f - Q(f"/f) Schwarzian derivative

N (large) number of complex fermions
N~ specific heat at fixed charge
K zero temperature compressibility
& spectral asymmetry parameter
h(7) time-reparametrization field (quasi-periodic, h(7 + 8) = h(r) + j)
g(7) phase field (periodic in absence of winding)
» according to our thermodynamics need limit Nv — oo
(infinite specific heat)
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» according to our thermodynamics need limit Ny — oo
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Scaling limit from complex SYK (see e.g. Gu, Kitaev, Sachdev, Tarnopolsky '19)

> Effective action governing collective low T" modes of complex SYK

B

B
Lol ol = 25 [ ar (g 2502~ 20 [ ar {ean (5)s 7}

0 0
» according to our thermodynamics need limit Ny — oo
(infinite specific heat)

»> turns out additionally need limit K — 0
(vanishing zero temperature compressibility)

> inserting these limits into I .svk[h, g| yields twisted warped action

Ny—00,K—0

5
lim  Lsyk[h, 9] = Lulh, 9] = & / dT(TW (mh/ }}LL/:))
0

with k2 ~ N%yK kept finite
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Asymptotic symmetries

> can see same singular limit at level of asymptotic symmetry algebras
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Asymptotic symmetries

> can see same singular limit at level of asymptotic symmetry algebras
> twisted warped Virasoro algebra (warped Witt with all cocycles)
c
[Ln, Lm] = (n — m) Ln+m + ﬁ (n3 — n) (5n+m70
[Ln, Jm) = —m Jppm — ik (n2 — n) Ontm, 0

K
[Jna Jm] = En(anrm,O

¢: Virasoro central charge; x: twist; K: level of u(1) current
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Asymptotic symmetries

>
>

v

can see same singular limit at level of asymptotic symmetry algebras
twisted warped Virasoro algebra (warped Witt with all cocycles)
c
{Ln, Lm] = (n — m) Ln+m + ﬁ (n3 — n) (5n+m70
[Ln, Jm) = —m Jppm — ik (n2 — n) Ontm, 0

K
[Jna Jm] = En(anrm,O

¢: Virasoro central charge; x: twist; K: level of u(1) current
complex SYK: warped Virasoro algebra (¢ # 0 # K; k = 0)
our model: twisted warped algebra (c =0 = K; k # 0)

map first between twisted warped Virasoro and warped Virasoro
2452
c—>c— —
K

by change of basis L,, — L,, + z%’{ n Jy, and shift of 0-modes
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Asymptotic symmetries

>
>

v

>

can see same singular limit at level of asymptotic symmetry algebras
twisted warped Virasoro algebra (warped Witt with all cocycles)
c
{Ln, Lm] = (n — m) Ln+m + ﬁ (n3 — n) (5n+m70
[Ln, Jm) = —m Jppm — ik (n2 — n) Ontm, 0

K
[Jna Jm] = En(anrm,O

¢: Virasoro central charge; x: twist; K: level of u(1) current
complex SYK: warped Virasoro algebra (¢ # 0 # K; k = 0)
our model: twisted warped algebra (c =0 = K; k # 0)

map first between twisted warped Virasoro and warped Virasoro
2452
c—>c— —
K

by change of basis L,, — L,, + z%’{ n Jy, and shift of 0-modes
cK

then take limit K — 0, ¢ — 0o keeping fixed x = \/ —5;
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Conclusions
For more details see Afshar, Gonzalez, DG, Vassilevich 1911.05739

» CGHS a la Cangemi—Jackiw bulk model for flat space holography

I[X,Y, g, Ay = g /M d®z/]g] (XR = 2Y +2Y 9, A,)

\. J
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» CGHS a la Cangemi—Jackiw bulk model for flat space holography
I[X,Y, g, Ay = g / d®z/]g] (XR = 2Y +2Y 9, A,)
M

» asymptotically flat boundary conditions yield BMS,

» boundary action is twisted warped action

1

B
L,|h, g] = H/dT(Th/2 -4 (iPh/ + %))
0
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» follows as singular limit from complex SYK
(large specific heat, small compressibility)
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» CGHS a la Cangemi—Jackiw bulk model for flat space holography
I[X,Y, g, Ay = g / d®z/]g] (XR = 2Y +2Y 9, A,)
M

» asymptotically flat boundary conditions yield BMS,

v

boundary action is twisted warped action

1

B
L,|h, g] = ﬁ/dT(Th/2 -4 (iPh/ + %))
0

» follows as singular limit from complex SYK
(large specific heat, small compressibility)

» asymptotic symmetries also from singular limit of warped Virasoro

\4

could be useful toy model for flat space holography

\. J
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» Flat space holography in 2d
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» Cardyology
» Chaos bound saturation

» Experimental realization

[ Thanks for your attention! ]

orion)
‘BMSE
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