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Notes for readers. These lecture notes were compiled from individual lecture
sheets for my lectures “Black Holes II” at TU Wien in March–June 2018. As the
name indicates, you are supposed to know the material from the lectures “Black
Holes I” by the time you read these notes. Each lecture sheet is in principle self-
contained, although there are some references to other lecture sheets. Whenever
the equation numbering restarts at (1) this signifies a new lecture sheet. Here is an
overview over the whole set of lectures and all lecture sheets:

1. Horizons and other definitions (p. 1-2): a brief vocabulary on the most rele-
vant definitions, including the one of black holes

2. Carter-Penrose diagrams (p. 3-6): conformal compactifications and methods
to construct Carter–Penrose diagrams, with flat space and AdS examples
Raychaudhuri equation (p. 7-8): geodesic congruences and time-evolution of
expansion
Singularity theorems (p. 9-10): glimpse of singularity theorems by simple ex-
ample; Hawking’s area theorem

3. Linearized Einstein equations (p. 11-13): linearizing metric, Riemann tensor,
field equations and action
Gravitational waves (p. 14-15): gravitational waves in vacuum and action on
test particles; emission
QFT aspects of spin-2 particles (p. 16-18): massive and massless spin-2 fields
and vDVZ-discontinuity

4. Black hole perturbations (p. 19-20, p. 23): scalar perturbations of Schwarzschild
and generalizations
Quasi-normal modes (p. 21-22): definition and applications of QNMs and
guide to further literature

5. Black hole thermodynamics (p. 24-26): four laws of black hole mechanics and
phenomenological aspects

6. Hawking effect (p. 27-30): periodicity in Euclidean time as temperature;
Hawking–Unruh temperature from Euclidean regularity; semi-classical deriva-
tion using Bogoliubov-transformation

7. Action principle (p. 31-34): canonical decomposition of metric; Gibbons–
Hawking–York boundary term; simple mechanics example

8. Asymptotically AdS boundary conditions (p. 35-38): Fefferman–Graham ex-
pansion, holographic renormalization, boundary stress tensor and asymptotic
symmetries
Black holes in AdS (p. 39-41): free energy from on-shell action and Hawking–
Page phase transition
Gravity aspects of AdS/CFT (p. 41-42): CFT correlation functions, AdS/CFT
dictionary and stress-tensor example

Some selected references are spread throughout these lecture notes; a final list of
nine references to other lecture notes or review articles can be found on p. 42.

Notes for lecturers and students. If you want to either study the material
found in these lecture notes or provide your own lectures based on them please
note that I view exercises as an integral part of digesting this material. You can
find 10 sets of three exercises (so 30 exercises in total) on my teaching webpage
http://quark.itp.tuwien.ac.at/∼grumil/teaching.shtml. A link to exercises
and lecture notes for Black Holes I can be found there as well. The whole lecture
series Black Holes I+II is intended for a full academic year.

Acknowledgments. Most figures in sections 2 and 3 were prepared by Patrick
Binder, Sebastian Schiffer and Thomas Weigner. I thank all students between 2010
and 2018 for their valuable feedback on various aspects of the lectures Black Holes
II, in particular Raphaela Wutte.
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1 Horizons and other definitions

On this sheet several basic definitions regarding the causal structure of spacetime
and black holes are summarized. For a more detailed account see Wald’s book “Gen-
eral Relativity” (chapters 8-9 and parts of 11-12) or the book by Hawking & Ellis
“The large scale structure of space-time”.

1.1 Aspects of causal structure of spacetime

Time-like/null/causal curve. A 1-dimensional curve (which may or may not
be a geodesic) in some spacetime is called time-like (null) [causal] if the tangent
vector is time-like (null) [time-like or null] along the whole curve.

Chronological/causal future of a point p. The chronological future I+(p)
[causal future J+(p)] is the set of all events in spacetime that can be reached from
p by a time-like [causal] curve. This definition generalizes to sets of points.

Achronal sets S. A subset S of the spacetime manifold is called achronal if there
exists no pair of points p, q ∈ S such that q ∈ I+(p). Equivalently, I+(S)∩ S = {}.

Future/past inextendible. A time-like curve is called future (past) inextendible
if it has no future (past) endpoint. Analogous definition for causal curves.

Future domain of dependence D+(S). The future domain of dependence of
a closed achronal set S, denoted by D+(S), is given by the set of all points p in
spacetime such that every past inextendible causal curve through p intersects S.
Past domain of dependence D−(S): Exchange “future” ↔ “past”.

Domain of dependence D(S). D(S) := D+(S) ∪D−(S).

Asymptotic infinity. Preview of next week on Carter–Penrose diagrams; asymp-
totic boundaries are denoted by i+ (future time-like infinity), i− (past time-like
infinity), I + (future null infinity), I − (past null infinity) and i0 (spatial infinity.
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1.2 Killing, Cauchy, event and apparent horizons

Killing horizon (see last semester). Null hypersurface whose normal is a
Killing vector. Useful for stationary black holes, but too restrictive in general.

Cauchy horizon H(S). Let S be a closed achronal set. Its Cauchy horizon
H(S) is defined as H(S) := (D+(S)−I−[D+(S)])∪ (D−(S)−I+[D−(S)]). In plain
English, the Cauchy horizon is the boundary of the domain of dependence of S.

Note: A Cauchy horizon is considered as a singularity in the causal structure,
since you cannot predict time-evolution beyond a Cauchy horizon.

Cauchy surface Σ. A nonempty closed achronal set Σ is a Cauchy surface for
some (connected) spacetime manifold iff H(Σ) = {}.

A spacetime M with a Cauchy surface Σ is called “globally hyperbolic”.

With the definitions on the first page we are now finally ready to mathematically
define the concepts of a black hole region and an event horizon. Note that for
astrophysicists these definitions are of limited use since we do not know for sure
how our Universe will look like in the infinite future. However, for proving some
theorems that apply to isolated black holes it is useful to introduce these definitions.

Black hole region B. In a globally hyperbolic spacetime1 M the black hole
region B is defined by B := M − J−(I +).

Event horizon H. H := J̇−(I +) ∩M . In words: the event horizon of a black
hole is given by the boundary of the causal past of future null infinity within some
spacetime M . See the Carter–Penrose diagram below (again, wait for next week).

Apparent horizon. Wait for later; qualitatively: expansion of null geodesics
either negative or zero, i.e., light-rays cannot “escape”. Local definition!

Black Holes II, Daniel Grumiller, March 2018

1Globally hyperbolicity can be too strong, e.g. for charged or rotating black holes, which have
a Cauchy horizon as inner horizon. In that case the weaker condition of “strong asymptotic
predictability” replaces global hyperbolicity, see the beginning of chapter 12 in Wald’s book.
Strong asymptotic predictability means that no observer outside a black hole can see a singularity.
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2 Carter–Penrose diagrams

In this section Cater–Penrose diagrams (conformal compactifications) are intro-
duced. For a more detailed account in two spacetime dimensions see section 3.2 in
hep-th/0204253; see also section 2.4 in gr-qc/9707012.

A simple example of a compactification is the inverse stereographic projection
R

2 → S2, where infinity is mapped to the North pole on the 2-sphere. Explicitly,
for polar coordinates r, φ in the plane and standard spherical coordinates θ, ϕ on
the sphere the map reads r = cot θ

2 and φ = ϕ. Note that r = ∞ is mapped to
θ = 0. This simple example is a 1-point compactification, meaning that we have to
add a single point (spatial infinity) to convert R2 into something compact, S2.

2.1 Carter–Penrose diagram of Minkowski space

In Minkowski space we may expect that for a compactification we have to add a
whole lightcone, the “lightcone at infinity”. We check this now explicitly, applying
the coordinate trafo

u = tan ũ v = tan ṽ ũ, ṽ ∈ (−π
2 ,

π
2 ) (1)

to the Minkowksi metric in null coordinates (dΩ2
SD−2 is the metric of SD−2)

ds2 = − du dv + 1
4 (v − u)2 dΩ2

SD−2 u = t− r ≤ v = t+ r (2)

yielding the metric

ds2 = Φ2
(

− dũdṽ + 1
4 sin2(ṽ − ũ) dΩ2

SD−2

)

Φ−1 = cos ũ cos ṽ (3)

which is related to a new (unphysical) metric

ds̃2 = − dũdṽ + 1
4 sin2(ṽ − ũ) dΩ2

SD−2 = ds2 Φ−2 (4)

by a Weyl-rescaling

ds2 = ds̃2 Φ2 ⇔ gµν = Φ2 g̃µν . (5)

Note that Weyl-rescalings are conformal, i.e., angle-preserving, which in Minkowski
signature meansWeyl rescalings preserve the causal structure of spacetime.

Let us verify this in the Euclidean case, where the angle α between two vectors
aµ and bµ is given by

cosα =
gµνa

µbν
√

(gµνaµaν)(gµνbµbν)
=

Φ2 g̃µνa
µbν

√

(Φ2 g̃µνaµaν)(Φ2 g̃µνbµbν)
= cos α̃ . (6)

For Minkowski signature the same calculation applies for vectors that are not null;
null vectors are trivially mapped to null vectors under Weyl rescalings (5).

Since Weyl-rescalings preserve the causal structure (but not lengths) we can
conveniently compactify spacetimes like Minkowski by adding a lightcone. This
means that we consider the conformal Minkowski metric (4) with extended range
of coordinates, ũ, ṽ ∈ [−π

2 ,
π
2 ]. The CP-diagram of Minkowski space depicts g̃µν .

On the backpage the CP-diagram of 2-dimensional Minkowski space is displayed.
In such diagrams lines at 45◦ represent light rays/null geodesics. On any such line
either ũ or ṽ is constant. As an example the diagram shows the scattering of two
ingoing into two outgoing lightrays through some interaction (denoted by the S-
matrix-symbol S), see the magenta lines. Time-like curves always move within the
lightcone, see the orange line.

Higher-dimensional CP-diagrams are similar, but harder to display on paper,
since the CP-diagram of any D-dimensional manifold is also D-dimensional. How-
ever, often 2-dimensional cuts trough such diagrams convey all relevant info, in
particular in the case of spherical symmetry, where each point in the 2-dimensional
CP diagram simply corresponds to an SD−2.
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ũ = π
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ṽ = finite

ũ = finite

ṽ = π
2

ũ = finite

ṽ = −π
2 ṽ = finite

ũ = −π
2

CP diagram of 2d Minkowski
(or of higher-dimensional
Minkowski if you imagine an
SD−2 over each point and cut off
the diagram at the dashed line
corresponding to the origin in
spherical coordinates, r = 0).
The boundary of the CP-diagram
is the light-cone at infinity that
was added when compactifying.
Its various components corre-
spond to future (past) time-
like infinity i+ (i−), future
(past) null infinity I + (I −)
and spatial infinity i0.
Note that Minkowski space
is globally hyperbolic (exercise:
draw some Cauchy hypersurface).

2.2 Carter–Penrose diagram of Schwarzschild

Consider Schwarzschild in outgoing Eddington–Finkelstein (EF) gauge.

ds2 = −2 du dr−
(

1− 2M
r

)

du2+. . . u = t−r∗ r∗ = r+2M ln
(

r
2M −1

)

(7)

EF gauge covers only half of Schwarzschild (ingoing: −u → v = t + r∗). In each
EF-patch we have an asymptotic region (r → ∞) that is essentially the same as
that of Minkowski space, we have part of the bifurcate Killing horizon and we have
the black hole region until we hit the curvature singularity at r = 0. Thus, the
CP-diagram of an EF-patch is a compactified version of the diagrams we saw last
semester, with the compactification working essentially as for Minkowski space.

I +

I −

I

III

i0

r=2M

r=0

I +′

I −′

IV

III

i0
′

r=2M

r=0

I +

I −

I

II

i0

r=2M

r=0

I +′

I −′

IV

II

i0
′

r=2M

r=0

CP-diagrams for EF-patches. Region I is the external region accessible to
the outside observer, region II the black hole region, region III the white hole region
and region IV the (unphysical) other external region.
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The full Schwarzschild CP-diagram is obtained by gluing together the EF-
patches in overlap regions (adding the bifurcation 2-sphere, see Black Holes I).

Bifurcation sphere

I

II

III

IV

I −′

I +′

I +

I −

i0
i0 ′

r=0

r=0

From the CP-diagram above you can easily apply our definitions of black hole
region and event horizon, which you should do as an exercise.

2.3 Carter–Penrose diagram for AdSD

Global Anti-de Sitter (AdS) with AdS-radius ℓ is given by the metric

ds2 = ℓ2
(

− cosh2ρ dt2 + dρ2 + sinh2ρ dΩ2
SD−2

)

ρ ∈ [0,∞) (8)

which can be rewritten suggestively using a new coordinate tanχ = sinh ρ.

ds2 =
ℓ2

cos2χ

(

− dt2 + dχ2 + sin2χ dΩ2
SD−2

)

= ds̃2 Φ2 χ ∈ [0, π
2 ) (9)

The compactified metric g̃ differs from the physical
metric g by a conformal factor Φ2 = ℓ2/ cos2χ and
allows to add the asymptotic boundary χ = π

2 . At
χ = π

2 the compactified metric

ds̃2|
χ=

π
2
= − dt2 + dΩ2

SD−2

describes a (D − 1)-dimensional cylinder. Thus,
the CP-diagram of AdSD is a filled cylinder.
The figure shows the CP-diagram of AdS3.
In higher dimensions the “celestial circle” is re-
placed by a “celestial sphere” of dimension D− 2.

Two dimensions are special, since the 0-sphere consists of two dis-
joint points. The CP-diagram of AdS2 is a 2d vertical strip.
The CP diagram of dS2 is rotated by 90◦ relative to AdS2.
If instead of global AdSD we consider Poincaré-patch AdSD,

ds2 =
ℓ2

z2
(

− dt2 + dz2 + dx2
1 + · · ·+ dx2

D−2

)

the metric is manifestly conformally flat so that we get the same
CP-diagram as for Minkowski space, namely a triangle. However,
that triangle only covers part of the full CP-diagram of global AdS,
which for AdS2 is depicted to the right.
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2.4 Carter–Penrose diagrams in two spacetime dimensions

Gravity in 2d is described by dilaton gravity theories, see hep-th/0204253 for a
review. For all such theories there is a generalized Birkhoff theorem so that all
solutions have a Killing vector and the metric in a basic EF-patch reads

ds2 = −2 du dr −K(r) du2 (10)

with some arbitrary function K(r) that depends on the specific theory. Non-
extremal Killing horizons arise whenever K(r) has a single zero (in case of double
or higher zeros the Killing horizons are extremal).

While there is a straightforward detailed algorithm to construct all CP-diagrams
in 2d dilaton gravity, in most cases the following simpler recipe works:

1. Identify the asymptotic region (Minkowski, AdS, dS, else) by checking the
behavior of K(r) at large radii, r → ∞

2. Identify the number and types of Killing horizons by finding all zeros (as well
as their multiplicities) of K(r)

3. Identify curvature singularities by calculating K ′′(r) and checking whether it
remains finite; check if singularities reachable with geodesics of finite length

4. Use the info above to “guess” the CP-diagram of a basic EF-patch

5. Copy three mirror images of the CP-diagram of the basic EF-patch

6. Glue together all EF-patches on overlap regions to get full CP-diagram

7. If applicable continue full CP-diagram periodically

As an example we consider Reissner–Nordström, whose 2d part is (10) with

K(r) = 1−
2M

r
+

Q2

r2
r± = M ±

√

M2 −Q2 , M > |Q| . (11)

I

VI

V

II

III IV

IV′III′

r = 0

r = 0

r = 0

r = 0

r− r−

r− r−

r+ r+

r+ r+

CP diagram of Reissner–Nordström.
Applying the recipe yields 1. asymptotic
flatness for r → ∞, 2. two non-extremal
Killing horizons for M > |Q| at r = r±,
3. a curvature singularity at r = 0, 4. a ba-
sic EF-patch similar to Schwarzschild, but
with an additional Killing horizon, 5. cor-
responding mirror flips, and 6. the CP-
diagram displayed on the left. Concern-
ing 7., one could identify region III with
III’ and IV with IV’ or declare them to
be different and get several copies of the
CP-diagram appended above and below.
Note, however, that the inner horizon
r = r− is a Cauchy horizon. Indeed,
the domain of dependence of the achronal
set reaching from i0 in region I to i0 ′ in
region V is given by the union of regions
I, II, V and VI, but excludes regions III
and IV beyond the Cauchy horizon.
Cauchy horizons are believed to be
unstable. If true, then regions III and
IV are merely artifacts.

Note: can finally check incompleteness of geodesics at singularity and complete-
ness at asymptotic boundary, e.g. null geodesics du/ dr = −2/K(r).
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3 Raychaudhuri equation and singularity theorems

In cosmology and theoretical GR we are often interested in the movement of nearby
bits of matter (primordial fluctuations during inflation, stars in a galaxy, galaxies
in a cluster, test-particles in some black hole background etc.). Besides practical
applications, these considerations are of importance for singularity theorems, as we
shall see. The equations that describe the acceleration of nearby test-particles are
known as “Raychaudhuri equations”, and our first task is to derive them.

3.1 Geodesic congruences

A congruence is a set of curves such that exactly one curve goes through each
point in the manifold. A geodesic congruence is a congruence where all curves are
geodesics. For concreteness we assume that all geodesics on our congruence are
time-like. Consider a single geodesic with tangent vector tµ, normalized such that
t2 = −1. We define a velocity tensor B as the covariant derivative of the tangent
vector.

Bµν := ∇νtµ (12)

Since in Riemannian geometry geodesics are also autoparallels, we can use the
autoparallel equation tµ∇µt

ν = 0 to deduce that the velocity tensor projects to
zero when contracted with the tangent vector.

Bµνt
ν = 0 = Bνµt

ν (13)

Consider a timelike geodesic congruence and introduce the normal vector field
nµ, describing infinitesimal displacement between nearby geodesics.

nµ

tµ

geodesic congruences

τ = const

Orange lines denote members
of a timelike geodesic congru-
ence. The pink line is some
Cauchy surface at some con-
stant value of time τ . Green
arrows denote one example of
the tangent vector tµ and the
normal vector nµ.

The normal vector by definition commutes with the tangent vector, so that the
Lie-derivative of one such vector with respect to the other vanishes, e.g. Ltn

µ =
tν∇νn

µ − nν∇νt
µ = 0. Using this property yields a chain of equalities:

tν∇νn
µ = nν∇νt

µ = nνBµ
ν (14)

The equalities (14) let us interpret the tensor Bµ
ν as measuring the failure of the

normal vector nµ to be transported parallel along the tangent vector tµ. Thus, an
observer following some geodesic would deduce that nearby geodesics are stretched
and rotated by the linear map Bµ

ν .
It is useful to decompose the tensor Bµν into its algebraically irreducible com-

ponents. To this end we define a projector [see also section 11.1 in Black Holes I
lecture notes, just before Eq. (11.8); D is the spacetime dimension]

Πµν := gµν + tµtν = Πνµ Πµνt
ν = 0 Πµ

νΠ
ν
λ = Πµ

λ Πµ
µ = D−1 (15)

and split B into symmetric traceless part (shear σ), antisymmetric part (twist ω)
and trace part (expansion Θ)

σµν := B(µν) −
1

D−1 ΘΠµν ωµν := B[µν] Θ := Bµ
µ (16)

so that
Bµν = σµν + ωµν +

1
D−1 ΘΠµν . (17)
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Below is a simple picture of the various contributions to the deformation tensor
Bµν , starting with a circular ring of geodesics and some reference observer denoted
by a line.

σab:

ωab:

Θ:

shear

(area stays the same)

rotation/twist

expansion/contraction

(changes area of circle)

3.2 Raychaudhuri equation

We are interested in acceleration, so we consider the derivative of the deformation
tensor B along the tangent vector t and manipulate suitably.

tλ∇λBµν = tλ∇λ∇νtµ = tλ∇ν∇λtµ + tλ [∇λ, ∇ν ] tµ

= ∇ν

(

tλ∇λtµ
)

− (∇νt
λ)(∇λtµ)− tλRα

µλνtα = −Bλ
νBµλ −Rα

µλνt
λtα (18)

The equation above describes the acceleration of all deformation types.
Often one is interested particularly in the acceleration associated with expansion,

which is obtained by taking the trace of (18).

tλ∇λB
µ
µ = −BµνBνµ −Rµνt

µtν (19)

Defining d/ dτ := tµ∇µ and expanding the quadratic term in B in terms of its
irreducible components (17) yields the Raychaudhuri equation:

dΘ

dτ
= −

1

D − 1
Θ2 − σµνσ

µν + ωµνω
µν −Rµνt

µtν (20)

A key aspect of the right hand side of the Raychaudhuri equation (20) is that the
first and second term are non-positive. The third term vanishes in many situations
(twist-free congruences), while the last term is non-positive if the Einstein equations
are fulfilled and the strong energy condition holds for all unit timelike vectors t,

Tµνt
µtν ≥ − 1

2 T ⇒ Rµνt
µtν = κ

(

Tµν − 1
2 gµνT

)

tµtν ≥ 0 . (21)

Caveat: all local energy conditions are violated by quantum effects; while most of them are

expected to hold for “reasonable” classical matter, the strong energy condition (21) is already

violated by a cosmological constant. So take classical energy conditions with a grain of salt.
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3.3 Glimpse of singularity theorems

There is a number of singularity theorems that can be proven through the same
type of scheme: assume some convexity condition (like some energy condition) and
some trapping condition (like negativity of expansion). Then use something like the
Raychaudhuri equation to deduce the existence of a singularity. The conclusion is
that, given certain conditions, the existence of a black hole predicts the existence of
a singularity. Thus, classically singularities are an unavoidable feature of spacetimes
that contain black holes.

It is not the intention of these lecture to prove such theorems in generality, but
we shall at least prove a simpler theorem that allows to deduce the singularity in a
timelike geodesic congruence (which is not necessarily a singularity in spacetime).

Theorem. Let tµ be the tangent vector field in a timelike geodesic congruence
that is twist-free and assume Rµνt

µtν ≥ 0. If the expansion Θ associated with
this congruence takes the negative value Θ0 at any point of a geodesic, then the
expansion diverges to−∞ along that geodesic within a proper time τ ≤ (D−1)/|Θ0|.

Proof. The Raychaudhuri equation (20) together with absence of twist, ωµν = 0,
and the convexity property Rµνt

µtν ≥ 0 establishes the differential inequality

dΘ

dτ
≤ −

1

D − 1
Θ2 ⇒

dΘ−1

dτ
≥

1

D − 1
(22)

which is easily solved.

Θ−1(τ) ≥ Θ−1(τ0) +
τ − τ0
D − 1

(23)

Assuming that the initial value at τ0 = 0 is such that Θ(0) = Θ0 < 0 (by assump-
tions of the theorem such a τ0 must exist and with no loss of generality we shift it
to τ0 = 0) the right hand side of (23) has a zero at some finite τ ≤ (D − 1)/|Θ0|.
This means that 1/Θ goes to zero from below, so that Θ tends to −∞. �

More generally, Hawking, Penrose and others have proved that given some con-
vexity property (e.g. ensured by some energy condition and the fulfillment of the
Einstein equations) together with the existence of some trapped surface implies the
existence of at least one incomplete geodesic (usually also some condition on the
causal structure is required, like the absence of closed timelike curves). By defini-
tion this means that there is a singularity. The lesson is, whenever you have a black
hole you have a singularity. Thus, the singularities inside Schwarzschild or Kerr are
not an artifact of a highly symmetric situation but a generic feature of black holes.

3.4 Remarks on other theorems, especially the area theorem

There is a number of useful theorems, for instance Penrose’s theorem that future
event horizons have no future end points or the Schoen–Yau/Witten theorem of
positivity of energy. If you are interested in them you are strongly encouraged to
consult the Hawking & Ellis book or reviews (e.g. 1302.3405 or physics/0605007).

Perhaps the most remarkable one is Hawking’s area theorem. We are not
going to prove it, but here are at least the assumptions, a version of the theorem
itself, an idea of how to prove it and some interpretation what it means.

Assume that the Einstein equations hold and that Tµν obeys some energy con-
dition (e.g. the “weak energy condition”, Tµνt

µtν ≥ 0 for all timelike vectors t).
Assume further cosmic censorship (which is satisfied, for instance, if spacetime is
globally hyperbolic, i.e., there is a Cauchy surface). Finally, assume there is an
event horizon and that spacetime is asymptotically flat. Then the area of the
event horizon is monotonically increasing as a function of time.
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Implication of Hawking’s area theorem: black holes grow but do not shrink!

Σ1

Σ2

H1 ∩ Σ1 = A1 (area of black hole)

H1 ∩ Σ2 = A2

t

Idea of proof. It is sufficient to show that each area element a is monotonically
increasing in time. Using the expansion Θ it is easy to show

da

dτ
= Θ a . (24)

Thus, Hawking’s area law holds if Θ ≥ 0 everywhere on the event horizon. The
second part of the proof is to show that whenever Θ < 0 there must be a singularity,
so that either one of the assumptions of the theorem fails to hold or we get a
contradiction to Penrose’s theorem that the event horizon has no future endpoint.
Either way, the conclusion is that Θ < 0 cannot hold on the event horizon, which
proves Hawking’s area theorem.

Hawking’s area theorem can be expressed as a formula e.g. as follows. Let H by
the event horizon and Σ1,2 two Cauchy surfaces at times τ1,2 with τ2 > τ1. Then
Hawking’s area theorem states

H ∩ Σ2 ≥ H ∩ Σ1 . (25)

Yet another way to express the same content (in a very suggestive way) is to sim-
ply call the area “A” and to write Hawking’s area theorem as a convexity condition
reminiscent of the second law of thermodynamics,

δA ≥ 0 . (26)

The inequality (26) is also known as “second law of black hole mechanics”. We
shall see later that the similarity to the second law of thermodynamics is not just
incidental. Note that we have encountered already the zeroth law (constancy of
surface gravity for stationary black holes) in Black Holes I, and we shall learn about
the first law a bit later. Also various versions of the third law can be proven for
black holes (which means the impossibility to reach an extremal black hole starting
with a non-extremal one within finite time).

Black Holes II, Daniel Grumiller, March 2018
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4 Linearized gravity

In many instances (not just in gravity but also in quantum field theory) one is in-
terested in linearizing perturbations around a fixed background, which considerably
simplifies the classical and quantum analysis. While this approach is only justified if
the linearized perturbation is small enough, there are numerous applications where
this assumption holds. Examples include gravitational waves, holographic applica-
tions and perturbative quantization of gravity. In this section we develop the basic
tools to address all these issues.

4.1 Linearization of geometry around fixed background

Assume that the metric can be meaningfully split into background ḡµν and fluctu-
ations hµν . You can think of ḡ as some classical background (e.g. Minkowski space,
AdS, dS, FLRW or some black hole background) and of h either as a classical per-
turbation (e.g. a gravitational wave on your background) or as a variation of the
metric (e.g. when checking the variational principle or in holographic contexts) or
as a quantum fluctuation (e.g. when semi-classically quantizing gravity).

gµν = ḡµν + hµν (1)

For calculations we generally need various geometric quantities, like the inverse
metric, the Christoffel symbols, the Riemann tensor etc., so we consider them now
to linear order in h. Note that hµν = hνµ is a symmetric tensor.

Let us start with the inverse metric. The identity gµνgνλ = δµλ yields

gµν = ḡµν − hµν +O(h2) . (2)

In all linearized expressions we raise and lower indices with the background met-
ric ḡ, so that e.g. hµν = ḡµαḡνβhαβ . All quantities with bar on top have their
usual meaning and are constructed from the background metric ḡ, e.g. Γ̄αβγ =
1
2 ḡ

αµ (ḡβµ,γ + ḡγµ,β− ḡβγ,µ). We denote the difference between full and background
expression with δ, for example δgµν = gµν−ḡµν = hµν and δgµν = gµν−ḡµν = −hµν .

The determinant of the metric expands as explained in Black Holes I. (We sup-
press from now on O(h2) as it is understood that all equations below hold only at
linearized level.)

√
−g =

√
−ḡ
(

1 +
1

2
ḡµνhµν

)
(3)

The Christoffel symbols expand as follows

δΓαβγ = Γαβγ − Γ̄αβγ =
1

2
ḡαµ

(
∇̄βhγµ + ∇̄γhβµ − ∇̄µhβγ

)
. (4)

The result (4) implies that the variation of the Christoffels, δΓ, is a tensor.
The linearized Riemann tensor can be expressed concisely in terms of (4).

δRαβµν = ∇̄µ δΓαβν − ∇̄ν δΓαβµ (5)

While the results above are all we need for now, it is useful to provide more
explicit results for the linearized Ricci-tensor

δRµν = ∇̄α δΓαµν−∇̄ν δΓαµα =
1

2

(
∇̄α∇̄µhαν+∇̄α∇̄νhαµ−∇̄µ∇̄νhαα−∇̄2hµν

)
(6)

and the linearized Ricci-scalar

δR = −R̄µνhµν + ∇̄µ∇̄νhµν − ∇̄2hµµ . (7)

11



4.2 Linearization of Einstein equations

Consider the vacuum Einstein equations Rµν = 0 and assume some solution thereof
for the background metric, ḡµν such that R̄µν = 0 (e.g. ḡ could be Minkowski space
or the Kerr solution). Classical perturbations around that background then have
to obey the linearized Einstein equations δRµν = 0, viz.

∇̄α∇̄µhαν + ∇̄α∇̄νhαµ − ∇̄µ∇̄νhαα − ∇̄2hµν = 0 . (8)

Before attempting to solve these equations it is useful to decompose the pertur-
bations h as follows.

hµν = hTTµν + ∇̄(µξν) +
1

D
ḡµν h (9)

The first contribution on the right hand side of (9) is called “transverse-traceless
part” (TT-part) since it obeys the conditions

∇̄µhTTµν = 0 = hµTTµ . (10)

The second contribution on the right hand side of (9) is called “gauge part” since it
can be compensated by an infinitesimal diffeomorphism of the background metric,
Lξ ḡµν = ∇̄µξν + ∇̄νξµ. The last contribution on the right hand side of (9) is called
“trace part”, since up to a gauge term the trace of hµν is given by h. Alternatively,
one can call the three contributions (in this order) tensor, vector and scalar part.

In D ≥ 3 spacetime dimensions the tensor hµν has D(D + 1)/2 algebraically
independent components, with D of them residing in the gauge part and 1 of them
in the trace part. This means at this stage the TT-part has (D + 1)(D − 2)/2
algebraically independent components, which corresponds to the correct number
of massive spin-2 polarizations. However, in Einstein gravity gravitons are mass-
less which reduces the number of polarizations. As we shall see below there are
D(D − 3)/2 gravity wave polarizations in D-dimensional Einstein grav-
ity.

For simplicity we assume from now on that the background metric is flat so
that R̄αβγδ = 0. We evaluate for this case the linearized Einstein equations (8)
separately for the TT-part1

on flat background: ∇̄2hTTµν = 0 (11)

and the trace part (ḡµν∇̄2 + (D − 2)∇̄µ∇̄ν)h = 0. The gauge part trivially solves
the linearized Einstein equations (8).

Thus, on a flat background the TT-part obeys a wave equation (11), essentially
of the same type as a vacuum Maxwell-field in Lorenz-gauge. We show now that
the same wave equation can be obtained by suitable gauge fixing of the original
hµν , namely by imposing harmonic gauge, a.k.a. de-Donder gauge

∇̄µhµν =
1

2
∂νh

µ
µ . (12)

The gauge choice (12) fixes D of the D(D + 1)/2 components of hµν , but we still
have residual gauge freedom, i.e., gauge transformations

hµν → h̃µν = hµν + ∇̄µξν + ∇̄νξµ such that ∇̄µh̃µν =
1

2
∂ν h̃

µ
µ (13)

that preserve de-Donder gauge. The last equality in (13) establishes ∇̄2ξµ = 0,
so that we have D independent residual gauge transformations. In conclusion, the
number of physical degrees of freedom contained in linearized perturbations hµν in
Einstein gravity is given by D(D + 1)/2− 2D = D(D − 3)/2. Inserting de-Donder
gauge (12) into the linearized Einstein equations (8) yields ∇̄2hµν = 0, as promised.

1 The reason why this makes sense is because TT-, gauge- and trace-part decouple in the
quadratic action (16) below. Hence, also the linearized field equations decouple.
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4.3 Linearization of Hilbert action

We can use the linearization not only at the level of field equations but also at the
level of the action.

As a first task we fill in a gap that was left open in Black Holes I when deriving
the Einstein equations from varying the Hilbert action. We drop here all bars on
top of the metric and denote the fluctuation by δg instead of h. Using the formulas
for the variation of the determinant (3) and the Ricci scalar (7) yields

δIEH =
1

16πG
δ

∫
dDx
√
−g R =

1

16πG

∫
dDx
√
−g
((

1
2 g

µν R−Rµν
)
δgµν

+∇µ
(
∇νδgµν − gαβ∇µδgαβ

))
. (14)

Setting to zero the terms in the first line for arbitrary variations yields the vacuum
Einstein equations. The terms in the second line are total derivative terms and van-
ish upon introducing a suitable boundary action and suitable boundary conditions
on the metric (we shall learn more about this later in these lectures).

As second task we vary the action (14) again to obtain an expression quadratic
in the fluctuations (again dropping total derivative terms). Since δ2gµν = 0 and
the Einstein equations hold for the background we only need to vary the Einstein
tensor.

δGµν = δRµν − 1
2 R̄δgµν −

1
2 ḡµν δR = δRµν − 1

2 ḡµν δR (15)

Plugging (15) together with (6) and (7) into the second variation of the action (using
again h instead of δg) establishes the quadratic action (up to boundary terms)

16πGI
(2)
EH =

∫
dDx
√
−ḡ hµν δGµν =

∫
dDx
√
−ḡ 1

2 h
µν
(
�̄µν

αβ hαβ
)

(16)

with the wave operator

�̄µν
αβ = δβν ∇̄α∇̄µ+δβµ∇̄α∇̄ν−ḡαβ ∇̄µ∇̄ν−δαµδβν ∇̄2−ḡµν ∇̄α∇̄β+ḡµν ḡ

αβ ∇̄2 . (17)

The quadratic action (16) has a number of uses for semi-classical gravity and
holography. The field equations for h associated with the action (16), �̄µναβ hαβ =
0, are equivalent to the linearized Einstein equations (8). Thus, the action (16) is
a perturbative action for the gravitational wave (plus gauge) degrees of freedom.

4.4 Backreactions and recovering Einstein gravity

In this subsection we work schematically, omitting factors and indices. In the pres-
ence of matter sources T the quadratic action reads I(2) ∼

∫
( 1
G h∂

2h+ hT ). How-
ever, in contrast to electrodynamics where the photon is not charged, the graviton
is charged under its own gauge group, i.e., gravitons have energy and thus interact
with themselves. One can take this effect into account perturbatively by calculat-
ing the energy-momentum tensor associated with the quadratic fluctuations, which
schematically is of the form T (2) ∼ 1

G ∂h∂h. Thus, taking into account backreac-

tions we are led to a cubic action I(3) ∼
∫

( 1
Gh∂

2h + 1
G h∂h∂h + hT ). However,

the cubic term also contributes to the stress tensor, T (3) ∼ 1
G h∂h∂h and so forth.

Continuing this perturbative expansion yields an action

I(∞) ∼
∫ [

1
G

(
h∂2h+ h∂h∂h+ h2∂h∂h+ h3∂h∂h+ . . .

)
+ hT

]
. (18)

It was shown by Boulware and Deser that the whole sum can be rewritten as
1
G

√
−g R, so that even if one had never heard of Riemannian geometry in principle

one could derive the Hilbert action of Einstein gravity by starting with a massless
spin-2 action (16), adding a source and taking into account consistently backreac-
tions.
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5 Gravitational waves

5.1 Gravitational waves in vacuum

Let us stick to D = 4 and solve the gravitational wave equation on a Minkowski
background together with de-Donder gauge,

∂2hµν = 0 = ∂µh
µ
ν − 1

2 ∂νh
µ
µ . (19)

Linearity of the wave equation allows us to use the superposition principle and build
the general solution in terms of plane waves

hµν = εµν(k) eikµx
µ

k2 = 0 kµε
µ
ν = 1

2 kνε
µ
µ . (20)

The first equality contains the symmetric polarization tensor εµν that has to obey
the third equality to be compatible with de-Donder gauge. The second equality
ensures that the wave equation holds. The general solution is then some arbitrary
superposition of plane waves (20), exactly as for photons in electrodynamics.

The four residual gauge transformations are now used to set to zero the compo-
nents ε0i = 0 and the trace εµµ = 0. Thus, the de-Donder condition (20) simplifies to
transversality, kµεµν = 0. [With these choices the polarization tensor is transverse
and traceless, so that only hTT in (9) contributes.] For concreteness assume now
that the gravitational wave propagates in z-direction, kµ = ω (1, 0, 0, 1)µ. Then
transversality implies ε00 = ε0x = ε0y = ε0z = εxz = εyz = εzz = 0. Together with
symmetry, εµν = ενµ, and traceleceness, εµµ = 0, the polarization tensor

εµν =


0 0 0 0
0 ε+ ε× 0
0 ε× −ε+ 0
0 0 0 0


µν

=: ε+µν + ε×µν (21)

is characterized by two real numbers, corresponding to the two polarizations of
gravitational waves or, equivalently, to the two helicity states of massless spin-2
particles. They are called “plus-polarization” (ε+) and “cross-polarization” (ε×).

5.2 Gravitational waves acting on test particles

With a single test-particle it is impossible to detect a gravitational wave, so let us
assume there are two massive test-particles, one at the origin (A) and the other
(B) at some finite distance L0 along the x-axis. Let us further assume there is
a planar gravitational wave propagating along the z-direction with +-polarization,
hµν = ε+µνf(t− z) with ε+ = 1. The perturbed metric then reads

ds2 = − dt2 +
(
1 + f(t− z)

)
dx2 +

(
1− f(t− z)

)
dy2 + dz2 f � 1 . (22)

Assuming both test-particles are at rest originally, uµA = uµB = (1, 0, 0, 0), we can
solve the geodesic equation to linearized order.

duµ/ dτ = −δΓµ00 = 0 (23)

The last equality is checked easily by explicitly calculating the relevant Christoffel
symbols for the metric (22). Since the right hand side in (23) vanishes the test-
particles remain at rest and the coordinate distance between A and B does not
change. However, the proper distance between them changes (we keep y = z = 0).

L(t) =

L0∫
0

dx
√

1 + f(t) ⇒ L(t)− L0

L0
≈ 1

2
f(t) (24)

For periodic functions f the proper distance thus oscillates periodically around its
mean value L0. This is an effect that in principle can be measured, e.g. with LIGO.
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Effects of plus and cross polarized gravitational waves on ring of test-particles

5.3 Gravitational wave emission

Like light-waves, gravitational waves need a source. In the former case the source
consists of accelerated charges, producing dipole (and higher multipole) radiation,
in the latter case the source consists of energy, producing quadrupole (and higher
multipole) radiation. The first step is to generalize the wave equation (19) (defining
h̃µν := hµν − 1

2 ηµν h
α
α so that de-Donder gauge reads ∂µh̃µν = 0) to include an

energy-momentum tensor as source

∂2h̃µν = −16πGTµν (25)

which for consistency has to obey the conservation equation ∂µTµν = 0.
Up to the decoration with an additional index this is precisely the same situation

as in electrodynamics, where the inhomogeneous Maxwell-equations in Lorenz-gauge
read ∂2Aµ = −4π jµ and the source has to obey the conservation equation ∂µjµ = 0.
Using the retarded Green function yields

h̃µν(t, ~x) = 4G

∫
d3x′

Tµν(t− |~x− ~x′|, ~x′)
|~x− ~x′|

. (26)

Thus, we can basically apply nearly everything we know from electrodynamics
to gravitational waves. We shall not do this here in great detail, but consider merely
one example, the multipole expansion. Taylor-expanding around ~x′ = 0 the factor
|~x− ~x′| = r(1− ~x · ~x′/r2 + . . . ) in (26) yields

h̃µν(t, ~x)

4G
=

1

r

∫
Tµν +

xi

r3

∫
x′iTµν +

3xixj − r2δij

2r5

∫
x′ix
′
jTµν + . . . (27)

The quantities
∫
T 00 =

∫
d3x′ T 00(t− |~x− ~x′|, ~x′) = M and

∫
T 0i =

∫
d3x′ T 0i(t−

|~x− ~x′|, ~x′) = P i are mass and momentum of the source. A few lines of calculation
establish a formula for h̃ij in terms of the second time-derivative of the quadrupole
moment Qij(t) :=

∫
d3x′x′ix′jT 00(t, ~x′) of the source.

h̃ij(t, ~x) =
2G

r

d2Qij(t)

dt2

∣∣∣
t→t−|~x−~x′|

(28)

In the far-field approximation (28) describes the dominant part of gravitational
radiation.
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6 Quantum field theory aspects of spin-2 particles

There are undeniable analogies between Maxwell’s theory (a theory of massless
spin-1 fields), with the linearized gauge symmetry

Aµ → Aµ + ∂µξ (29)

and linearized Einstein gravity on Minkowski background (a theory of massless
spin-2 fields), with the linearized gauge symmetry

hµν → hµν + ∂(µξν) . (30)

(This analogy extends to spins higher than 2.) In the remainder of this section we
work exclusively in four spacetime dimensions for sake of specificity.

6.1 Gravitoelectromagnetism

As we have shown in section 4.2 in a suitable gauge hµν obeys the same wave
equation as Aµ. In fact, given some observer worldline uµ one can do a split
analogous to electromagnetism into electric part and magnetic part of the Weyl
tensor (the Ricci tensor vanishes for vacuum solutions), which in D = 4 reads

Eµν = Cµανβ u
αuβ Bµν =

1

2
εµα

λγ Cνβλγ u
αuβ . (31)

If you want to read more on this formulation see for instance in gr-qc/9704059.

6.2 Massive spin-2 QFT

We can gain some insights from looking at the quantum field theory of spin-1
particles (massless or massive QED) and extrapolating results to massless or massive
spin-2 particles. (If you are unfamiliar with QED just skip the remainder of this
section.) A particular goal of this subsection is to derive that positive charges
repel each other while positive masses attract each other just from the spin of the
associated exchange particle (spin-1 for electromagnetism, spin-2 for gravity).

To avoid issues with gauge redundancies consider for the moment the massive
case. The effective action for massive spin-1 particles is given by

W (j) = −1

2

∫
d4k

(2π)4
jµ ∗(k) ∆µν(k) jν(k) (32)

where j are external currents and ∆µν is the propagator,

∆µν(k) =
ηµν + kµkν/m

2

k2 +m2 − iε
(33)

with the photon mass m and iε is the prescription to obtain the Feynman propa-
gator. Current conservation ∂µj

µ = 0 implies transversality kµj
µ = 0 so that the

second term in the numerator of (33) drops out, yielding

W (j) = −1

2

∫
d4k

(2π)4
jµ ∗(k)

1

k2 +m2 − iε
jµ(k) . (34)

Consider now the situation where the sources are stationary charges so that j0 6= 0
but ji = 0 (assume further that j0 is real). Then the result above simplifies to

W (j0) =
1

2

∫
d4k

(2π)4
(j0)2

1

k2 +m2 − iε
. (35)
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Actually, the only aspect of interest to us is the sign in (35): it is positive, meaning
that there is a positive potential energy between charges of the same sign. Thus,
equal charges repel each other.

Since we intend to generalize the considerations above to massive spin-2 particles
we need to know their propagator. To this end let us rederive the massive photon
propagator (33) using transversality of polarization vectors, kµεIµ(k) = 0, where
I runs over all possible polarizations (for massive spin-1 particles I = 1, 2, 3) and
with no loss of generality we choose kµ = m (1, 0, 0, 0) and εIµ = δIµ. On general
grounds, the amplitude for creating a state with momentum k and polarization I
at the source is proportional to εIµ(k), and similarly the amplitude for annihilating

a state with momentum k and polarization I at the sink is proportional to εIν(k).
The numerator in (33) (which determines the residue of the poles) should thus
be given by the sum

∑
I ε
I
µ(k)εIν(k). Suppose we did not know the result for the

residue. Then we can argue that by Lorentz invariance the result must be given by
the sum of two terms, one proportional to gµν and the other proportional to kµkν .
Transversality fixes the relative coefficient so that the numerator (and hence the
residue) must be proportional to

Dµν = ηµν + kµkν/m
2 . (36)

The overall normalization is determined to be +1, e.g. from considering the com-
ponent µ = ν = 1. This concludes our derivation of the residue of the pole in the
massive spin-1 propagator (33). The location of the pole itself just follows from the
wave equation; the iε prescription is the least obvious aspect, but standard since
Feynman’s time. If you are unfamiliar with it consult some introductory QFT book,
like Peskin & Schroeder.

We do now the same calculation for massive spin-2 particles, where the analog
of the effective action (32) reads

W (T ) = −1

2

∫
d4k

(2π)4
Tµν(k) ∆µναβ(k)Tαβ(k) . (37)

The source is now the energy-momentum tensor Tµν . Source and propagator have
twice as many indices as compared to the spin-1 case.

Our first task is to determine the propagator ∆µναβ(k). We use the spin-2
polarization tensor εµν , which has to be transverse, traceless and symmetric.

kµεµν = 0 εµµ = 0 εµν = ενµ (38)

This means that we have 5 independent components in εµν corresponding to the 5
spin-2 helicity states. We introduce again a label I to discriminate between these 5
helicity states, εIµν(k) and allow for k-dependence (fixing the normalization e.g. by∑
I ε
I
12ε

I
12 = 1). It is then a straightforward exercise [exploiting the properties (38)]

to perform the sum over all helicities

5∑
I=1

εIµνε
I
αβ = DµαDνβ +DµβDνα − 2

3 DµνDαβ (39)

where Dµν is the same expression as in (36). The overall normalization was fixed
again by considering a specific example, e.g. evaluating (39) for µ = α = 1 and
ν = β = 2. This means that the massive spin-2 (Feynman) propagator is given by

∆µναβ(k) =
DµαDνβ +DµβDνα − 2

3 DµνDαβ

k2 +m2 − iε
. (40)

Our second task is to consider the interaction between two sources of energy.
For simplicity assume that only T 00 6= 0 and all other components of Tµν vanish.
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Then inserting the massive spin-2 propagator (40) into the effective action (37)
yields [using transversality kµT

µν = 0 only the η-term in (36) contributes]

W (T 00) = −1

2

∫
d4k

(2π)4
(T 00(k))2

1 + 1− 2
3

k2 +m2 − iε
. (41)

Since all numerator terms in the integrand are positive, the overall sign of the
potential energy W (T 00) is opposite to that of the potential energy W (j0) in the
spin-1 case (35). Thus, gravity is attractive for positive energy because the
exchange particle has spin-2.

It is remarkable that we were able to conclude the attractiveness of gravity
merely from the statement that its exchange particle has spin-2. Of course, there
is a gap in the logic above: we have proved this statement so far only for massive
gravitons, but Einstein gravity has massless gravitons.

6.3 Massless spin-2 QFT and vDVZ-discontinuity

It may be tempting to conclude that the difference between a massless spin-2 particle
and a massive one is negligible if the mass in sufficiently small. Actually this
conclusion is correct, but in a highly non-trivial way, which we address here.

Let us consider first the massless spin-2 propagator, which we can read off from
the results in section 5.1 [or from (17) together with a gauge-fixing term].

∆0
µναβ(k) =

ηµαηνβ + ηµβηνα − ηµνηαβ
k2 +m2 − iε

+ possibly kλ-terms (λ = µ, ν, α, β) (42)

The main difference to the massive spin-2 propagator (40) is that the factor − 2
3

in the last term is replaced by −1 here, which causes a discontinuity, as it persists
for arbitrarily small non-zero masses. This effect is called van Dam–Veltman–
Zakharov discontinuity.

Should we care about this discontinuity? Consider the interaction between two
particles with stress tensors Tµν1,2 exchanging a massive spin-2 particle in the limit
of vanishing mass versus them exchanging a massless spin-2 particle:

massive (m→ 0): Tµν1 ∆µναβT
αβ
2 =

1

k2
(
2Tµν1 T2µν − 2

3 T1T2
)

(43)

massless: Tµν1 ∆0
µναβT

αβ
2 =

1

k2
(
2Tµν1 T2µν − T1T2

)
(44)

Thus, for the gravitational interaction of massless particles (T1 = T2 = 0) there is
no difference between the exchange of (tiny) massive and massless spin-2 particles,
but for massive particles (T1 6= 0 6= T2) there is a difference by a factor of order
unity. This factor of order unity should have shown up in the classical tests (light-
bending and perihelion shift). So can we conclude from the vDVZ-discontinuity
that experimentally the graviton must be exactly massless?

The answer is no. While Einstein gravity predicts massless gravitons, we cannot
be sure experimentally whether or not the graviton is exactly massless or has a
tiny non-zero mass. The issue why the vDVZ-discontinuity does not contradict
this statement was resolved by Vainshtein. His key insight was that massive spin-2
theories with some central object of mass M come with an intrinsic distance scale,
given by rV = (GM)1/5/m4/5 also known as “Vainshtein radius” (G is Newton’s
constant and m the graviton mass). The difference between Einstein gravity and
massive spin-2 theories is negligible inside the Vainshtein radius, which can be
arbitrarily large if m is tiny. The approximations we made above using massive
spin-2 exchange are only valid outside the Vainshtein radius; within the Vainshtein
radius the higher order terms in the expansion analogous to (18) are not negligible.
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7 Black hole perturbations and quasi-normal modes

In our perturbative treatment around some fixed background we have focussed so
far on maximally symmetric backgrounds, i.e., Minkowski space or (A)dS. Another
obvious set of interesting backgrounds is provided by black holes. If you have a large
black hole and you throw some small perturbation (say, a spaceship) into it or scatter
some wave on the black hole, then you expect the black hole to be only slightly
modified. It turns out that the black starts to ring like a bell when perturbed, but
with damped oscillations, so-called quasi-normal modes. They are characteristic for
a black hole in much the same way as normal modes are characteristic for systems
described by a bunch of harmonic oscillators.

The purpose of this section is to develop the theory of black hole perturbations
and in particular derive equations for quasi-normal modes. Possible applications
include gravitational wave emission of black hole binaries, stability investigations of
black holes, scattering and absorption of waves by black holes, late-time behavior
of the gravitational field after black hole formation, radiation generated by objects
falling into black holes and various holographic applications.

7.1 Scalar perturbations of Schwarzschild black holes

In order to illuminate the main concepts and tools let us consider the simplest black
hole in four spacetime dimensions, the Schwarzschild black hole.

ds2 = −(1− 2M/r) dt2 + dr2/(1− 2M/r) + r2
(

dθ2 + sin2 θ dϕ2
)

(1)

Let us further assume that we perturb this black hole by switching on a free scalar
field φ propagating on that background, i.e., obeying the Klein–Gordon equation.

∇2φ = 0 ⇒ ∂µ
(√
−ggµν∂νφ

)
= 0 (2)

Exploiting spherical symmetry we decompose the scalar field into spherical har-
monics

φlm =
ψl(t, r)

r
Ylm(θ, ϕ) (3)

where we have pulled out a convenient factor 1/r. Using the tortoise coordinate r∗
(see Black Holes I),

r∗ = r + 2M ln
(
r/(2M)− 1

)
(4)

the functions ψl obey wave equations(
− ∂2

∂t2
+

∂2

∂r2∗
− Vl(r)

)
ψl = 0 (5)

with the effective potential

Vl(r) =
(

1− 2M

r

)( l(l + 1)

r2
+

2M

r3

)
. (6)

Since the wave equation (5) is linear it is useful to decompose the functions

ψl(t, r) into plane waves ψ̂l(r, ω)e−iωt. Note that ω is complex in general. All that
remains to be solved is a second order ODE.( d2

dr2∗
+ ω2 − Vl(r)

)
ψ̂l(r, ω) = 0 (7)

Thus, we have reduced the problem to scattering on the potential (6), displayed
in Fig. 1 on the next page. This type of problem you have encountered in basic
lectures on quantum mechanics. Equation (7) is known as Regge–Wheeler equation.
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Figure 1: Potential Vl [width M = 1/2] for l = 0 (lowest/blue curve), l = 1
(middle/red curve) and l = 2 (upper/green curve) as function of r∗. The horizon
is at r∗ → −∞, the asymptotic region at r∗ → +∞. Note that the potential is
positive everywhere and has a maximum close to the photon sphere r = 3M . The
form of the potential implies that there are no discrete normalizable bound states.

Let us thus apply general insights from quantum mechanical potential scattering
for barrier potentials displayed above. If the waves have short wave-length as com-
pared to the Schwarzschild radius we expect them to be easily transmitted through
the potential barrier. Waves with wavelengths of order of the Schwarzschild radius
will be partly transmitted and partly absorbed. Waves with long wavelengths will
be reflected almost completely by the potential barrier. Moreover, since the effective
potential Vl vanishes for r∗ → ±∞ (i.e., for r → 2M and r →∞) we know that two

linearly independent solutions to (7) asymptotically behave as ψ̂l ∼ e±iωr∗ . Thus,
we can make the following ansatz for infalling modes

lim
r∗→−∞

ψ̂l = e−iωr∗ lim
r∗→∞

ψ̂l =
(
AR(ω)eiωr∗ + e−iωr∗

) 1

AT (ω)
(8)

having normalized the mode conveniently at the horizon (where it is ingoing!)
and introduced reflection and transmission amplitudes AR and AT , respectively,
to parametrize the asymptotic amplitudes. A second set of modes is given by the
complex conjugate of (8). Since the Wronskian of two linearly independent solutions
of (7) is constant, evaluation at r∗ = ±∞ yields a quadratic relation between trans-
mission and reflection amplitudes (which again should look familiar from quantum
mechanics),

|AR|2 + |AT |2 = 1 . (9)

The squares of the amplitudes are reflection and transmission probabilities.
Note that the modes defined by (8) can be interpreted as waves propagating

from I − towards the future event horizon (transmission), partly being scattered
to I + (reflection). The complex conjugate of these modes corresponds to waves
approaching I + and emanating partly from the past event horizon (“transmission”)
and partly from I − (“reflection”). Finally, note that one can also define two
additional sets of modes where the limits r∗ → ±∞ are exchanged as compared to
the definition (8) and its complex conjugate. They describe waves that are only
ingoing at the future horizon or only outgoing at the past horizon. Particularly
the modes that are only ingoing at the future horizon have interesting physics
applications.
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7.2 Quasi-normal modes

Quasi-normal modes are perturbations of a black hole that are ingoing on the future
event horizon and outgoing at infinity. They are of particular interest, since they
capture the response of a black hole under small perturbations (“ringing”). Before
discussing them it is useful to recall basic features of normal modes.

Many physical systems are well-described by harmonic oscillators. Compact
systems governed by harmonic motion can conveniently be decomposed in terms of
normal modes

ψ(t, r) =

∞∑
n=1

ψn(r) e−iωnt (10)

where all ωn are real. The function ψ(t, r) describes the state of the system. Perhaps
the simplest example is a string of finite length with fixed endpoints. Non-compact
systems require a bit more care. Consider the wave equation (5) (dropping the
subscripts l) with vanishing potential V = 0. Then the spectrum is continuous, but
we can still use as basic building blocks plane waves and represent general solutions
as (continuous) superpositions of these plane waves. Thus, for non-compact systems
plane waves (again with real frequencies) are analogs of normal modes for compact
systems, which is the essence of Fourier analysis.

For the definition of quasi-normal modes consider the wave equation (5) with
non-negative finite V ≥ 0, assuming compact support, i.e., V (r∗) = 0 for |r∗| > r0.
All solutions ψ are then bounded and we can employ a Laplace transformation.

ψ̃(s, r∗) =

∞∫
0

dt e−st ψ(t, r∗) (11)

The Laplace transform ψ̃(s, r∗) of solutions ψ(t, r∗) obeys

s2ψ̃ − ψ̃′′ + V ψ̃ = sψ(0, r∗) + ∂tψ(0, r∗) =: j(s, r∗) (12)

where the right hand side contains the initial data ψ(0, r∗) and ∂tψ(0, r∗), and prime
denotes derivative with respect to r∗. Boundedness of ψ implies analyticity of ψ̃ in
the complex half-plane Re(s) > 0. The homogeneous version of (12) reads

s2ψ̃ − ψ̃′′ + V ψ̃ = 0 . (13)

To solve (12) we consider its Green function.

G(s, r∗, r
′
∗) =

1

W (s)

(
f+(s, r∗)f−(s, r′∗)θ(r∗−r′∗)+f+(s, r′∗)f−(s, r∗)θ(r

′
∗−r∗)

)
(14)

Here f± are suitable solutions to the homogeneous equation (13) and W (s) is the
Wronskian of f±. The general solution to (12) is then given by

ψ̃(s, r∗) =

∞∫
−∞

dr′∗G(s, r∗, r
′
∗) j(s, r

′
∗) (15)

It remains to be clarified what “suitable solutions” means. We need to select
a unique pair of solutions f± compatible with all our assumptions. The Laplace
transformation (11) guarantees that ψ̃ is bounded as function of r∗. Compact
support of the potential implies that for |r∗| > r0 solutions to (13) behave as

f ∼ e±sr∗ . (16)

Thus, we have the following unique pair of linearly independent and bounded solu-
tions:

f± = e∓sr∗ for ± r∗ > r0 . (17)
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For the relevant domain Re(s) > 0 the solution f+ (the solution f−) is decaying at
large positive (large negative) r∗.

Now we are ready to define quasi-normal mode frequencies sn. They are defined
as complex number for which the two solutions f± become linearly dependent, i.e.,
the Wronskian vanishes.

f+(sn, r∗) = An(sn) f−(sn, r∗) (18)

The corresponding solutions f+(sn, r∗) are referred to as quasi-eigenfunctions. At
this stage we should worry about their existence. After all, by construction we
have a unique regular Green function (14) for Re(s) > 0 so that in this part of
the complex plane it is impossible to obey (18) since necessarily both solutions
f± are linearly independent there. However, one can show that f± have unique
analytic continuations into the full complex plane. Moreover, there is a theorem (see
A. Bachelot and A. Motet-Bachelot, Ann.Inst.H.Poincare Phys.Theor. 59 (1993) 3)
that for non-negative potentials V with compact support there is always a countable
number of zeros of the Wronskian in the half-plane Re(s) < 0.

To appreciate the physical significance of quasi-eigenfunctions consider the in-
verse Laplace trafo for some positive a > 0

ψ(t, r∗) =
1

2πi

∞∫
−∞

ds e(a+is)t ψ̂(a+ s, r∗) (19)

where the complex line integral along s can be suitably deformed to show the
following behavior of the function ψ:

ψ(t, r∗) ∼
∑
n

An e
snt f+(sn, r∗) (20)

where
sn = κn + iωn with κn < 0 (21)

and the sum extends over all quasi-normal mode frequencies. The functions ψ(t, r∗)
in (20) are called quasi-normal modes.

The result (20), (21) shows that quasi-normal modes decay exponentially in
time. Thus, at very late times the behavior of the system under consideration
is dominated by the lowest lying quasi-normal mode, i.e., by the mode with the
quasi-normal frequency that has the largest (or least negative) real part κnmin .

In the case of Schwarzschild the potential V given in (6) does not have compact
support, so one needs to extend the discussion above to cases of non-compactly
supported V that decay at infinity. While it is non-trivial to make this statement
more precise, it is plausible that for sufficiently fast fall-off to zero there will be again
quasi-normal modes. Indeed, for Schwarzschild black holes quasi-normal modes do
exist and were constructed numerically by Nollert, Phys. Rev. D (1993) 5253 and
Andersson Class. Quant. Grav. 10 (1993) L61 and in the limit of large damping
analytically by Motl and Neitzke, hep-th/0301137.

While there are numerous other applications, the main applications of quasi-
normal modes within black hole physics include gravitational wave emission in the
“ring-down” phase after a black hole merger (i.e., exponential decay towards a
stationary black hole governed by the lowest-lying quasi-normal modes) and tests
of the AdS/CFT correspondence (where the black hole quasi-normal frequencies
coincide with poles of the retarded Green function of the dual CFT, see the paper
by Birmingham, Sachs and Solodukhin hep-th/0112055; see also the more recent
work by Janik, Jankowski and Soltanpanahi 1603.05950). For an older review
article on quasi-normal modes and more details see gr-qc/9909058.
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7.3 Generalizations

In these lectures we considered only spin-0 (=scalar) perturbations around Schwarz-
schild black holes, but the same techniques work for perturbations of higher spin
(including gravitational perturbations), while different techniques may be needed
for other black holes (in particular Kerr, the phenomenologically most important
black hole). Rather then deriving such generalizations below we merely quote some
key results, whose derivation conceptually is along the lines of the previous sections.

A generalization of the Regge–Wheeler potential (6) to arbitrary spin s is given
by

V sl (r) =
(

1− 2M

r

)( l(l + 1)

r2
+

2M(1− s2)

r3

)
. (22)

For s = 0 it coincides with (6), for s = 1 (photons) the last term vanishes and
for s = 2 (gravitons) the last term changes its sign as compared to scalar pertur-
bations. Note, however, that there are two kinds of gravitational perturbations:
axial ones (which induce rotation; they are parity odd) and polar ones (which do
not induce rotation; they are parity even); this nomenclature was introduced by
Chandrasekhar, see The mathematical theory of black holes Oxford Science Publi-
cations (1985). It turns our that the axial perturbations are indeed governed by the
Regge–Wheeler potential (22) with s = 2, while the polar ones are governed by the
so-called Zerilli-potential (n := 1

2 (l − 1)(l + 2))

V Z

l (r) = 2
(

1− 2M

r

)n2(n+ 1)r3 + 3n2Mr2 + 9nM2r + 9M3

r3(nr + 3M)3
. (23)

For Kerr black holes (see Black Holes I: Σ = r2 + a2 cos2 θ, ∆ = r2− 2Mr+ a2)

ds2 = −∆

Σ

(
dt−a sin2 θ dϕ

)2
+

Σ

∆
dr2+Σ dθ2+

sin2 θ

Σ

(
(r2+a2) dϕ−a dt

)2
(24)

peturbations are solutions to the Teukolsky equation, which you can find e.g. in
this paper by Fiziev, 0908.4234 (see also Refs. therein). This is not the place to go
into details of (or even display in its full glory) the Teukolsky equation. We merely
focus on one physically important detail concerning scalar perturbations.

Again the ansatz (8) works for infalling modes (where now the tortoise coordi-
nate is given by d/dr∗ = ∆/(r2 + a2) d/dr), except that in the limit r∗ → −∞
there is a shift ω → ω − mΩ, where m is the magnetic quantum number of the
perturbation and Ω = a/(r2+ + a2) is the angular velocity of the outer horizon,

with r+ = M +
√
M2 − a2, see exercise sheet 10 of Black Holes I. Constancy of the

Wronskian now leads to a condition slightly different from (9), namely

|AR|2 +
(

1− mΩ

ω

)
|AT |2 = 1 . (25)

If the inequality
mΩ > ω (26)

holds, plugging this inequality into relation (25),

|AR|2 − 1 =
(mΩ

ω
− 1
)
|AT |2 > 0 (27)

shows that |AR| > 1 in this case. Thus, the reflected amplitude is bigger than the
incoming one! This is called “superradiant scattering” and allows to extract energy
from a Kerr black hole.

For further aspects of black hole perturbation theory — like black hole stability
or gravitational waves from black hole binaries — see chapter 4 of Frolov & Novikov,
Black holes physics, Kluwer Academic Publishers (1998) and Refs. therein.

Black Holes II, Daniel Grumiller, April 2018
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8 Black hole thermodynamics

The insight that black holes have a (Hawking) temperature and a (Bekenstein–
Hawking) entropy has profoundly influenced our understanding of black holes and
our path on the road towards quantum gravity. Despite of their classical simplicity,
captured by “no hair” theorems, quantum mechanically black holes are not only
complicated, but arguably the most complex entities that could possibly exist in
our (or any other) Universe. Sometimes the analogy is made that understanding
the thermodynamics of black holes quantum mechanically could play the same role
for the development of quantum gravity as the quantum mechanical understanding
of the Hydrogen atom in the development of quantum mechanics. Regardless of
whether this turns out to be true, black hole thermodynamics certainly is a cor-
nerstone in reasonable attempts to quantize gravity and has found applications in
AdS/CFT and black hole analogs.

The reason why there are no astrophysical applications in the current phase of
our Universe is the smallness of the Hawking temperature for black holes whose
mass is larger than the mass of our Sun (which applies to all astrophysical black
holes detected so far and must be true if the black hole results from gravitational
collapse of a star, see the beginning of Black Holes I).

In this section we work out classical aspects of black hole thermodynamics,
starting with the four laws.

See 1402.5127 and Refs. therein for more on black hole thermodynamics.

8.1 Four laws of black hole mechanics and thermodynamics

In Black Holes I we derived a version of the zeroth law of black hole mechanics
(surface gravity κ is constant for stationary black holes) and in Black Holes II we
mentioned the proof idea of the second law of black hole mechanics. The third law
states that it is impossible to reach a black hole state of vanishing surface gravity
from an initial black hole with non-vanishing surface gravity in finite time (see one
of the exercises). We focus now on the missing item, the first law of black hole
mechanics.

As a preparation we consider Smarr’s formula

M =
κA

4π
+ 2ΩJ (1)

for Kerr black holes with mass M , angular momentum J , event horizon area A,
surface gravity κ and angular velocity of the horizon Ω. Smarr’s formula can be
derived using the Komar integrals we introduced in Black Holes I for the Killing
vector ∂t + Ω∂ϕ, but since we know already all the results for Kerr black holes we
can easily verify (1) simply by expressing all quantities in terms of outer and inner
horizon radii. Recalling

M =
r+ + r−

2
J(= aM) =

r+ + r−
2

√
r+r− A = 4π

(
r2+ + r+r−

)
κ =

r+ − r−
2(r2+ + r+r−)

Ω =

√
r+r−

r2+ + r+r−
(2)

allows to verify that (1) indeed holds for all values of r±.
We state now a simplified version of the first law. Take a stationary (Kerr)

black hole of mass M and angular momentum J and perturb it infinitesimally by
changing to mass M + δM and angular momentum J + δJ . Then the change of the
area δA is related linearly to δM and δJ through the first law as follows,

δM =
κ

8π
δA+ Ω δJ (3)
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where κ is surface gravity and Ω the angular velocity of the horizon. The proof of
the first law can be found in the paper by Bardeen, Carter and Hawking.1

Instead of an actual proof we present here a slick derivation that is due to
Gibbons. Black hole uniqueness implies that M , J and A cannot be independent
from each other since (Kerr) black holes are uniquely specified by providing two
of these numbers. Thus, either of them must be a function of the two others. For
instance, M = M(J,A). Now, A and J have both dimensions of mass squared (we
are in four spacetime dimensions right now). This implies that the function M(J,A)
is homogeneous of degree 1

2 . Euler’s theorem for homogeneous functions establishes

J
∂M

∂J
+A

∂M

∂A
=

1

2
M =

κ

8π
A+ ΩJ (4)

where the last equality follows from Smarr’s formula (1). We can rewrite (4) sug-
gestively

J
(∂M
∂J
− Ω

)
+A

(∂M
∂A
− κ

8π

)
= 0 (5)

and then argue that both terms in (5) have to vanish separately since the coefficients
J and A are arbitrary and independent from each other. If you buy this argument
then you obtain the desired result

∂M

∂J
= Ω

∂M

∂A
=

κ

8π
(6)

which establishes the first law (3).
More general black holes may also depend on the electric charge and be immersed

in something other than Minkowski space, e.g. in (A)dS space. In all these cases
there is a first law of the form

δM =
κ

8π
δA+ work terms . (7)

We summarize now the four laws of black hole mechanics and contrast them
with the four laws of thermodynamics.

black hole mechanics thermodynamics
0th κ = const. T = const.
1st δM = κ

8π δA+ work terms δE = T δS + work terms
2nd δA ≥ 0 δS ≥ 0
3rd κ→ 0 impossible T → 0 impossible

Comparing left and right columns it is tempting to identify surface gravity with
temperature, κ ∼ T , area with entropy, A ∼ S and mass with energy, M ∼ E.
Actually, we know that at least the last identification is correct, thanks to Einstein’s
most famous formula E = M (in units of c = 1). Moreover, note that there are
non-trivial consistency checks of this identification — for example, κ plays the role
of T not only in the 0th law, but also in the 1st and 3rd law. Should we therefore
take the analogy displayed in the table above seriously? The naive answer is yes, the
more sophisticated answer is no (see the footnote on this page for the reason) and
the correct answer is again yes. However, to show this we need to take into account
quantum fluctuations on black hole backgrounds in order to derive the Hawking
effect, the Hawking–Unruh temperature and the Bekenstein–Hawking entropy.

1This paper is not only nice, but also remarkable since it contains the statement “In fact the
effective temperature of a black hole is absolute zero. One way of seeing this is to note that a black
hole cannot be in equilibrium with black body radiation at any non-zero temperature, because no
radiation could be emitted from the hole whereas some radiation would always cross the horizon
into the black hole.” that was famously falsified by its last author about a year later.
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8.2 Phenomenological aspects of black hole thermodynamics

Before we delve into semi-classical aspects associated with the Hawking effect we
address phenomenological aspects of black hole thermodynamics. Let us start with
the Schwarzschild black hole. According to our previous discussion we have

T ∼ 1

M
S ∼M2 ⇒ S ∼ 1

T 2
(8)

where the similarity signs remind us that we do not know the factors of order unity
in these identifications (all we know is κA = 8πTS). Interesting observations:

1. For stellar mass black holes the temperature is tiny, T ∼ 10−38 ≈ 10−6 Kelvin�
TCMB ≈ 3 Kelvin. (Once all factors are considered the result for a stellar mass
black hole is T ≈ 61.7 nanoKelvin.) Thus, we do not expect to ever detect
Hawking radiation from stellar mass black holes (nor from heavier ones).

2. For a stellar mass black hole the entropy is ridiculously large, S ∼ 1076, which
means that we have a googolplex-like number of microstates, N ∼ e1076 .

3. The Bekenstein–Hawking entropy is not extensive in the usual way, i.e., it
does not scale like the volume of the black hole but rather like its area. This
observation is the seed of the holographic principle, which states that quantum
gravity in, say, four spacetime dimensions is equivalent to some quantum field
theory in three spacetime dimensions (where then the area is reinterpreted as
volume of the lower-dimensional theory).

4. The Schwarzschild black hole has negative specific heat.

C =
dM

dT
∼ − 1

T 2
< 0 (9)

This statement just rephrases the fact that the more a Schwarzschild black
hole radiates (and hence the more it reduces its mass) the warmer it gets.
Thus, by itself the Schwarzschild black hole is thermodynamically unstable,
but we should not worry too much about this given how tiny the specific heat
is. It is possible to stabilize the Schwarzschild black hole by putting it into a
box (either literally or by providing AdS asymptotics, see below).

Charged (Reissner–Nordström) or rotating (Kerr or Kerr–Newman) black holes
have additional interesting features. There are now work terms present associated
with changes of the charge or angular momentum. Moreover, we can have extremal
solutions where temperature vanishes, but which are macroscopically large and thus
have a huge entropy. For example,

Sextremal Kerr ∼ A = 4π
(
r2+ + r+r−

)
= 8πr2+ = 8πM2 � 1 . (10)

No analog condensed matter system is known which at zero temperature has such
a large degeneracy of states.

Finally, let us briefly consider black holes in AdS; for simplicity consider Schwarz-
schild-AdS, whose metric is given by (` is the AdS4 radius)

ds2 = −
(r2
`2

+ 1− 2M

r

)
dt2 +

dr2

r2

`2 + 1− 2M
r

+ r2 dΩ2
S2 . (11)

Calculating the specific heat in the limit of small masses recovers the negative sign
of (9), C ∼ −M2 + O(M4/`2). Interestingly, in the limit of large masses specific
heat is positive, C ∼ `4/3M2/3 +O(`8/3/M2/3). This suggests that there could be a
phase transition at some finite value of the mass, M/` ∼ O(1), which indeed exists
and is known as Hawking–Page phase transition.

Black Holes II, Daniel Grumiller, May 2018
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9 Hawking effect

Black holes at finite surface gravity κ emit radiation that to leading order approxi-
mation is thermal. This is known as Hawking effect. The purpose of this section is
to calculate the Hawking temperature in terms of surface gravity, i.e., to determine
the precise O(1) coefficient in the relation κ ∼ T . We shall do this in two different
ways, by Euclidean continuation and by a semi-classical calculation of scalar field
fluctuations on a black hole background.

9.1 Periodicity in Euclidean time is inverse temperature

Quantum mechanically unitary time evolution of some state |ψ(0)〉 is generated by
some Hermitean Hamiltonian H,

|ψ(t)〉 = eiHt|ψ(0)〉 . (1)

Quantum statistically, the partition function is defined by a trace over the Boltz-
mann factor e−βH , where β = T−1 is inverse temperature,

Z = tr
(
e−βH

)
=
∑
ψ

〈ψ(0)|e−βH |ψ(0)〉 =
∑
ψ

e−βEψ (2)

where the sum is over a complete set of states |ψ(0)〉 and Eψ are energy eigenvalues.
The key observation here is that the Boltzmann factor can be reinterpreted as time
evolution of the state |ψ(0)〉 over the imaginary time period −iβ, thus yielding

Z =
∑
ψ

〈ψ(0)|ψ(−iβ)〉 =
∑
ψ

〈ψ(+iβ)|ψ(0)〉 . (3)

Given the expressions (3) for the partition function it is suggestive to impose peri-
odicity in the imaginary part of time,

t ∼ t− iβ ⇒ τ ∼ τ + β where τ = it . (4)

Periodicity in Euclidean time τ is identical to inverse temperature β.
Actually, for those who know a bit of QFT let us be more concrete and consider

the Green function of a free theory at finite temperature,

G(x− y) =

∑
ψ〈ψ|T (φ(x)φ(y))|ψ〉e−βEψ∑

ψ e
−βEψ

=
1

Z
tr
(
e−βHT (φ(x)φ(y))

)
(5)

where the |ψ〉 are eigenstates of H with eigenvalues Eψ and T denotes time-ordering.
We then get the following chain of identities (assuming x0 > 0 we can drop time
ordering in the first step)

G(x0, ~x; 0, ~y) =
1

Z
tr
(
e−βHφ(x0, ~x)φ(0, ~y)

)
=

1

Z
tr
(
φ(0, ~y)e−βHφ(x0, ~x)

)
=

1

Z
tr
(
e−βHeβHφ(0, ~y)e−βHφ(x0, ~x)

)
=

1

Z
tr
(
e−βHφ(−iβ, ~y)φ(x0, ~x)

)
=

1

Z
tr
(
e−βHT (φ(x0, ~x)φ(−iβ, ~y))

)
= G(x0, ~x;−iβ, ~y) (6)

Perhaps the least obvious step is the penultimate equality, where we applied time-
ordering in presence of imaginary time. Comparing the initial and the final expres-
sions shows periodicity of the finite temperature Green function in Euclidean time
with period β = T−1. Thus, in a quantum field theory the defining signature of a
thermal state at temperature T is periodicity in Euclidean time, a conclusion we
also reached above. This is also known as KMS condition.

Thus, if you construct a physical state and can show that it has to
be periodic in Euclidean time τ with period β, i.e., τ ∼ τ + β, you can
deduce it is a thermal state at temperature T = 1/β.
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9.2 Hawking temperature from Euclidean regularity

Consider now a D-dimensional spacetime with a non-extremal Killing horizon with
surface gravity κ > 0. As we have shown in the last semester, near the horizon we
can universally approximate the spacetime as two-dimensional Rindler spacetime
together with some transversal space,

ds2 = −κ2r2 dt2 + dr2 + gtrans

ij dxi dxj (7)

where i, j = 2, 3, . . . , D. For instance, for Schwarzschild gtrans
ij dxi dxj is the metric

of the round two-sphere. Continuing (7) to Euclidean signature, τ = it, yields

ds2 = r2 d(κτ)2 + dr2 + . . . (8)

where we displayed only the (Euclidean) Rindler part of the metric (see also exercise
9.3). They key observation is that the space defined by the metric (8) locally is just
flat Euclidean space in polar coordinates. Globally, however, the metric in general
has a conical singularity at r → 0. The only way to avoid this singularity is to make
κτ periodic with period 2π.

We have just derived that regularity of a Killing horizon in Euclidean signature
implies Euclidean time is periodic with period 2π/κ. Thus, given the considerations
of the previous subsection we arrive at an important conclusion. Spacetimes
with a Killing horizon at surface gravity κ > 0 are thermal states with
Hawking–Unruh temperature

T =
κ

2π
(9)

Note that this conclusion applies to all types of Killing horizons, including event
horizons of stationary black holes, cosmological horizons and acceleration horizons.

An important consequence of (9) is that together with the four laws it fixes the
numerical factor in the Bekenstein–Hawking entropy law

SBH =
Ahorizon

4
. (10)

9.3 Semi-classical aspects of Hawking radiation

This subsection is again directed towards students familiar with basic aspects of
QFT. As in our discussion of black hole perturbations consider a scalar field φ on
a fixed (black hole) background. Since the Klein–Gordon equation is second order
in derivatives we obtained two linearly independent solutions (for each value of the
angular quantum number l), so in total the solution was

φ(x) =
∑
i

(
aiψi(x) + a∗iψ

∗
i (x)

)
(11)

where the sum extends over a complete basis, ai denote the amplitudes and ψi(x)
are solutions to the Klein–Gordon equation on a black hole background.

In QFT the amplitudes are replaced by creation and annihilation operators,

φ(x) =
∑
i

(
aiψi(x) + a†iψ

∗
i (x)

)
(12)

obeying the Heisenberg algebra (all commutators not displayed vanish)

[ai, a
†
j ] = δij . (13)

The QFT Hilbert space is the usual Fock space that starts from a vacuum |0〉 defined
by the conditions

ai|0〉 = 0 ∀i (14)
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together with normalization 〈0|0〉 = 1. Non-vacuum states in this Fock space are

generated by acting on the vacuum with creation operators a†i .

Let us now choose a different basis of solutions, ψ̃i, defined by

ψ̃i =
∑
j

(
Aijψj +Bijψ

∗
j

)
(15)

subject to the normalization conditions1

A†A−B†B = 1l ABT = BAT . (16)

The resulting annihilation operators also transform correspondingly,

ãi =
∑
j

(
ajAji + a†jB

∗
ji

)
(17)

Such a change of basis is known as Bogoliubov-transformation with Bogoliubov
coefficients Aij and Bij . Note that for Bij = 0 this basis change preserves the
vacuum, in the sense that the conditions (14) are identical to the similar conditions
with ai replaced by ãi. However, this is no longer true when Bij 6= 0! A consequence
of this is that the original vacuum becomes an excited state with respect
to the new basis.

To show this important statement more explicitly consider the number operator
for the ith mode in the original basis,

Ni = a†iai (18)

and consider its expectation value in the original vacuum,

〈0|Ni|0〉 = 〈0|a†iai|0〉 = 0 (19)

which vanishes. Now take instead the number operator for the ith mode in the new
basis

Ñi = ã†i ãi =
∑
j

(
a†jA

∗
ji + ajBji

)∑
k

(
akAki + a†kB

∗
ki

)
(20)

and consider its expectation value in the original vacuum (in the new vacuum it
vanishes by construction),

〈0|Ñi|0〉 =
∑
j,k

〈0|ajBjia†kB
∗
ki|0〉 =

∑
j,k

〈0|aja†k|0〉BjiB
∗
ki

=
∑
j,k

〈0|[aj , a†k]|0〉BjiB∗ki =
∑
j

BjiB
†
ij =

(
B†B

)
ii
6= 0 (21)

Let us now apply Bogoliubov transformations to a scalar field propagating on
a black hole background. The key observation is that a mode that has positive
frequency at late times (near I +)

ψω ∼ e−iω(t−r∗) (22)

in general is a mixture of positive and negative frequency modes at early times (near
I −). Similarly, positive frequency modes near I − form a mixture of positive
and negative frequency modes near I +. We saw this explicitly when discussing
solutions to the Regge–Wheeler equation a few lectures ago. In terms of Bogoliubov

1These conditions leave invariant the symplectic inner product 〈ψi, ψj〉 = δij = −〈ψ∗
i , ψ

∗
j 〉 and

〈ψi, ψ
∗
j 〉 = 0 = 〈ψ∗

i , ψj〉.
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coefficients it can be shown that the map between the two vacua at I ± is given
by (see for instance section 7.3 in the black holes lecture notes gr-qc/9707012

or section 8.2 in the textbook “Introduction to Quantum Effects in Gravity” by
Mukhanov and Winitzki)

Bω,ω̃ = e−πω/κAω,ω̃ (23)

where κ is surface gravity of the black hole horizon.
Inserting the result (23) into the left Bogoliubov relation (16) yields a chain of

equalities,

δω,ω̃ =
∑
λ

(
Aω,λA

∗
ω̃,λ −Bω,λB∗ω̃,λ

)
=
(
eπ(ω+ω̃)/κ − 1

) ∑
λ

Bω,λB
∗
ω̃,λ (24)

that establishes (
BB†

)
ω,ω

=
1

e2πω/κ − 1
. (25)

Since the B-coefficients are non-zero we have thus particle creation by black
holes.

To check what spectrum we obtain we calculate the vacuum expectation value
of the number operator in the vacuum near I +, using (21) and (25).

〈0I + |Nω|0I +〉 =
1

e2πω/κ − 1
(26)

This is nothing but the Planck distribution for a black body at the Hawking
temperature (9).

There are alternative semi-classical derivations. A nice one is given in Unruh’s
paper, Phys. Rev. D14 (1976) 870. Another efficient method is to derive the
existence of a vacuum expectation value of the stress tensor from anomalies. Let
me sketch here one such derivation that works for black holes that are effectively
two-dimensional (including Schwarzschild). Imposing conformal gauge

ds2 = e2Ω 2 dx+ dx− (27)

covariant conservation of the vev of the stress tensor, ∇µ〈Tµν〉 = 0, viz.

∂+〈T−−〉+ ∂−〈T+−〉 − 2(∂−Ω)〈T+−〉 = 0 (28)

allows to determine the flux component 〈T−−〉 from the trace component 〈T+−〉
up to an integration constant, since on static backgrounds ∂+ = −∂− = ∂z/

√
2 =

ξ(r)∂r/
√

2 (the same remarks and calculations apply to 〈T++〉, which for brevity we
do not display). A straightforward (but for these lecture notes too lengthy) 1-loop
calculation yields the trace anomaly 〈Tµµ 〉 ∝ R, which leads to 〈T+−〉 = ∂2

zΩ/(24π)
and establishes

〈T−−〉 =
1

24π

(
∂2
zΩ− (∂zΩ)2

)
+ t− (29)

where the integration constant t− is fixed by the regularity requirement 〈T−−〉 = 0
at the horizon (otherwise infinite blueshift factors would render the flux component
singular at the horizon in global coordinates). By virtue of Ω = 1

2 ln ξ, with ξ being
the Killing norm, this constant is fixed as (for the second equality recall exercise
8.2 of Black Holes I)

t− =
(∂rξ)

2
∣∣
r=rhorizon

96π
=

κ2

24π
=
π

6

( κ
2π

)2

=
π

6
T 2 (30)

where T is the Hawking temperature (9). The result (30) gives the asymptotic
energy flux and is compatible with the two-dimensional version of the Stefan–
Boltzmann law. See section 6 in hep-th/0204253 for more on this derivation and
on details how to calculate the trace anomaly using heat kernel methods.

Black Holes II, Daniel Grumiller, May 2018
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10 Action principle and boundary issues

The first variation of the action should vanish on all solutions to the equations of
motion allowed by the boundary conditions. Interestingly, this does not happen
automatically. In particular, it does not happen for the Einstein–Hilbert action
with the most common boundary conditions (asymptotically flat, asymptotically
(A)dS). To resolve this issue we need to first understand what the issue is and how
it arises. This, in turn necessitates to take a closer look at the variational principle
of Einstein gravity in the presence of (actual or asymptotic) boundaries. In order
to be able to do so we need to introduce such boundaries, which in turn requires
techniques to decompose “bulk quantities” (such as the metric or the Riemann
tensor) into “boundary quantities” plus extra stuff. In this section we give these
words a precise mathematical meaning, starting with a canonical decomposition of
the metric and related quantities.

10.1 Canonical decomposition of the metric

The canonical decomposition of a D-dimensional metric into a (D− 1)-dimensional
metric and a normal vector was already used in our derivation of the Raychaudhuri
equations. Such a decomposition is useful in initial value formulations/Hamiltonian
formulations of gravity. For our purposes we need a slightly different decomposition,
where the normal vector is not time-like (as it would be for Raychaudhuri’s equation
or the initial value formulation) but rather spacelike. Thus, our primary data
are some D-dimensional metric gµν (often referred to as “bulk metric”) and some
spacelike normal vector nµ, normalized to unity, nµnµ = +1.

With these data we can define a (D − 1)-dimensional metric (often referred to
as “boundary metric”, “induced metric” or “first fundamental form”),

hµν := gµν − nµnν (1)

which is still a D-dimensional symmetric tensor, but projects out the normal com-
ponent,

hµνn
ν = 0 hµµ = D − 1 . (2)

It is also useful to define the projected velocity with which the normal vector changes
(often referred to as “extrinsic curvature” or “second fundamental form”),

Kµν := hαµh
β
ν ∇αnβ =

1

2

(
Lnh

)
µν

(3)

which can be recast as (one half of) the Lie-variation of the boundary metric along
the normal vector. Note that also extrinsic curvature is a symmetric tensor and has
vanishing contraction with the normal vector,

Kµν = Kνµ Kµνn
µ = 0 (4)

We shall also need the contraction (or trace) of extrinsic curvature,

K := Kµ
µ = ∇µnµ . (5)

Projection with the boundary metric yields a boundary-covariant derivative

Dµ := hνµ∇ν (6)

that leads to standard (pseudo-)Riemann tensor calculus at the boundary when
acting on tensors projected to the boundary.

Note that in a canonical context extrinsic curvature also can be interpreted as
velocity of the boundary metric, since in that case Lnh ∼ ḣ, where dot denotes
derivative with respect to time, so that derivative of the Lagrange density with
respect to extrinsic curvature yields the canonical momentum density. Beware: in
such a context there are also various sign changes as compared to these lecture notes
since the normal vector in that case would be normalized to −1 instead of +1.
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10.2 Boundary action for Dirichlet boundary value problem

Often a Dirichlet boundary value problem is desired where the metric is fixed at
the boundary ∂M, while its normal derivative is free to fluctuate,

δgµν
∣∣
∂M = 0 nα∇αδgµν

∣∣
∂M 6= 0 . (7)

We show now that the Einstein–Hilbert action is incompatible with such a boundary
value problem.

As we have shown previously [see section 4.3, Eq. (14)], first variation of the
Einstein–Hilbert action leads to the Einstein equations in the bulk plus total deriva-
tive terms,

δIEH

∣∣
EOM

=
1

16πG

∫
M

dDx
√
−g∇µ

(
∇νδgµν − gαβ∇µδgαβ

)
(8)

where the subscript ‘EOM’ indicates that we drop terms that vanish when the bulk
equations of motion hold. Using Stokes theorem the total derivative terms in (8)
are converted into boundary terms,

δIEH

∣∣
EOM

=
1

16πG

∫
∂M

dD−1x
√
−hnµ

(
∇νδgµν − gαβ∇µδgαβ

)
. (9)

Using nµ∇ν δgµν = nµ(hνα + nνnα)∇α δgµν and nµhνα∇α δgµν = nµhνα∇α[(hγµ +

nµn
γ)(hβν + nνn

β) δgβγ ] = −Kµν δgµβ + Knµnνδgµν + total boundary derivative,
the result (10) can be reformulated as1

δIEH

∣∣
EOM

= − 1

16πG

∫
∂M

dD−1x
√
−h
(
hµνnα∇αδgµν+(Kµν−Knµnν) δgµν

)
. (10)

The first term in (9) generically is non-zero for the Dirichlet boundary value problem
(7). Thus, the Einstein–Hilbert action is inconsistent with (7).

To resolve this issue we add suitable boundary terms to the bulk action, since
they do not affect the bulk equations of motion, but may convert the result for
the variation (9) into something compatible with the boundary value problem (7).
Specifically, we need a boundary term that preserves diffeomorphisms along the
boundary and that is capable of canceling the normal derivative of the fluctuations
of the metric in (9). Like in the bulk, we can do a derivative expansion of the
boundary action,

I∂M =
1

16πG

∫
∂M

dD−1x
√
−h
(
b0 + b1R+ b2K + . . .

)
(11)

where the ellipsis refers to terms with higher derivatives (e.g. KµνKµν or KR) and
R is the boundary Ricci scalar (constructed from the boundary metric hµν and the
boundary covariant derivative (6)). It is now easy to see that terms intrinsic to the
boundary (like the boundary cosmological constant b0 or the boundary Einstein–
Hilbert term b1R) will not help us, since they cannot produce normal derivatives
nµ∇µ. Thus, we set b0 = b1 = 0, focus on the term b2K and vary it. Using the
definition (5) as well as δnµ = 1

2 nµn
αnβ δgαβ yields

δK =
1

2
hµνnα∇αδgµν −

1

2
Knµnν δgµν + total boundary derivative (12)

Comparing with the variation (10) we deduce that we should choose b2 = 2 to get
consistency with the Dirichlet conditions (7).

1We assume here that the boundary ∂M has no boundary; if this assumption is relaxed the total
derivative term is converted into a ‘corner’ contribution 1/(16πG)

∫
∂2M dD−2x

√
|σ|nµσnν δgµν ,

where nµσ is the outward pointing unit normal of the corner.
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The full action for Einstein gravity (at this stage of our discussion) compatible
with a Dirichlet boundary value problem (7) thus consists of the bulk action IEH

plus a boundary action IGHY, known as Gibbons–Hawking–York boundary term.

I = IEH + IGHY =
1

16πG

∫
M

dDx
√
−g
(
R− 2Λ

)
+

1

8πG

∫
∂M

dD−1x
√
−hK (13)

Its first variation (assuming a smooth boundary) is given by

δI = − 1

16πG

∫
M

dDx
√
−g
(
Rµν − 1

2
gµνR+ Λgµν

)
δgµν

− 1

16πG

∫
∂M

dD−1x
√
−h
(
Kµν − hµνK

)
δgµν (14)

The tensor multiplying the variation δgµν at the boundary is known as Brown–
York stress tensor,

TµνBY :=
1

8πG

(
Kµν − hµνK

)
. (15)

It is important to realize that further boundary terms can be added to the
action (13) without spoiling the Dirichlet boundary value problem (7), for instance
by choosing b0 6= 0 or b1 6= 0 in (11). As we shall see later in these lecture notes
these terms are actually necessary in many applications. The reason for this is that
even though we have a well-defined Dirichlet boundary value problem we still may
not have a well-defined action principle, in the sense that there could be allowed
variations of the metric that do not lead to a vanishing first variation (14) on some
solutions of the equations of motion. We show now an example for this.

10.3 Action principle in mechanics

Before dealing in the next section with Einstein gravity we consider a much simpler
example where the same boundary issues can arise, namely a classical field theory
in 0+1 dimensions, also known as mechanics.

Consider specifically the conformal mechanics Hamiltonian

H(q, p) =
p2

2
+

1

q2
(16)

in the bulk action (chosen on purpose with a −qṗ-term to make it more similar to
Einstein–Hilbert)

Ibulk =

tc∫
0

dt
(
− qṗ−H(q, p)

)
(17)

and a Dirichlet boundary problem, q(0) = q0, q(tc) = qc. The first variation of the
action (17) leads to a boundary term −qδp, so we introduce a mechanics version of
the Gibbons–Hawking–York boundary term

IGHY = qp
∣∣tc
0
. (18)

The variation of the full action I = Ibulk + IGHY yields

δI =

tc∫
0

dt
[(
− ṗ− H(q, p)

∂q

)
δq +

(
q̇ − H(q, p)

∂p

)
δp
]

+ p δq
∣∣
t=tc
− p δq

∣∣
t=0

. (19)

Assuming the initial value q0 is finite we have δq
∣∣
t=0

= 0 and the last term drops.
The bulk terms yield the (Hamilton) equations of motion. Thus, the first variation
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of the action (19) vanishes on-shell if it were true that p δq
∣∣
t=tc

= 0. For finite tc and
vanishing δq this is obviously the case, but we are interested in the limit tc →∞ to
mimic typical gravity systems where the range of the coordinates is non-compact.

Now comes the key observation: if we consider tc → ∞ the correct boundary
value is qc → ∞ (if you look at the form of the potential in (16) you can see this
— a ball in that potential just rolls all the way to infinity given infinite amount of
time). Thus, finite variations,

lim
tc→∞

δq|t=tx = O(1) (20)

preserve the asymptotic boundary condition that qc tends to infinity. But if we allow
such variations then the action I does not have a well-defined variational
principle since (19) does not vanish for all variations that preserve our
boundary conditions.

The resolution of this profound problem is to add another boundary term to
the action (or to “holographically renormalize it”) that does not spoil our Dirichlet
boundary value problem. The most general such action is given by

Γ = lim
tc→∞

(
Ibulk + IGHY − S(q, t)

∣∣tc) (21)

where the counterterm S(q, t) needs to be chosen such that the problem above goes
away, i.e., the first variation of the full action Γ,

δΓ
∣∣
EOM

= lim
tc→∞

(
p− ∂S

∂q

)
δq
∣∣∣tc (22)

has to vanish on-shell for all variations preserving our boundary conditions, includ-
ing finite variations δq.

Thus, we are looking for some function depending on the boundary values that
is on-shell equivalent to the momentum, so that the term in parenthesis vanishes
in (22). Actually, classical mechanics provides us with a natural candidate, namely
Hamilton’s principal function which is a solution to the Hamilton–Jacobi equation,

H
(
q,
∂S

∂q

)
+
∂S

∂t
= 0 . (23)

For the potential (16) the solution is given by the expansion (if you want to see the
exact solution look at (11) in 0711.4115)

S(q, t) =
q2

2t
+O(1/t) . (24)

Solving the equations of motion for large time yields

p =
q

t
+O(1/t2) . (25)

Plugging these asymptotic expansions into the variation (22) establishes

δΓ
∣∣
EOM

= lim
tc→∞

(qc
tc

+O(1/t2c)−
qc
tc

+O(1/tc)
)
δq
∣∣∣tc = lim

tc→∞
O(1/tc) δq

∣∣∣tc = 0 . (26)

Thus, the action (21) with (17) and (18) has a well-defined variational principle.
Let us finally address another issue with the unrenormalized action. Evaluating I

on-shell yields a result that diverges in the limit tc →∞. This is problematic insofar
as the on-shell action provides the leading order contribution to the semi-classical
partition function, which should not be singular. Fortunately, this problem is solved
here automatically once we use the action Γ that has a well-defined variational
principle. Indeed, evaluating Γ on-shell shows that the result is always finite, even
when the upper boundary tends to infinity, tc →∞.

Black Holes II, Daniel Grumiller, May 2018
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11 Gravity aspects of AdS/CFT

In this final section we consider Einstein gravity with asymptotically AdS bound-
ary conditions, where we encounter the same issues as in the conformal mechanics
example in the previous section. The solution will again be the same: the addition
of suitable boundary terms, a procedure known as “holographic renormalization”.
This allows us, among other things, to calculate a renormalized Brown–York stress
tensor that remains finite. We shall also address asymptotic symmetries, an impor-
tant concept in gravity and gauge theories far beyond applications in AdS/CFT,
which are the focus of this section. Another interesting application of our holo-
graphically renormalized action is the calculation of the free energy that permits
us to discuss the Hawking–Page phase transition between black holes in AdS and
thermal AdS. Finally, we address higher point boundary correlation functions on
the gravity side and provide a first glimpse into the AdS/CFT correspondence.

11.1 Asymptotically AdS boundary conditions

We are interested in spacetimes that asymptote to AdS, but would like to make
precise what this means. Recalling the line-element for Poincaré-patch AdS (see
the last formula in section 2.3 and also recall the cylindrical shape of the Penrose
diagram displayed therein), we can define asymptotically AdS spacetimes as metrics
with an asymptotic expansion of the form

ds2
∣∣
aAdS

=
`2

z2
dz2 +

( `2
z2
γ(0)
µν + γ(2)

µν + . . .
)

dxµ dxν (1)

where ` is the AdS radius, µ, ν = 0, 1, . . . , D − 1, assuming D ≥ 3, and the ellipsis
refers to terms that vanish when z → 0 is approached. We may further restrict

γ
(0)
µν = ηµν , as it is the case for Poincaré-patch or global AdS. The quantity γ

(2)
µν may

depend arbitrarily on xµ, which are often referred to as “boundary coordinates”.
To fully specify our boundary conditions we have to declare if/how γ(0) and γ(2)

are allowed to vary. We postulate

δγ(0)
µν = 0 δγ(2)

µν = arbitrary . (2)

The fixed metric γ
(0)
µν is often called “boundary metric”. We call any metric consis-

tent with the expansion (1) and the boundary conditions (2) “locally asymptotically
AdS” or just “asymptotically AdS”.

There are numerous generalizations of (1), (2): we could change the coordi-
nates; we could switch on mixed terms dz dxµ; we could consider non-flat boundary
metrics; we could relax or alter the conditions (2) by allowing fluctuations of the
boundary metric; we could consider terms that are subleading as compared to γ(0)

but more dominant than γ(2); there could be subleading terms logarithmic in z; etc.
As always, boundary conditions are a choice, and the precise choice is dictated by
the physical questions one would like to address. The boundary conditions above
are useful often enough, so we restrict to them. (For a variety of choices in three
dimensional Einstein gravity see 1608.01308.)

Since it can be technically simpler to use Gaussian normal coordinates let us
recast (1) in this form, using the coordinate transformation ρ = −` ln z.

ds2
∣∣
aAdS

= dρ2 +
(
e2ρ/` γ(0)

µν + γ(2)
µν + . . .

)
dxµ dxν (3)

In many applications the asymptotic boundary ρ→∞ is replaced by a finite cutoff
surface ρ = ρc � `. It is then of interest to calculate extrinsic curvature at such
a boundary. In Gaussian normal coordinates (3) the normal vector has as only
non-vanishing component nρ = nρ = 1 and we obtain

Kµν = ∇µnν = −Γρµν =
1

`
e2ρc/` γ(0)

µν + . . . Kρµ = 0 = Kρρ . (4)
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11.2 Holographic renormalization

Let us reconsider the on-shell action, the Brown–York stress tensor and the varia-
tional principle for asymptotically AdS spacetimes, starting from the action (13) in
section 10.2 and using the results (3)-(4). Since we do not have matter, the bulk
Ricci scalar is constant, R = 2D/(D − 2)Λ = −D(D − 1)/`2. The bulk volume

form is determined from
√
−g = eρ/`(D−1)

√
−γ(0)

(
1 +O(e−2ρ/`)

)
. The boundary

volume form is given by the same expression, but evaluated at the cutoff surface
ρ = ρc,

√
−h = eρc/`(D−1)

√
−γ(0)

(
1 +O(e−2ρc/`)

)
. Finally, trace of extrinsic cur-

vature (4) evaluates to K = (D− 1)/`
(
1 +O(e−2ρc/`)

)
. Plugging these results into

the Einstein–Hilbert action with Gibbons–Hawking–York boundary term yields

I =
(
− D − 1

8πG `2

ρc∫
ρ0

dρ eρ/`(D−1) +
D − 1

8πG `
eρc/`(D−1)

) ∫
dxD−1

√
−γ(0) + . . . (5)

which in the large ρc limit evaluates to something infinite

I
∣∣
ρc�1

= eρc/`(D−1) D − 2

8πG `

∫
dxD−1

√
−γ(0)

(
1 + . . .

)
. (6)

Similarly, the Brown–York stress tensor [(15) in section 10.2] is infinite as the cutoff
tends to infinity,

TBY

µν =
1

8πG

(
Kµν − hµνK

)
= e2ρc/`

2−D
8πG `

γ(0)
µν +O(1) . (7)

Worst of all, the variational principle is not well-defined for some variations that
preserve our boundary conditions (2). Indeed, evaluating the variation (14) in

section 10.2 on-shell and setting to zero δγ
(0)
µν yields

δI
∣∣
EOM

= e(D−3)ρc/`
D − 2

16πG `

∫
dxD−1

√
−γ(0) γµν(0) δγ

(2)
µν + · · · 6= 0 . (8)

Thus, we recover the same type of problems that we encountered in the simple
mechanics model in section 10.3. It is suggestive that the resolution could also be
the same: simply add suitable boundary terms that do not violate our Dirichlet
boundary value problem. Adding such boundary terms is known as “holographic
renormalization” (holographic, since we are adding boundary terms, and renormal-
ization, since we convert infinite quantities like on-shell action and Brown–York
stress tensor into finite ones). The full action is the given by

Γ = IEH + IGHY + Ic (9)

where the holographic counterterm is of the form (R is the boundary Ricci scalar)

Ic =

∫
∂M

dD−1x
√
−h
(
c0 + c2R+ . . .

)
(10)

We have again adhered to the principle to write down all possible terms compatible
with the symmetries (boundary diffeomorphisms and boundary Lorentz invariance)
and displayed explicitly the first two terms in a derivative expansion; depending on
the dimension one might need more than these two terms. The coefficients c0, c2
etc. are fixed such that all the problems encountered above go away. We could also
determine them from solving a Hamilton–Jacobi equation (as in section 10.3), but
often it is more efficient to simply start with an Ansatz like (10) and determine the
coefficients by direct calculation.

For sake of specifity we consider in the remainder of this section the simplest
case more explicitly, namely Einstein gravity with negative cosmological constant
in three spacetime dimensions, D = 3.
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11.3 Renormalized action and boundary stress tensor

Consider the variation of the action (9) with (10).

lim
ρc→∞

δΓ
∣∣
EOM

=
1

16πG `

∫
dx2
√
−γ(0) γµν(0) δγ

(2)
µν

+

∫
dx2
√
−γ(0)

(
c0

1

2
γµν(0) δγ

(2)
µν

)
(11)

The first line is just copied-and-pasted from (8) for D = 3 and the second line comes
from varying the holographic counterterm (10). Note that for D = 3 the term
proportional to c2 has vanishing variation, so that only c0 remains (and possible
higher derivative terms, which however are not needed). Choosing c0 = −1/(8πG `)
the right hand side of the variation (11) vanishes. Therefore, the holographically
renormalized action for Einstein gravity in AdS3 reads

ΓAdS3
=

1

16πG

∫
M

d3x
√
−g
(
R+

2

`2

)
+

1

8πG

∫
∂M

d2x
√
−h
(
K − 1

`

)
. (12)

By construction, the holographically renormalized action (12) has a well-defined
variational principle, i.e.,

δΓAdS3

∣∣
EOM

= 0 (13)

for all variations that preserve the boundary conditions (2)-(3).
Interestingly, the addition of the holographic counterterm also solves the other

two problems we had. In particular, the on-shell action is finite, ΓAdS3

∣∣
EOM

= O(1).
The holographically renormalized Brown–York stress tensor

TBY-ren

µν =
1

8πG

(
Kµν − hµνK + hµν

1

`

)
= − 1

8πG `
γ(2)
µν (14)

is also a finite quantity. Note that it is the subleading contribution in the asymptotic
expansion (3) that contributes to the boundary stress tensor. Thus, this expansion
coefficient of the metric captures state-dependent information.

11.4 Asymptotic symmetries and glimpse of AdS/CFT

Let us consider all asymptotic Killing vectors, by which we mean all vector fields ξ
with the property

Lξgµν = O(δgµν) (15)

where the left hand side is the Lie derivative of any metric compatible with the
asymptotically AdS3 boundary conditions and the right hand side is any fluctuation
of the metric compatible with the boundary conditions (plus our gauge conditions
to Gaussian normal coordinates; the latter condition could be relaxed).

In components this means

ρρ : ∂ρξ
ρ = 0 (16)

ρ± : ∂±ξ
ρ + g±±∂ρξ

± + g+−∂ρξ
∓ = 0 (17)

±± : ξµ∂µg±± + 2g±±∂±ξ
± + 2g+−∂±ξ

∓ = O(1) (18)

±∓ : ξµ∂µg+− + g+−
(
∂+ξ

+ + ∂−ξ
−)+ g++∂−ξ

+ + g−−∂+ξ
− = O(1) (19)

where we used light-cone coordinates x± for the boundary metric, γ
(0)
+− = 1, γ

(0)
± = 0.

We solve these equations from bottom to top. The last one implies ξρ = −`/2(∂ξ).
The one above it yields ∂±ξ

∓ = O(e−2ρ/`). The next one determines the subleading
terms in ξ±. The top one sets all subleading terms in ξρ to zero.
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Thus, we end up with the following set of asymptotic Killing vectors:

ξ = ε+(x+)∂+ + ε−(x−)∂− −
`

2

(
∂+ε

+ + ∂−ε
−)∂ρ +O

(
e−2ρ/`

)
(20)

Modulo small diffeomorphisms (coordinate changes that do not affect the boundary
metric or the physical state), they are labeled by two functions, ε±(x±). Since AdS3

topologically is a cylinder we can introduce Fourier modes for these two functions,
ε±n = ieinx

±
∂±, and determine their Lie-bracket algebra.

[ε±n , ε
±
m] = (n−m) ε±n+m n,m ∈ Z (21)

The algebra (21) consists of two copies of the so-called Witt algebra. Note that this
algebra is infinite-dimensional. Thus, we have infinitely many asymptotic Killing
vectors in AdS3.

If you are familiar with CFT2 you have seen already the algebra (21) and its
centrally extended version

[L±n , L
±
m] = (n−m)L±n+m +

c±

12
n(n2 − 1) δn+m, 0 (22)

which consists of two copies of the Virasoro algebra with central charges c±. You
may wonder whether or not there is a central extension on the gravity side. To
address this question we note that in a CFT2 the Fourier modes of the stress tensor
flux components T±± are essentially the Virasoro modes L±n (and the trace compo-
nent vanishes due to scale symmetry, Tµν = 0). The Virasoro algebra (22) implies
that the stress-tensor of a CFT2 transforms anomalously under (anti-)holomorphic
coordinate transformations

δεT = εT ′ + 2Tε′ +
c

24π
ε′′′ (23)

where we suppressed all ±-indices. We check now if we recover the transformation
behavior (23) (a.k.a. infinitesimal Schwarzian derivative) on the gravity side.

As we saw in (14) the role of the boundary stress tensor is played by the sub-

leading term γ
(2)
µν . We check now how it transforms under the asymptotic Killing

vectors (20). Insertion into (18) yields

δε±γ
(2)
±± = ε±γ

(2) ′
±± + 2γ

(2)
±±ε

± ′ + 2e2ρ/`∂±ξ
∓ . (24)

Comparison with the infinitesimal Schwarzian derivative (23) shows that all terms
match on left and right hand sides, except for the last one which we still need to
evaluate. For this we need to determine the subleading terms of ξ±, which we obtain
from (17).

ξ± = ε±(x±)− `2

4
e−2ρ/` ∂2

∓ε
∓(x∓) +O(e−4ρ/`) (25)

Plugging (25) back into (24) the last term therein indeed becomes a triple deriva-

tive, − `
2

2 ∂
3
±ε
±, just like the last term in the infinitesimal Schwarzian derivative

(23). Reading off the value of the central charge requires to take into account the
normalization of the holographically renormalized stress tensor (14), establishing

c± =
3`

2G
. (26)

The results (22) with (26) appeared first in seminal work by Brown and Hen-
neaux. The conclusion of their analysis is that gravity in AdS3 with asymptotically
AdS boundary conditions is dual to a CFT2, in the sense that the physical phase
space falls into representations of two copies of the Virasoro algebra (22) with cen-
tral charges given by (26). In retrospect, this was an important precursor for the
AdS/CFT correspondence.
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11.5 Black holes in AdS and Hawking–Page phase transition

Black holes in AdS exist in any spacetime dimension greater or equal to two. In three
dimensions they are known as BTZ black holes. They are solutions to the classical
field equations descending from the action (12). The BTZ metric (ϕ ∼ ϕ+ 2π)

ds2
BTZ = −

(r2 − r2
+)(r2 − r2

−)

r2`2
dt2+

r2`2 dr2

(r2 − r2
+)(r2 − r2

−)
+r2

(
dϕ− r+r−

r2`
dt
)2

(27)

has two Killing horizons at r = r±. The outer one, r = r+ ≥ r−, is an event
horizon. Note that the metric (27) is not only asymptotically AdS3 [as exercise you
can bring it into Fefferman–Graham form (3)], but also locally AdS3. Thus, the
metric (27) differs from the vacuum solution (global AdS3; in the above coordinates
r2
+ = −1 and r− = 0) only by global properties but is locally indistinguishable from

it. BTZ is an orbifold of AdS3; this means it is a quotient space of global AdS3 by
a subgroup of its isometries. For more details on BTZ see gr-qc/9302012. Mass
M , angular momentum J , temperature T and angular velocity Ω are given by

M =
r2
+ + r2

−
8G`2

J =
r+r−
4G`

T =
r2
+ − r2

−
2πr+`2

Ω =
r−
r+`

. (28)

The Bekenstein–Hawking entropy S is compatible with the first law and a Smarr-like
relation,

S =
2πr+

4G
dM = T dS + Ω dJ M =

1

2
TS + ΩJ . (29)

We are interested in thermodynamical stability of black holes. There are two
kinds of instabilities that could arise: perturbative instabilities (e.g. from negative
specific heat) and non-perturbative instabilities (from instanton tunneling to a sad-
dle point with lower free energy). Both of them can be checked by considering the
Euclidean path integral

Z =

∫
Dg exp

(
− ΓE[gE]

)
(30)

where the left hand side is the Euclidean partition function and the right hand side
is the path integral (with some suitable measure DgE) for the Euclidean version of
the holographically renormalized action (12). Around each classical saddle point gc
we expand perturbatively, gE = gc + δg, the Euclidean action

ΓE[gE] = ΓE[gc + δg] = ΓE[gc] + δΓ[gc; δg] +
1

2
δ2Γ[gc; δg] + . . . (31)

and the path integral (30)

Z =
∑
c

e−Γc ×
∫
Dδg e−

1
2 δ

2Γ[gc;δg] × . . . (32)

where we defined the Euclidean on-shell action as Γc := ΓE[gc] and used the well-
defined variational principle (13). The sum in the Euclidean partition function (32)
extends over all classical solutions c compatible with some boundary conditions.
The leading contribution to the Euclidean partition function is thus given by (minus
the exponential of) the Euclidean on-shell action evaluated for the most dominant
saddle point (i.e., the saddle point with the lowest valued for the action). The first
subleading corrections are captured by the Gaussian path integral, the middle term
in (32); higher order corrections are denoted by the ellipsis. Perturbative stability
means that the Gaussian integral converges. Non-perturbative stability of a given
saddle point means there is no other saddle point with lower action to which that
saddle point could tunnel. The latter statement can also be expressed as evaluation
of free energy

F = −T lnZ = T Γc + . . . (33)

and verifying which classical solution leads to the lowest free energy. Let us check
this now for (Euclidean) BTZ.
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We consider a thermodynamical ensemble where we keep fixed the temperature
T and the angular velocity Ω. Thus, in the sum over c in the partition function
(32) all solutions to Einstein gravity contribute that have a given value for these
two observables. Since each BTZ black hole has a unique set of values for T and Ω
(28) different BTZ black holes cannot compete with each other; however, we always
have the possibility to consider thermal AdS3 as second saddle point, since we can
put global AdS3 at any temperature and at any angular velocity by identifying
(tE, ϕ) ∼ (tE, ϕ+ 2π) ∼ (tE + β, ϕ+ βΩ), where tE is Euclidean time.

ds2
thAdS = dρ2 + cosh2(ρ/`) dt2E + `2 sinh2(ρ/`) dϕ2 (34)

While there might be additional saddles competing for the lowest free energy, our
main goal here is to verify in which parameter range BTZ black holes are the domi-
nant saddle as compared to thermal AdS. Thus, we need to evaluate the Euclidean
on-shell action

ΓE =
1

16πG

(∫
d3x
√
gE

4

`2
− 2

∫
d2x
√
γE

(
K − 1

`

))
(35)

for both saddles, where we inserted the on-shell relation R = −6/`2 and the required
relative minus sign as compared to the Lorentzian action (12). Inserting BTZ
coordinates (27) and integrating over the whole outside region yields

ΓE[gBTZ] = lim
rc→∞

1

16πG

( rc∫
r+

dr

β∫
0

dtE

2π∫
0

dϕ r
4

`2
− 2

β∫
0

dtE

2π∫
0

dϕ
√
r2
cgtt(rc)

1

`

)

=
β

4G`2
lim
rc→∞

(
r2
c − r2

+ −
√

(r2
c − r2

+)(r2
c − r2

−)
)

= −β
r2
+ − r2

−
8G`2

(36)

whereas inserting thermal AdS yields (there is no horizon, so we integrate from the
center r = 0)

ΓE[gthAdS] = lim
rc→∞

1

16πG

( rc∫
0

dr

β∫
0

dtE

2π∫
0

dϕ r
4

`2
− 2

β∫
0

dtE

2π∫
0

dϕ
√
r2
cgtt(rc)

1

`

)

=
β

4G`2
lim
rc→∞

(
r2
c − rc

√
r2
c + 1

)
= −β 1

8G`2
. (37)

From (33) we obtain the following results for the respective free energies.

FBTZ = −
r2
+ − r2

−
8G`2

= −1

2
TS = − π2

2G`2
T 2

1− Ω2
FthAdS = − 1

8G`2
(38)

Thus, BTZ black holes are thermodynamically stable against tunneling into thermal
AdS3 if temperature is sufficiently large:

T � 1/S ↔ FBTZ � FthAdS (39)

This means that thermodynamically stable BTZ black holes have to be sufficiently
away from extremality.

Perturbative thermodynamical stability is easy to check by calculating all second
derivatives of free energy FBTZ(T,Ω) and verifying that the Hessian has only negative
eigenvalues. Since the determinant of the Hessian is positive,

det
∂2FBTZ

∂(T,Ω)
=

π4T 2

G2`4(1− Ω2)3
> 0 ∀T ∈ (0,∞), Ω ∈ (−1, 1)
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it is sufficient to verify that the eigenvalues are real and their sum is negative for
all positive temperatures and all angular velocities with absolute value smaller than
unity. This is indeed the case. Thus, all BTZ black holes are thermodynamically
stable perturbatively.

In higher dimensions the non-perturbative situation is exactly as above, i.e.,
there is a high temperature phase where black holes are the dominant saddle and a
low temperature phase where thermal AdS is the dominant saddle. As discussed at
the end of section 8.2, the perturbative situation differs in higher dimensions: while
higher temperature black holes remain stable perturbatively, low temperature black
holes have negative specific heat and are thus unstable both perturbatively and non-
perturbatively. The phase transition between thermal AdS at low temperatures and
black holes at high temperatures is known as Hawking–Page phase transition.

In an AdS/CFT context the Hawking–Page phase transition between thermal
AdS at low temperature and black holes at high temperature is interpreted as
confinement/deconfinement phase transition.

11.6 Correlation functions and the AdS/CFT correspondence

After Maldacena’s seminal paper it was spelled out more explicitly how to obtain
CFT correlation functions from a gravity calculation, namely by Gubser, Klebanov,
Polaykov and by Witten. In general the AdS/CFT duality relates string theory (on
AdS5 × S5) with a specific CFT (namely four-dimensional maximally supersym-
metric Yang–Mills). However, in a certain limit (large number of colors and strong
coupling on the CFT side) the (super-)gravity approximation is sufficient. Thus,
in this limit CFT correlation functions can be calculated using classical gravity.
We close these lectures with a glimpse on how this is possible and some concrete
examples in an AdS3/CFT2 context.

The formal relationship between CFT observables and string- (or gravity-) ob-
servables is captured by the proposed relation

〈e
∫
jO〉CFT = Zstring

[
φ
∣∣
z=0

= j
]

(40)

where the left hand side is the generating function of CFT correlation functions
for some operator O sourced by j and the right hand side is the string theory
partition function evaluated with boundary conditions for the corresponding bulk
field φ determined by setting its boundary value (z = 0 in the Feffermann–Graham
expansion (1)) to the source j. Since discussing the implications and verifications
of (40) is far beyond the scope of these lecture (see this review for more details) we
focus now on one specific operator O that exists in any CFT, namely the stress-
tensor Tµν and consider only the gravity limit. Moreover, we shall restrict ourselves
to AdS3/CFT2.

For this specific observable the statement (40) implies that correlation functions
of the CFT stress tensor can be calculated on the gravity side by taking functional
derivatives of the on-shell action with respect to the metric, which is the source of the
boundary stress tensor. This means that the quantity O in the AdS/CFT dictionary
(40) is the (boundary) stress tensor Tµν , j is its source and φ is the metric. If we set
j = 0 in (40) we are calculating the 0-point function (or partition function), which
on the right hand side is the partition function of gravity — which is precisely what
we calculated in the previous subsection. If we functionally differentiate once with
respect to the source and then set it to zero,

δ

δjµν(x)
〈e

∫
dx′jαβ(x′)Tαβ(x′)〉CFT

∣∣∣
j=0

= 〈Tµν(x)〉 = TµνBY-ren ∼
δΓ

δγ
(0)
µν

(41)
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then we obtain the 1-point function (or vacuum expectation value) of the stress
tensor on the CFT side and the first variation of the action with respect to the metric
on the gravity side. Note that we have to vary the boundary metric γ(0) to obtain
the 1-point function; this is clear, since varying γ(2) or any subleading component
will lead to a vanishing result due to the well-defined variational principle. Thus,
the role of the sources j is played by non-normalizable fluctuations of the metric,
i.e., by “fluctuations” that violate the asymptotically AdS boundary conditions. In
section 11.3 we showed that the response to such a non-normalizable variation is
given by the holographically renormalized Brown–York stress tensor (14), which is
thus the stress tensor of the dual CFT2.

The same logic as above applies to higher-n point functions of the stress tensor
(or to correlation functions of other gauge invariant operators in the CFT). Thus,
calculating, say, the 42nd functional derivative with respect to the metric of the
action (12) should yield all (connected) 42-point functions1

〈Tαβ(x1)T γδ(x2) . . . Tψω(x42)〉CFT ∼
δ42Γ

δgαβ(x1)δgγδ(x2) . . . δgψω(x42)
. (42)

If you read this claim for the first time I hope you are adequately surprised by it!
There is a number of reasons why the proposed relation (40) is of interest:

• conceptually, it is remarkable and a rather concrete implementation of the
holographic principle that string theory (or its gravity limit) is equivalent to
an ordinary quantum field theory in one dimension lower

• theoretically, AdS/CFT can be used to define quantum gravity in AdS, thus
providing tools for quantum gravity calculations and the resolution of semi-
classical puzzles such as the information paradox

• pragmatically, AdS/CFT can be employed as technical trick to convert calcu-
lations in strongly interacting CFTs (very hard) into calculations in weakly
coupled gravity (rather simple); one example is the modeling of non-abelian
plasma formation in strongly coupled quantum field theory as toy model for
relativistic heavy ion collisions

We conclude these notes for the lectures “Black Holes II” at TU Wien with a
short list of review articles and lecture notes for further reading.
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