Black holes

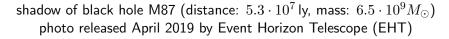
Daniel Grumiller

Institute for Theoretical Physics TU Wien http://quark.itp.tuwien.ac.at/~grumil/teaching.shtml

May 2025

grumil@hep.itp.tuwien.ac.at

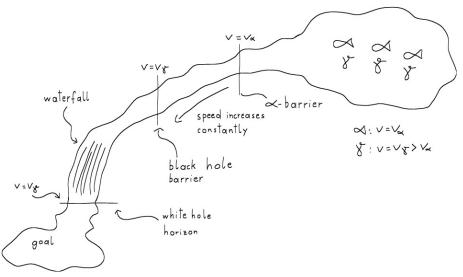
▶ Four fundamental interactions known (3 in SM + gravity)

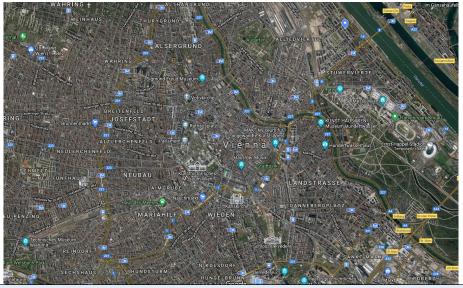

- ► Four fundamental interactions known (3 in SM + gravity)
- Macroscopically: weak and strong interactions negligible (short range); electromagnetism negligible (matter on average neutral)

- ► Four fundamental interactions known (3 in SM + gravity)
- Macroscopically: weak and strong interactions negligible (short range); electromagnetism negligible (matter on average neutral)
- Gravity dominant force in astrophysics and cosmology

- ► Four fundamental interactions known (3 in SM + gravity)
- Macroscopically: weak and strong interactions negligible (short range); electromagnetism negligible (matter on average neutral)
- Gravity dominant force in astrophysics and cosmology
- Black holes prediction of our best gravity theory (general relativity)
- ▶ 1783: John Michell speculated about $v_{\text{escape}} > c$
- ▶ 1916: Schwarzschild published first black hole solution of GR
- ▶ 1967: term "black hole" (BH) popularized by John Wheeler
- 1971: Cygnus X-1 first widely accepted BH detection
- ▶ 1973: Bekenstein–Hawking entropy $S \sim \frac{A}{4}$
- ▶ 1992-2008: discovery of supermassive BH in center of Milky Way
- 1993-1997: holographic principle ('t Hooft, Susskind, Maldacena)
- 2016: LIGO discovers gravitational waves from BH merger

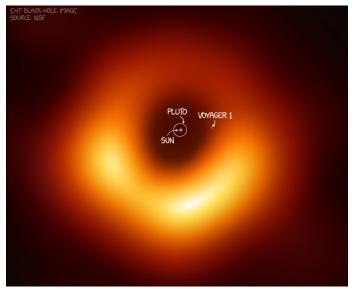
Humanity starts gravitational wave astronomy


- ► Four fundamental interactions known (3 in SM + gravity)
- Macroscopically: weak and strong interactions negligible (short range); electromagnetism negligible (matter on average neutral)
- Gravity dominant force in astrophysics and cosmology
- Black holes prediction of our best gravity theory (general relativity)
- ▶ 1783: John Michell speculated about $v_{\text{escape}} > c$
- 1916: Schwarzschild published first black hole solution of GR
- ▶ 1967: term "black hole" (BH) popularized by John Wheeler
- ▶ 1971: Cygnus X-1 first widely accepted BH detection
- ▶ 1973: Bekenstein–Hawking entropy $S \sim \frac{A}{4}$
- 1992-2008: discovery of supermassive BH in center of Milky Way
- 1993-1997: holographic principle ('t Hooft, Susskind, Maldacena)
- 2016: LIGO discovers gravitational waves from BH merger
- 2019: Event Horizon Telescope publishes first image of BH shadow
- 2020: First black hole-neutron star merger
- 2026: to be discovered!


black hole simulation "Gargantua" for movie *Interstellar* https://arxiv.org/pdf/1502.03808

Fishy analogy

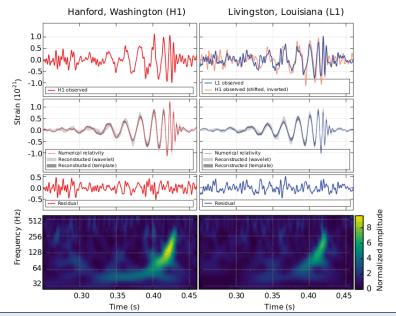
How large is a black hole? (a couple of kilometer)


stellar black holes: about the size of downtown Vienna

Daniel Grumiller — Black holes

How large is a black hole? (several billion kilometer)

galactic black holes: about the size of our solar system

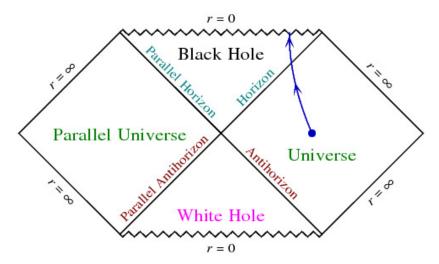

Subrahmanyan Chandrasekhar

star evolution (including gravitational collapse to black hole)

Rainer WeissKip ThorneBarry BarishDetection of gravitational waves from black hole merger

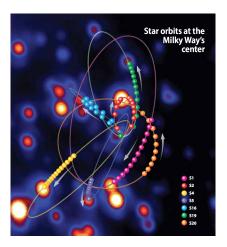
Physics nobel prize 2017 (LIGO Experiment)

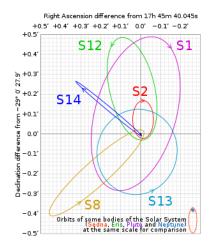
Roger Penrose Black hole theory


Andrea Ghez

Reinhard Genzel

Observation of black hole in center of Milky Way


Roger Penrose:


Made infinity finite & showed black holes robust GR prediction

Andrea Ghez und Reinhard Genzel:

Detected supermassive black hole in center of Milky Way

How to detect black holes?

Experimental Evidence for Black Holes (BH):

- Stellar BH: gravitational collapse Chandrasekhar 1930
- Stellar BH: accretion disk Bolton, Webster, Murdin 1972 Objects whose mass exceeds critical, $M > 3M_{\odot}$ (2006):

				<u> </u>	
System	$P_{\rm orb}$	f(M)	Donor	Classification	M_x^{\dagger}
	[days]	$[M_{\odot}]$	Spect. Type		$[M_{\odot}]$
GRS 1915+105 ^a	33.5	9.5 ± 3.0	K/M III	LMXB/Transient	14 ± 4
V404 Cyg	6.471	6.09 ± 0.04	K0 IV	,,	12 ± 2
Cyg X-1	5.600	0.244 ± 0.005	09.7 lab	HMXB/Persistent	10 ± 3
LMC X-1	4.229	0.14 ± 0.05	07 111	,,	> 4
XTE J1819-254	2.816	3.13 ± 0.13	B9 III	IMXB/Transient	7.1 ± 0.3
GRO J1655-40	2.620	2.73 ± 0.09	F3/5 IV	**	6.3 ± 0.3
BW Cir ^b	2.545	5.74 ± 0.29	G5 IV	LMXB/Transient	> 7.8
GX 339-4	1.754	5.8 ± 0.5	-	.,,	
LMC X-3	1.704	2.3 ± 0.3	B3 V	HMXB/Persistent	7.6 ± 1.3
XTE J1550-564	1.542	6.86 ± 0.71	G8/K8 IV	LMXB/Transient	9.6 ± 1.2
4U 1543-475	1.125	0.25 ± 0.01	Á2 V	IMXB/Transient	9.4 ± 1.0
H1705-250	0.520	4.86 ± 0.13	K3/7 V	LMXB/Transient	6 ± 2
GS 1124-684	0.433	3.01 ± 0.15	K3/5 V	,,	7.0 ± 0.6
XTE J1859 $+226^{c}$	0.382	7.4 ± 1.1	-	,,	
GS2000+250	0.345	5.01 ± 0.12	K3/7 V	,,	7.5 ± 0.3
A0620-003	0.325	2.72 ± 0.06	K4 V	,,	11 ± 2
XTE J1650-500	0.321	2.73 ± 0.56	K4 V	,,	
GRS 1009-45	0.283	3.17 ± 0.12	K7/M0 V	,,	5.2 ± 0.6
GRO J0422+32	0.212	1.19 ± 0.02	M2 V	,,	4 ± 1
XTE J1118+480	0.171	6.3 ± 0.2	K5/M0 V	,,	6.8 ± 0.4

How to detect black holes?

Experimental Evidence for Black Holes (BH):

- Stellar BH: gravitational collapse Chandrasekhar 1930
- Stellar BH: accretion disk Bolton, Webster, Murdin 1972
- Stellar BH merger: gravitational wave production LIGO '16
- Supermassive BH: Kepler orbits Ghez et al '08; Gilessen et al '09
- Supermassive BH: Shadow EHT '19
- ▶ Intermediate BH: little evidence $(100 10^6 M_{\odot})$ GW190521
- Primordial BH: no evidence from cosmology
- Particle generated BH: no evidence from LHC
 - overwhelming evidence for stellar and supermassive BH
 - \blacktriangleright confirmed mass ranges: $3-142 M_{\odot}$ and $10^6-10^{10} M_{\odot}$
 - BH could exist in principle for all masses $> 10^{-5}g$

Why are BHs interesting for quantum gravity? BH have apparently paradoxical properties

BH: simplest object in Universe

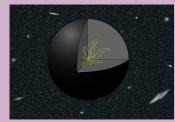
All properties determined by

- ► Mass M
- ► Spin J
- \blacktriangleright Charge Q

Black hole \sim elementary particle

Why are BHs interesting for quantum gravity? BH have apparently paradoxical properties

BH: simplest object in Universe



All properties determined by

- \blacktriangleright Mass M
- Spin J
- ► Charge Q

Black hole \sim elementary particle

BH: complexest object in Universe

Quantum mechanics:

- BHs radiate
- \blacktriangleright BHs have entropy $S_{\scriptscriptstyle
 m BH}$
- BHs behave holographically

Bekenstein-Hawking:

$$S_{\rm BH} = \frac{A}{4}$$

Entropy of ideal gas:

$$S \sim V \sim L^d$$

V: volume; L: length; d: number of spatial dimensions

Entropy of ideal gas:

$$S \sim V \sim L^d$$

V: volume; L: length; d: number of spatial dimensions

BH entropy:

$$S_{\rm BH} \sim A \sim L^{d-1}$$

A: area

BH = "black hole" or "Bekenstein-Hawking"

Entropy of ideal gas:

$$S \sim V \sim L^d$$

V: volume; L: length; d: number of spatial dimensions

BH entropy:

$$S_{\rm BH} \sim A \sim L^{d-1}$$

A: area

Observe: area in 3d \sim volume in 2d

Entropy of ideal gas:

$$S \sim V \sim L^d$$

V: volume; L: length; d: number of spatial dimensions

BH entropy:

$$S_{\rm BH} \sim A \sim L^{d-1}$$

A: area

Observe: area in 3d \sim volume in 2d

Daring idea by 't Hooft and Susskind in 1990ies:

Holographic Principle:

Theory with gravity in d+1 dimensions equivalent to theory without gravity in d dimensions

One of the most fruitful ideas of contemporary physics:

number of dimensions depends on perspective

One of the most fruitful ideas of contemporary physics:

- number of dimensions depends on perspective
- can describe same physical situation using two different formulations in different dimensions

One of the most fruitful ideas of contemporary physics:

- number of dimensions depends on perspective
- can describe same physical situation using two different formulations in different dimensions
- formulation in higher dimension is theory with gravity

One of the most fruitful ideas of contemporary physics:

- number of dimensions depends on perspective
- can describe same physical situation using two different formulations in different dimensions
- formulation in higher dimension is theory with gravity
- formulation in lower dimension is theory without gravity

...and why are there > 20,000 research papers on this?

numerous applications

...and why are there > 20,000 research papers on this?

- numerous applications
- pragmatically: tool for calculations

...and why are there > 20,000 research papers on this?

- numerous applications
- pragmatically: tool for calculations
- have two options to describe same system \Rightarrow pick simpler one

...and why are there > 20,000 research papers on this?

- numerous applications
- pragmatically: tool for calculations
- have two options to describe same system \Rightarrow pick simpler one
- ▶ often, holographic correspondence maps complicated ↔ simple

...and why are there > 20,000 research papers on this?

- numerous applications
- pragmatically: tool for calculations
- have two options to describe same system \Rightarrow pick simpler one
- ▶ often, holographic correspondence maps complicated ↔ simple
- example type I: map strongly coupled quantum (field) theory [complicated] to weakly coupled classical gravity theory [simple]

heavy ion collisions at LHC, neutron stars, cold atoms, viscous hydrodynamics, holographic superconductors, strange metals, ...

...and why are there > 20,000 research papers on this?

- numerous applications
- pragmatically: tool for calculations
- have two options to describe same system \Rightarrow pick simpler one
- ▶ often, holographic correspondence maps complicated ↔ simple
- example type I: map strongly coupled quantum (field) theory [complicated] to weakly coupled classical gravity theory [simple]
- example type II: map quantum gravity [complicated] to weakly coupled quantum field theory [simple]

microscopic understanding of black holes, information paradox, black hole evaporation, quantum information aspects of black holes, ...

...and why are there > 20,000 research papers on this?

- numerous applications
- pragmatically: tool for calculations
- have two options to describe same system \Rightarrow pick simpler one
- ▶ often, holographic correspondence maps complicated ↔ simple
- example type I: map strongly coupled quantum (field) theory [complicated] to weakly coupled classical gravity theory [simple]
- example type II: map quantum gravity [complicated] to weakly coupled quantum field theory [simple]

Open key questions:

- How general is the holographic principle?
- Does it work in our Universe?
- If yes, how, and if no, when does it work?

If you want to learn about black holes at TU Wien, here are some options:

▶ lecture "Black Holes I", WS25/26

- ▶ lecture "Black Holes I", WS25/26
- ► lecture "Black Holes II", SS26

- ▶ lecture "Black Holes I", WS25/26
- ► lecture "Black Holes II", SS26
- lecture "Gravity and holography in lower dimensions I", WS26/27

- ▶ lecture "Black Holes I", WS25/26
- ► lecture "Black Holes II", SS26
- lecture "Gravity and holography in lower dimensions I", WS26/27
- lecture "Gravity and holography in lower dimensions II", SS27

- ▶ lecture "Black Holes I", WS25/26
- ► lecture "Black Holes II", SS26
- lecture "Gravity and holography in lower dimensions I", WS26/27
- lecture "Gravity and holography in lower dimensions II", SS27
- ▶ joint lecture with Gianluca Inguglia "Gravitational waves", SS26

- lecture "Black Holes I", WS25/26
- ▶ lecture "Black Holes II", SS26
- lecture "Gravity and holography in lower dimensions I", WS26/27
- lecture "Gravity and holography in lower dimensions II", SS27
- ▶ joint lecture with Gianluca Inguglia "Gravitational waves", SS26
- additional lectures at TU Wien:
 - Skarke Geometry, Topology and Physics I+II (WS25/26+SS26)
 - Balasin Introduction to General Relativity (WS25/26)
 - Koch Fundamental interactions journal club
 - Ipp Seminar on Fundamental Interactions
 - Rebhan see Fundamental Interactions talk in a week!

If you want to learn about black holes at TU Wien, here are some options:

- lecture "Black Holes I", WS25/26
- ▶ lecture "Black Holes II", SS26
- lecture "Gravity and holography in lower dimensions I", WS26/27
- lecture "Gravity and holography in lower dimensions II", SS27
- ▶ joint lecture with Gianluca Inguglia "Gravitational waves", SS26
- additional lectures at TU Wien:
 - Skarke Geometry, Topology and Physics I+II (WS25/26+SS26)
 - Balasin Introduction to General Relativity (WS25/26)
 - Koch Fundamental interactions journal club
 - Ipp Seminar on Fundamental Interactions
 - Rebhan see Fundamental Interactions talk in a week!

Near future: new professor in theoretical high energy physics — additional opportunities for students!

Graduate Texts in Physics

Daniel Grumiller Mohammad Mehdi Sheikh-Jabbari

Black Hole Physics

From Collapse to Evaporation

