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Main statements and overview

Black holes are thermal states

Main statement 1

I four laws of black hole mechanics/thermodynamics

I phase transitions between black holes and vacuum

Black hole thermodynamics useful for quantum gravity checks

Main statement 2

Black hole thermodynamics useful for quantum gravity concepts

Main statement 2
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Main statement 2

I quantum gravity entropy matching with semi-classical prediction

SBH =
kBc

3

~GN︸ ︷︷ ︸
=1 in this talk

Ah
4

+O(lnAh)

I semi-classical log corrections of entropy
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Main statements and overview

Black holes are thermal states

Main statement 1

Black hole thermodynamics useful for quantum gravity checks

Main statement 2

Black hole thermodynamics useful for quantum gravity concepts

Main statement 2

I information loss, fuzzballs, firewalls, ...

I black hole holography, AdS/CFT, gauge/gravity correspondence, ...
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Everything is geometry?

Gravity at low energies:
I described by general relativity

I basic field: metric gµµ
I gauge symmetry: diffeomorphisms

δξgµν = ∇µξν +∇νξµ
I low energy action: Einstein–Hilbert

SEH ∼
1

κ

∫
d4x
√
|g| (Λ +R) + marginal + irrelevant

I basic field equations: Einstein equations

Rµν = 0

I simplest solution: spherically symmetric Schwarzschild BH

ds2 = −(1− 2M/r) dt2 + dr2/(1− 2M/r) + r2 dΩ2
S2

Everything phrased in terms of geometry! Classical gravity = geometry!
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Prehistory

I 1930ies, TOV: star in hydrostatic equilibrium
star = spherically symmetric, self-gravitating perfect fluid with linear
equation of state p ∝ ρ

I 1960ies, Zel’dovich: bound from causality

p ≤ ρ

causal limit p = ρ: speed of sound = speed of light
I with hindsight: interesting thermodynamical properties!
I in particular, entropy is not extensive, S(R) 6= R3 (R = size)
I e.g. for p = ρ/3 we get S(R) ∝ R3/2

I for causal limit p = ρ:

S(R) ∝ R2 ∝ area

Even before Bekenstein–Hawking:

Non-extensive entropy expected from/predicted by GR!
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Thermodynamics and black holes — black hole thermodynamics?

Thermodynamics

Zeroth law:
T = const. in equilibrium

First law:
dE ∼ TdS+ work terms

Second law:
dS ≥ 0

Third law:
T → 0 impossible

T : temperature

E: energy
S: entropy

Black hole mechanics

Zeroth law:
κ = const. f. stationary black holes

First law:
dM ∼ κdA+ work terms

Second law:
dA ≥ 0

Third law:
κ→ 0 impossible

κ: surface gravity

M : mass
A: area (of event horizon)

Formal analogy or actual physics?
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Bekenstein–Hawking entropy

I Gedankenexperiment by Wheeler: throw cup of lukewarm tea into
BH!

δSUniverse < 0

I violates second law of thermodynamics!

I Bekenstein: BHs have entropy proportional to area of event horizon!

SBH ∝ Ah

I generalized second law holds:

δStotal = δSUniverse + δSBH ≥ 0

I Hawking: indeed!

SBH =
1

4
Ah

using semi-classical gravity
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Hawking temperature

I Hawking effect from QFT on fixed (curved) background: particle
production with thermal spectrum at Hawking temperature

I Slick shortcut: Euclidean BHs! (tE : Euclidean time)

ds2 = (1− 2M/r) dt2E + dr2/(1− 2M/r) + irrelevant

I near horizon approximation: r = 2M + x2/(8M)

ds2 = x2 dt2E
16M2

+ dx2 + irrelevant

I conical singularity at x = 0, unless

tE ∼ tE + 8πM = tE + β

I periodicity in Euclidean time = inverse temperature
I Result: Hawking temperature!

TH =
1

8πM
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Free energy from Euclidean path integral
Main idea

Consider Euclidean path integral (Gibbons, Hawking, 1977)

Z =

∫
DgDX exp

(
−1

~
IE [g,X]

)

I g: metric, X: scalar field

I Semiclassical limit (~→ 0): dominated by classical solutions (?)

I Exploit relationship between Z and Euclidean partition function

Z ∼ e−βΩ

I Ω: thermodynamic potential for appropriate ensemble

I β: periodicity in Euclidean time

Requires periodicity in Euclidean time and
accessibility of semi-classical approximation
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Free energy from Euclidean path integral
Semiclassical Approximation

Consider small perturbation around classical solution

IE [gcl + δg,Xcl + δX] =IE [gcl, Xcl] + δIE [gcl, Xcl; δg, δX]

+
1

2
δ2IE [gcl, Xcl; δg, δX] + . . .

I The leading term is the ‘on-shell’ action.

I The linear term should vanish on solutions gcl and Xcl.

I The quadratic term represents the first corrections.

If nothing goes wrong:

Z ∼ exp

(
−1

~
IE [gcl, Xcl]

) ∫
DδgDδX exp

(
− 1

2~
δ2IE

)
× . . .

Daniel Grumiller — Black hole thermodynamics 9/19



Free energy from Euclidean path integral
Semiclassical Approximation

Consider small perturbation around classical solution

IE [gcl + δg,Xcl + δX] =IE [gcl, Xcl] + δIE [gcl, Xcl; δg, δX]

+
1

2
δ2IE [gcl, Xcl; δg, δX] + . . .

I The leading term is the ‘on-shell’ action.

I The linear term should vanish on solutions gcl and Xcl.

I The quadratic term represents the first corrections.

If nothing goes wrong:

Z ∼ exp

(
−1

~
IE [gcl, Xcl]

) ∫
DδgDδX exp

(
− 1

2~
δ2IE

)
× . . .

Daniel Grumiller — Black hole thermodynamics 9/19



Free energy from Euclidean path integral
Semiclassical Approximation

Consider small perturbation around classical solution

IE [gcl + δg,Xcl + δX] =IE [gcl, Xcl] + δIE [gcl, Xcl; δg, δX]

+
1

2
δ2IE [gcl, Xcl; δg, δX] + . . .

I The leading term is the ‘on-shell’ action.

I The linear term should vanish on solutions gcl and Xcl.

I The quadratic term represents the first corrections.

If nothing goes wrong:

Z ∼ exp

(
−1

~
IE [gcl, Xcl]

) ∫
DδgDδX exp

(
− 1

2~
δ2IE

)
× . . .

Daniel Grumiller — Black hole thermodynamics 9/19



Free energy from Euclidean path integral
Semiclassical Approximation

Consider small perturbation around classical solution

IE [gcl + δg,Xcl + δX] =IE [gcl, Xcl] + δIE [gcl, Xcl; δg, δX]

+
1

2
δ2IE [gcl, Xcl; δg, δX] + . . .

I The leading term is the ‘on-shell’ action.

I The linear term should vanish on solutions gcl and Xcl.

I The quadratic term represents the first corrections.

If nothing goes wrong:

Z ∼ exp

(
−1

~
IE [gcl, Xcl]

) ∫
DδgDδX exp

(
− 1

2~
δ2IE

)
× . . .

Daniel Grumiller — Black hole thermodynamics 9/19



Free energy from Euclidean path integral
Semiclassical Approximation

Consider small perturbation around classical solution

IE [gcl + δg,Xcl + δX] =IE [gcl, Xcl] + δIE [gcl, Xcl; δg, δX]

+
1

2
δ2IE [gcl, Xcl; δg, δX] + . . .

I The leading term is the ‘on-shell’ action.

I The linear term should vanish on solutions gcl and Xcl.

I The quadratic term represents the first corrections.

If nothing goes wrong:

Z ∼ exp

(
−1

~
IE [gcl, Xcl]

) ∫
DδgDδX exp

(
− 1

2~
δ2IE

)
× . . .

Daniel Grumiller — Black hole thermodynamics 9/19



Free energy from Euclidean path integral
What could go Wrong?

...everything!

Accessibility of the semiclassical approximation requires

1. IE [gcl, Xcl] > −∞
2. δIE [gcl, Xcl; δg, δX] = 0

3. δ2IE [gcl, Xcl; δg, δX] ≥ 0

Typical gravitational actions evaluated on black hole solutions:

1. Violated: Action unbounded from below

2. Violated: First variation of action not zero for all field configurations
contributing to path integral due to boundary terms

δIE
∣∣
EOM

∼
∫
∂M
dx
√
γ
[
πab δγab + πX δX

]
6= 0

3. Frequently violated: Gaussian integral may diverge

Holographic renormalization resolves first and second problem!
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Free energy from Euclidean path integral
Holographic renormalization

Subtract suitable boundary terms from the action

Γ = IE − ICT

such that second problem resolved; typically also resolves first problem

Z ∼
∑
gcl

exp

(
−1

~
Γ[gcl, Xcl]

) ∫
DδgDδX exp

(
− 1

2~
δ2Γ

)
× . . .

I Leading term is finite
I Linear term vanishes
I Quadratic term ok in AdS

Leading order (set ~ = 1):

Z(T, X) = e−Γ(T,X) = e−βF (T,X)

Here F is the Helmholtz free energy
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Example: Hawking–Page phase transition of AdS3/BTZ

I Euclidean action: IE =
∫

d3x
√
g
(
R+ 2

)
+ 2

∫
d2x
√
γ K

I Holographic counterterm: ICT = 2
∫

d2x
√
γ

I (Euclidean) AdS3 (tE ∼ tE + β, ϕ ∼ ϕ+ 2π)

ds2 = cosh2 ρ dt2E + sinh2 ρ dϕ2 + dρ2

yields free energy

FAdS = −1

8
I (non-rotating) BTZ BH

ds2 = −(r2 − r2
+) dt2 +

dr2

r2 − r2
+

+ r2 dϕ2

yields free energy (T = r+/(2π))

FBTZ = −π
2T 2

2
= −1

8

T 2

T 2
crit.

I Critical Hawking–Page temperature: Tcrit. = 1/(2π)
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Works also for flat space and expanding universe (in 2+1)
Bagchi, Detournay, Grumiller & Simon PRL ’13

Hot flat space (ϕ ∼ ϕ+ 2π)

ds2 = dt2 + dr2 + r2 dϕ2

ds2 = dτ2 +
(Eτ)2 dx2

1 + (Eτ)2
+
(
1 + (Eτ)2

) (
dy +

(Eτ)2

1 + (Eτ)2
dx
)2

Flat space cosmology (y ∼ y + 2πr0)
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Summary, outlook and rest of the talk (if time permits)

Summary:

I Black hole are thermal states

I Calculation of free energy requires holographic renormalization

I Interesting phase transitions possible

I Generalizable to (flat space) cosmologies

Regarding the other two main points: Black hole thermodynamics useful
for quantum gravity checks/concepts

I Information loss?

II Microscopic entropy matching via Cardy formula

I Black hole complementarity and firewalls

I Everything is information?
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Holography — Main idea
aka gauge/gravity duality, aka AdS/CFT correspondence

One of the most fruitful ideas in contemporary theoretical physics:
I The number of dimensions is a matter of perspective

I We can choose to describe the same physical situation using two
different formulations in two different dimensions

I The formulation in higher dimensions is a theory with gravity
I The formulation in lower dimensions is a theory without gravity
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Why gravity?
The holographic principle in black hole physics

Boltzmann/Planck: entropy of photon gas in d spatial dimensions

Sgauge ∝ volume ∝ Ld

Bekenstein/Hawking: entropy of black hole in d spatial dimensions

Sgravity ∝ area ∝ Ld−1

Daring idea by ’t Hooft/Susskind (1990ies):

Any consistent quantum theory of gravity could/should have a holo-
graphic formulation in terms of a field theory in one dimension lower

Ground-breaking discovery by Maldacena (1997):

Holographic principle is realized in string theory in specific way

e.g. 〈Tµν〉gauge = TBYµν δ(gravity action) =

∫
ddx
√
|h|TBYµν δhµν
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Why should I care?
...and why were there > 9700 papers on holography in the past 17 years?

I Many applications!

I Tool for calculations

I Strongly coupled gauge theories (difficult) mapped to semi-cassical
gravity (simple)

I Quantum gravity (difficult) mapped to weakly coupled gauge theories
(simple)

I Examples of first type: heavy ion collisions at RHIC and LHC,
superfluidity, high Tc superconductors (?), cold atoms (?), strange
metals (?), ...

I Examples of the second type: microscopic understanding of black
holes, information paradox, 3D quantum gravity, flat space
holography, non-AdS holography, higher-spin holography, ...

We can expect many new applications in the next decade!
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Thanks for your attention!
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