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Preface
These lecture notes were written as part of three student projects at TU Wien (by Ste-
fan Prohazka, Max Riegler and Sebastian Singer, supervised by Daniel Grumiller) in
2009/2010. The current version 0.0 was edited by Stefan Prohazka and corrected by
Daniel Grumiller. However, the authors would be surprised if this first public version was
free of mistakes.
If you find typos or errors please contact grumil@hep.itp.tuwien.ac.at.

Note on units
If not noted otherwise this script will use natural units (also known as Planck units) where
we set human conversion factors equal to one, i.e. c = ~ = GN = kB = 1, where c is the
speed of light (Einstein’s constant), ~ is Planck’s constant, GN is Newton’s constant and
kB is Boltzmann’s constant.

Note that this is not neglecting anything, it just amounts to a more convenient choice of
units than the historically grown ones. c = 1 means we measure time in the same units as
distances; ~ = 1 means we measure additionally energy in inverse units of time; GN = 1
then means that we set the Planck mass (and thus Planck length and Planck time) to
unity and measure everything else in Planck units; kB = 1 means we measure information
in e-bits and that energy and temperature have the same units. For an enjoyable paper
on dimensionfull and dimensionless constants see http://arxiv.org/abs/1412.2040 (it is
interesting to note how many well-known physicists appear to be confused about units).

Further reading
Information about running lectures by Daniel Grumiller and additional resources can be
found at the teaching webpage http://quark.itp.tuwien.ac.at/ grumil/teaching.shtml.
Here is further selected literature:

• Einstein gravity in a nutshell, (A. Zee, 2013, Princeton U. Press)

• Spacetime and Geometry: An Introduction to General Relativity, (S. Carroll, 2003,
Addison Wesley)

• Gravitation und Kosmologie, (R.U. Sexl and H.K. Urbantke, 1987, Wissenschaftsver-
lag, Mannheim/Wien/Zürich)

• General Relativity, (R. Wald, 1984, U. Chicago Press, Chicago)

• Gravitation and Cosmology: Principles and Applications of the General Theory of
Relativity (S. Weinberg, 1972, John Wiley)

• The large scale structure of space-time, (S.W. Hawking and G.F.R. Ellis, 1973,
Cambridge University Press, Cambridge)

• Accretion Power in Astrophysics (J. Frank, A. King and D. Raine, 2002, Cambridge
University Press, Cambridge)

• Active galactic nuclei: from the central black hole to the galactic environment (J.
Krolik, 1998, Princeton University Press, Princeton)

• Black Hole Physics: Basic Concepts and New Developments (V.P. Frolov and I.D.
Novikov, 1998, Springer, New York)

• Gravitation, (C. Misner, K.S. Thorne and J.A. Wheeler, 1973)
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1. Historical Overview
As an introduction to black hole physics we want to start our lecture notes by a brief
historical overview on black hole science.

• O.C. Rømer (1676): the speed of light is finite

• I. Newton (1686): the law of gravity

Fr = −GN
mM

r2 (1.1)

• J. Michell (1783): referring to Newtonian black holes, “All light emitted from
such a body would be made to return towards it by its own proper gravity”

• P.S. Laplace (1796): “Exposition du systéme du Monde” (“dark stars”)

• T. Young (1801): interference experiments confirm Huygens’ theory of the wave
nature of light; Newton’s theory of light is dead, and so are dark stars

• A. Einstein (1905): Special Relativity

• A. Einstein (1915): General Relativity (GR)

• K. Schwarzschild (1916): first exact solution of GR is a black hole!

• S. Chandrasekhar (1931): gravitational collapse of Fermi gas

• A. Eddington (1935): regarded the idea of black holes with skepticism, “I think
there should be a law of Nature to prevent a star from behaving in this absurd way!”

• M. Kruskal; G. Szekeres (1960): global structure of Schwarzschild spacetime

• R. Kerr (1963): exact (and essentially unique) rotating (and charged) black hole
solution sparks interest of astrophysics community

• Cygnus X-1 (1964): first detection of X-ray emission from a black hole in a binary
system (though realized only in 1970ties that it might be black hole; conclusive
evidence only in 1990ies)

• J. Wheeler (December 1967): invention of the term “black hole”

• S. Hawking and R. Penrose (1970): black holes contain singularities

• J. Bekenstein (1972): speculation that black holes might have entropy

• N.I. Shakura and R.A. Sunyaev (1972): first accretion disk model

• J. Bardeen, B. Carter and S. Hawking (1973): four laws of black hole me-
chanics

• S. Hawking (1974): black holes evaporate due to quantum effects

• W. Unruh (1981): black hole analogs in condensed matter physics

• S. Deser, R. Jackiw, C. Teitelboim et al. (1982): gravity in lower dimensions

• E. Witten et al. (1984): first superstring revolution

Preliminary version – September 20, 2021



6 1. Historical Overview

• H.-P. Nollert; N. Andersson (1992): quasinormal modes of a “ringing” Schwarzschild
black hole

• M. Bañados, C. Teitelboim and J. Zanelli (1992): black holes in 2 + 1 dimen-
sions

• M. Choptuik (1993): Critical collapse in numerical relativity discovered

• G. ’t Hooft and L. Susskind (1993): holographic principle

• M. Veltman (1994): black holes still sometimes regarded with skepticism, “Black
holes are probably nothing else but commercially viable figments of the imagination.”

• J. Polchinski (1995): p-branes and second superstring revolution

• A. Strominger and C. Vafa (1996): microscopic origin of black hole entropy

• J. Maldacena (1997): AdS/CFT correspondence

• S. Dimopoulos and G.L. Landsberg; S.B. Giddings and S. Thomas (2001):
black holes at the LHC?

• Saggitarius A∗ (2002): supermassive black hole in center of Milky Way

• R. Emparan and H. Reall (2002): black rings in five dimensions

• G. ‘t Hooft (2004): “It is however easy to see that such a position is untenable.”
(comment on Veltman a decade earlier)

• S. Hawking (2004): concedes bet on information paradox; end of “black hole
wars”

• P. Kovtun, D. Son and A. Starinets (2004): viscosity in strongly interacting
quantum field theories from black hole physics

• F. Pretorius (2005): breakthrough in numerical treatment of binary problem

• C. Barcelo, S. Liberati, and M. Visser (2005): “Analogue gravity” - black
hole analogon in condensed matter physics

• J.E. McClintock et al. (2006): measuring of spin of GRS1915+105 – nearly
extremal Kerr black hole!

• E. Witten (2007) and W. Li, W. Song and A. Strominger (2008): quantum
gravity in three dimensions?

• S. Hughes (2008): “Unambiguous observational evidence for the existence of black
holes has not yet been established.”

• S. Hughes (2008): “Most physicists and astrophysicists accept the hypothesis that
the most massive, compact objects seen in many astrophysical systems are described
by the black hole solutions of general relativity.”

• S. Gubser; S. Hartnoll, C. Herzog and G. Horowitz (2008): “holographic
superconductors”

• D. Son; K. Balasubramanian and J. McGreevy (2008): black hole duals for
cold atoms proposed

More recent developments are not included in this list, but will be updated in the list
presented in the first lectures of “Black holes I”.
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2. Gravitational Collapse – Chandrasekhar Limit

Four fundamental interactions are known to physicists today - gravitational, electromag-
netic, strong and weak interaction.
On large (cosmological) scales, only gravity – the weakest of these forces – plays a major
role. This is easily understood by the facts that the nuclear forces are extremely short
ranged (about the radius of nuclei) and that our Universe is electrically neutral on large
scales.

During the history of the Universe it was gravity that intensified local density fluctua-
tions. This process finally led to the formation of planets, stars, galaxies and even black
holes.

So, in order to understand the formation of a black hole, we must investigate the influ-
ence of gravity in stellar dynamics. Accordingly, the aim of this chapter will be to derive
approximate stability limits for stars.

2.1. Chandrasekhar Limit

As long as a star can fusion lighter elements into more heavy ones, the thermal and ra-
diation outward pressure counteracts gravitational collapse. Only when the end of stellar
fusion is reached, gravitational collapse can begin. This process continues until all energy
levels up to the Fermi level are occupied by the star’s electrons. At that point the re-
sulting Fermi pressure (caused by Pauli’s exclusion principle) of the degenerate Fermi gas
prevents further collapse. Now, we derive a limit where the Fermi pressure balances the
gravitational force. In our derivation FG is the force of gravity, ρ the density of the star,
M its mass, R its radius, P is (gravitational) pressure, A an area element of the star’s
surface; finally EF denotes the Fermi energy and mN the nucleon mass. f is the equation
of state of the given system.) Also, we drop most factors of the order of unity, because we
are solely interested in orders of magnitude.

FG ∼
MρR3

R2 P ∼ FG
A
∼ FG
R2 (2.1)

P

ρ
∼ M

R
(2.2)

P

ρ
∼ f(ρ) ∼ EF

mN
(2.3)

Equation (2.3) is valid because in the star we can consider a degenerate Fermi gas, where
the equation of state is independent of the temperature T . We distinguish between rela-
tivistic and non-relativistic case for the Fermi energy:

EF =
{

non-rel. p2
F

2me
relat. pF

(2.4)

Here pF is the Fermi momentum, which is in the same order of magnitude as the de-Broglie
wavelength. Therefore it is proportional to 1

d , where d is the typical distance between two
electrons in the collapsing star. Additionally, we get for ρ

ρ ∝ mN

d3 ⇒ pF ∼
( ρ

mN

)1/3
. (2.5)
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8 2. Gravitational Collapse – Chandrasekhar Limit

While the conclusions would not change drastically, it is a good assumption to consider
the electrons as relativistic. Then, with (2.2)-(2.5) we get

M

R
∼ P

ρ
∼ pF
mN

∼
(

ρ

mN

) 1
3 1
mN

(2.6)

Using

R ∼
(
M

ρ

) 1
3

(2.7)

yields
M

M
1
3
ρ

1
3 ∼ ρ

1
3

1
(mN )4/3 . (2.8)

Thus we establish our estimate
M ∼ 1

m2
N

(2.9)

Our estimate is independent of the electron mass—so the mass of the particles that cause
the Fermi pressure are not relevant for a stellar mass limit estimate. To get a grasp of the
magnitude of the Chandrasekhar limit, let us insert the neutron mass mN ≈ 10-19

MCh ∼ 1038 ∼ 1030kg ∼ M� (2.10)

where M� is the Sun’s mass. More detailed calculations show for the Chandrasekhar
limit:

MCh ≈ 1.4 M� (2.11)
We now discuss what happens when a star collapses to a neutron star. There are two
major nuclear reactions ongoing while a neutron star is formed:

p+ + e− → n+ νe n→ p+ + e− + νe (2.12)

These are inverse and “normal” β-decay, respectively. Whilst the second reaction is favored
in vacuum the first one is predominant in neutron stars since almost every energy level
up to the Fermi niveau is filled with electrons. Hence, the second reaction is forbidden by
Pauli’s principle and all electron-proton pairs are subsequently converted into neutrons.
Up until now we only talked about “normal” stars collapsing into neutron stars; but we

have made no statements about the possible collapse of a neutron star into a black hole.
Precisely the same estimation we made above can be conducted for neutron stars – only
the me-terms have to be exchanged with mN -terms in all formulas that led to the estimate
(2.9). But since the latter does not depend on me, we obtain the same estimate (2.9) for
the mass limit of the neutron stars.
A far more exact (but as well more complicated) way of determining the neutron-star

mass limit is solving the Tolman–Oppenheimer–Volkov equation. This results in:

MTOV ∼ (1.5− 3)M� (2.13)

The large error bars of the result (2.13) originate in the fact that the equations of state
governing neutron-stars are not fully understood in detail yet.
In conclusion, cold matter stars slightly heavier than the sun collapse to neutron stars.1

Neutron stars that exceed the TOV limit (2.13), M > MTOV, then collapse to a black
hole. Therefore, black holes emerge from common objects in our Universe, namely old
stars that are not so different from our Sun, but slightly heavier.

1Stars, like the sun, that are still in the process of burning hydrogen to helium need at this stage at least
a mass of approximately 15M� to form (after a supernova explosion) a neutron star and at least a
mass of 20M� to form (again after a supernova explosion) a black hole.

Preliminary version – September 20, 2021
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3. Phenomenology of and Experiments with Black Holes

3.1. “Fishy” Gedankenexperiment

Imagine a pond populated by two kinds of fish — the fast gammas and the slower alphas.
The tranquility of the pond is only disturbed by a small creek that flows out of it. Since
our fish are curious, they send an alpha explorer down the creek. Unfortunately they
do not know that the speed of the water-flow continuously increases down the creek. So
our poor alpha ultimately gets to a point where the water-speed exceeds his maximum
swimming capability, a point of no-alpha-return. We call this the α-horizon. From the
viewpoint of the fish in the pond something really bad must happen to the alpha at that
point; maybe a bigger fish is swallowing it there or a fisherman is catching it. They do not
know for sure what is going on but it definitely must be something “fishy”. But, and that
is the curious thing, for the alpha fish only the water-speed increases a little there. As the
pond fish get no sign of life from the brave alpha explorer, they send a fast gamma to look
for it. The gamma finally reaches the alpha thereby crossing the α-horizon unharmed.

The gamma returns to the pond, with considerable effort due to the meanwhile quite
high current and tells the pond-dwellers alpha’s fate. Matter-of-factly these fish are quite
high on the evolutionary ladder, so their curiousness beats the concerns about risking the
life of another fish. So the heroic gamma again throws itself down the creek. Again, it
passes the α-horizon and again he meets alpha. But now, something has happened: the
current has increased so much that even the fastest fish in pond, the gamma-explorer, can
not swim back anymore. We call the point at which the current speed is equal to gamma’s
speed the “black-hole-horizon”. Here again, something “fishy” is noticed by the pond fish,
whereas gamma and alpha only feel the slight increase in water-speed. For a picture of
the pond with all its interesting points, see figure 3.1.
So both alpha and gamma are doomed to travel on downwards. Unlucky as they are,

the creek ends in a ripping waterfall! With the help of a great portion luck, both our fish
survive their ride on the waterfall. They discover that the creek continues to a new pond
— obviously getting slower and slower as they get nearer to the new pond.
After living there a while, our fish get homesick and try to swim back up the creek.

But, and that is the sad ending of our short story, the countercurrent is too strong for our
gamma at a certain point. So alpha and gamma have to stay in the new pond . . .

Figure 3.1: The pond and the waterfall

Now, back to physics: As the attentive reader might have noticed, alpha and gamma
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10 3. Phenomenology of and Experiments with Black Holes

fish are just the analogs of alpha and gamma particles, respectively. Furthermore, the
speed of the current flowing from our pond (the “flat” Universe) is nothing more than
gravitational strength. And the waterfall just resembles the singularity of the black hole.
Therefore, an observer located anywhere between the α-horizon and the black-hole (event)
horizon is able to communicate with and return to the “outside” (i.e. the flat Universe).
But if the event horizon is crossed, no interaction whatsoever with anything outside this
boundary is possible. Ultimately, the observer is drawn into the singularity.
The reversed process, the current flowing from the waterfall, resembles a “white hole” -

a (hypothetical) stellar object which is just the time-reversed of a black hole. No matter,
however fast, can move into it. Matter is only allowed to travel outwards.

3.2. Brief Review of Special Relativity
As we see special relativity as a prerequisite to this course, this chapter is going to be
quite short emphasizing only the most important aspects.
In the Newtonian Universe, all changes in force at a specific point effects the rest of

the Universe instantaneously. This means that information travels at infinite speed in this
Universe. Speaking in other terms, there is only one global, unique time throughout the
whole Universe.
The finite speed of light and its invariance under chance of inertial frame contradicts the

Newtonian world-view. Albert Einstein, in his 1905 paper “Zur Elektrodynamik bewegter
Körper” (“On the Electrodynamics of Moving Bodies”), was able to solve the various
contradictions by abandoning a global time and an invariant length. Both quantities
are now dependent on the observer’s state of motion. Both time dilation and Lorentz
contraction are consequences of Einstein’s possibly most severe assumptions: no particle
is allowed to cross the speed of light in either direction “normal” particles can not go faster
than c and hypothetical “tachyons” can not be decelerated to speeds lower than c and the
speed of light is constant and thus equal in every inertial system.
This new “relative” Universe is best described by the so-called Minkowski-spacetime.

This 4-dimensional spacetime consists of three spatial dimensions and time as fourth di-
mension.
The relativity of time leads us to a new definition of causality and simultaneity. Math-

ematically the coordinate relationships between two moving observers are given by the
Lorentz-transformations, which will be discussed in a moment. Due to the fact that the
speed of light is constant and equal in every inertial system, we can draw a light cone at
every point of a given objects world-line.

Preliminary version – September 20, 2021



3.2. Brief Review of Special Relativity 11

Figure 3.2: The Light Cone (Source: Aainsqatsi/Stib, CC-BY-SA-3.0, via Wikimedia
Commons)

As we see, the light cone divides the spacetime into three different regions with respect
to any given observer.

1. causal past and future.

All points enveloped by the light cone can be reached with speeds ≤ c by the observer
at a given time - likewise, all points in the observers causal past could have affected
him. We call straight lines connecting the observer and any point in the interior of
this region timelike.

2. the light cone itself.

A light ray sent outwards by the observer travels on the light cone - therefore the
light cone itself is the boundary of the region an observer can send messages to
(again, at a given time). Accordingly, he could only have received messages that
originated within or on the boundary of the past light cone. We call straight lines
connecting the observer and any point on the light cone lightlike.

3. the “elsewhere”.

The region which lies outside the light cone can not influence and be influenced by
the observer, because to do so, traveling at speeds greater then c would be necessary.
We call straight lines connecting the observer and any point in the interior of this
region spacelike.

Preliminary version – September 20, 2021
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12 3. Phenomenology of and Experiments with Black Holes

3.3. Mathematical Aspects of Special Relativity
To describe the special causality structure of the Minkowski-spacetime we need a pseudo-
Euclidean metric. With µ, ν = t, x, y, z, it reads:

ηµν =


−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 (3.1)

Accordingly,with aµ,bν ∈ R4 we define the inner product:

a · b = aµbνηµν (3.2)

The Minkowski metric is called a pseudo-Euclidean metric because its norm is not positive
definite.

‖a‖ = aµaνηµν


> 0 : spacelike
= 0 : lightlike; with aµ 6= 0
< 0 : timelike

(3.3)

In Euclidean space we can change from on set of relative coordinates to another using
arbitrary rotations (here, for simplicity, in a 2-dimensional form):

Λ =
(

cosϕ sinϕ
− sinϕ cosϕ

)
∈ SO(2) (3.4)

ΛT δΛ = δ (3.5)

In 2-dimensional Minkowski spacetime we have to use a hyperbolic rotation matrix to take
respect of the different metric:

Λ =
(

cosh ξ sinh ξ
sinh ξ cosh ξ

)
∈ SO(1, 1) (3.6)

With the quantity ξ, sometimes called “rapidity” being defined as

cosh ξ = 1√
1− v2

= γ (3.7)

To emphasize the fact that time plays no “special” role (i.e. it is just another coordinate)
in special relativity, an exemplary coordinate transformation is shown here:(

t′

x′

)
=
(

cosh ξ sinh ξ
sinh ξ cosh ξ

)(
t
x

)
= γ

(
t− vx
x− vt

)
(3.8)

Preliminary version – September 20, 2021



13

4. Metric and Geodesic Equation

In this chapter we will recall metrics in different coordinate systems and we are going to
derive the geodesic equation which represents the equation of motion for a point particle
in curved spacetime.
If we perform an arbitrary change of coordinates in special relativity then the Minkowski

metric ηµν is transformed into a new metric gµν . In order to find this new metric gµν we
have to perform an appropriate sufficiently smooth coordinate transformation by mapping
the old coordinates to the new ones

xi → x̃i(xk) (4.1)

dx̃i = ∂x̃i

∂xk
dxk ∂̃i = ∂xj

∂x̃i
∂j (4.2)

Therefore an infinitesimal line element in the new coordinates can be written as

ds2 = ηijdx
idxj = gijdx̃

idx̃j = gij
∂x̃i

∂xk
dxk

∂x̃j

∂xl
dxl (4.3)

Since ds2 has to be invariant due to coordinate transformations we obtain the following
relation between the components of the new metric components gij and the ones of the
old metric components ηij by comparing the coefficients of (4.3)

ηkl = gij
∂x̃i

∂xk
∂x̃j

∂xl
(4.4)

4.1. Euclidean Coordinate Transformation

Let us consider a 2-dimensional euclidean metric δij → ds2 = dx2 + dy2 and a coordinate
transformation to polar coordinates r =

√
x2 + y2 and ϕ = arctan( yx). Using (4.3) we

obtain for the line element

ds2 = gijdx̃
idx̃j = grrdr

2 + 2grϕdrdϕ+ gϕϕdϕ
2 (4.5)

After evaluating the total derivatives of the new coordinates the line element can be written
as

ds2 = grr

(
xdx+ ydy√
x2 + y2

)2

+ 2grϕ
(
xdx+ ydy√
x2 + y2

)(
xdy − ydx
x2 + y2

)
+ gϕϕ

(
xdy − ydx
x2 + y2

)2
(4.6)

By rearranging the right hand side of (4.6) we get

ds2 = dx2
(
grr

x2

x2 + y2 − 2grϕ
xy

(x2 + y2) 3
2

+ gϕϕ
y2

(x2 + y2)2

)
︸ ︷︷ ︸

A

+ (4.7a)

dy2
(
grr

y2

x2 + y2 + 2grϕ
xy

(x2 + y2) 3
2

+ gϕϕ
x2

(x2 + y2)2

)
︸ ︷︷ ︸

B

+ (4.7b)

dxdy

(
grr

2xy
x2 + y2 + 2grϕ

x2 − y2

(x2 + y2) 3
2
− gϕϕ

2xy
(x2 + y2)2

)
︸ ︷︷ ︸

C

(4.7c)
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14 4. Metric and Geodesic Equation

Since ds2 is invariant under coordinate transformations it follows that A = B = 1 and
C = 0. This yields three linear equations in three variables

A+B = 2 = grr + gϕϕ
1
r2 (4.8a)

A = 1 =
(
grrx

2 + gϕϕ
y2

r2
) 1
r2 − 2grϕ

xy

(x2 + y2) 3
2

(4.8b)

C = 0 =
(
grr − gϕϕ

1
r2
) 2xy
x2 + y2 + 2grϕ

x2 − y2

(x2 + y2) 3
2

(4.8c)

⇒ grr = 1 gϕϕ = r2 grϕ = 0 (4.8d)

Hence the line element in polar coordinates is given by

ds2 = gijdx
idxj = dr2 + r2dϕ2 (4.9)

4.2. The Geodesic Equation

In order to derive the geodesic equation we will consider two arbitrary points in spacetime.
There are two possible ways to find the minimal distance between the two points. The
first is the so-called parallel transport where all possible vectors are drawn outwards from
one point, then they are parallel transported until one of these vectors finally “hits” the
target2. The other method is to find a curve of minimal length connecting the two points
by variational calculus. We will use this way to derive the geodesic equation, with the
locally shortest connection of two points being called a geodesic.
For an arbitrary curve the arc length can be obtained by evaluation of the following integral
in the special case of an euclidean metric

τ1∫
τ0

dτ

√
δij
dxi

dτ

dxj

dτ
(4.10)

Similarly for a Minkowski metric and spacelike line elements with ds2 > 0 the arc length
is given by

τ1∫
τ0

dτ

√
ηij
dxi

dτ

dxj

dτ
(4.11)

and for timelike line elements with ds2 < 0
τ1∫
τ0

ds

√
−ηij

dxi

dτ

dxj

dτ
(4.12)

4.2.1. Geodesics in Euclidean Space

Consider a line element in 2 dimensional euclidean space and
y = y(x) : ds2 = dx2

(
1 +

(
dy
dx

)2
)
. Hence the arc length of this line element can be

written as

s =
x1∫
x0

dx

√
1 +

(
dy

dx

)2
(4.13)

2In order to be able to parallel transport a vector one has to find of course a satisfying definition for
parallel transported vectors in curved spacetime
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4.2. The Geodesic Equation 15

By variation of the arc length (4.13) we can find the path y(x) with minimal arc length
such that δs = 0.

δs =
x1∫
x0

dx

 1√
1 +

(
dy
dx

)2

dy

dx

d

dx
δy

 (4.14)

In order to get rid of the derivative acting on the variation partial integration can be used

δs = 1√
1 +

(
dy
dx

)2

dy

dx
δy
∣∣∣x1

x0︸ ︷︷ ︸
0

−
x1∫
x0

dxδy
1(

1 +
(
dy
dx

)2
) 3

2

︸ ︷︷ ︸
>0

(
d2y

dx2

)
(4.15)

The boundary term can be dropped by choosing appropriate boundary conditions. Since
the square root is greater than zero for arbitrary y(x) the variation can only be zero for(

d2y

dx2

)
= 0 or dy

dx
= ±∞ (4.16)

which is the equation of a straight line in euclidean space in either of the cases. This is
indeed the shortest path between two points in euclidean space.

4.2.2. Timelike Geodesics

For an arbitrary metric, a geodesic minimizes the arc length S which for timelike curves
is given by

S =
∫ s1

s0
ds =

τ1∫
τ0

dτ

√
−gµν

dxµ

dτ

dxν

dτ
(4.17)

The minus sign in front of the metric ensures reality of S for timelike curves. In order to
get rid of the square root in S we use a little trick by introducing the einbein. The einbein
is a variable which can be viewed as a parameter “measuring” how fast the curve is being
traversed as a function of the parameter. Hence the arc length (4.17) can be rewritten as

S = 1
2

τ1∫
τ0

dτ e

(
1− e−2gµν

dxµ

dτ

dxν

dτ

)
(4.18)

In order to show that this rewritten arc length (4.18) is indeed equal to the original form
of the arc length (4.17) the variation with respect to the einbein of the rewritten arc length
(4.18) has to vanish

δS

δe
= 1

2

τ1∫
τ0

dτ

[
1 + e−2gµν

dxµ

dτ

dxν

dτ

]
= 0 (4.19a)

⇒ e = ±
√
−gµν

dxµ

dτ

dxν

dτ
(4.19b)

Since the rewritten arc length containing the einbein (4.18) equals the original expression
of the arc length (4.17), the rewritten arc length (4.18) can be varied instead of the original
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16 4. Metric and Geodesic Equation

one (4.17) (∂α denotes ∂
∂xα ).

δS =1
2

τ1∫
τ0

dτ

[
−e−2 (∂αgµν) δxαdx

µ

dτ

dxν

dτ
+

d

dτ

e−2gµν δxµ︸︷︷︸
δα
µδxα

dxν

dτ
+ e−2gµν δxν︸︷︷︸

δα
νδxα

dxµ

dτ

 = 0 (4.20)

The variation of the arc length (4.20) has to be zero for arbitrary δα ((ẍµ) denotes d2xµ

dτ2 ).

e−2gαν ẍ
ν + e−2gµαẍ

µ + e−2 (∂βgαν) ẋβẋν + e−2 (∂βgµα) ẋβẋµ−

e−2 (∂αgµν) ẋµẋν + de−2

dτ

(
gµνδα

µdx
ν

dτ
+ gµνδα

ν dx
µ

dτ

)
= 0 (4.21)

The term de−2

dτ (. . . ) can be eliminated by a reparametrization dτ ′ = e dτ which is called
affine parametrization. Since we want to have an equation of the form ẍµ + (. . . ) = 0
we multiply the reparametrized expression of the variated arc length (4.21) with e2gαγ ,
rename some indices (ẍµ → ẍν and β → µ) and use gαγgγδ = δα

δ.

2δνγ ẍν + ẋµẋν (∂µgαν + ∂νgαµ − ∂αgµν) gαγ = 0

⇒ ẍγ + 1
2 ẋ

µẋν (∂µgαν + ∂νgαµ − ∂αgµν) gαγ = 0 (4.22)

With
Γαµν = 1

2 (∂µgαν + ∂νgαµ − ∂αgµν) (4.23)

being the Christoffel symbols of the first kind. By contracting one index with the metric
and multiplying the factor 1

2 we obtain the Christoffel symbols of the second kind Γγµν

Γγµν = gαγΓαµν (4.24)

Hence minimum condition for a geodesic (4.22) can be written as

ẍγ + Γγµν ẋµẋν = 0 (4.25)

Equation (4.25) is called geodesic equation and determines the equations of motion in
curved spacetime, or more general it defines the geodesics in a curved space. To quote
John Archibald Wheeler: “Space tells matter how to move and matter tells space how to
curve”. The geodesic equation does indeed relate to the first part of this quote, i.e that
the movement of a point particle can be determined by the curvature of the spacetime.
We will derive the equations that will motivate the second part of this quote in chapter 7.

4.2.3. Geodesics in a Special Metric: The Newton Limit

Consider a metric of the form

ds2 = −
(
1 + 2φ(xi)

)
dt2 + dx2 + dy2 + dz2 xi = (x, y, z) (4.26)

First we have to calculate the Christoffel symbols of the first kind for the metric given for
the line element (4.26)

Γijk = 0 Γtij = 0 Γtti = 1
2 (∂igtt) = −∂iφ

Γitt = −1
2 (∂igtt) = ∂iφ Γttt = 0 Γijt = 0
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4.2. The Geodesic Equation 17

Since Γγµν = gγαΓαµν the geodesic equation is given by

ẍγ + gγαΓαµν ẋµẋν =


ẍt + gttΓtµν ẋµẋν = 0
ẍi + gij︸︷︷︸

δij

Γjttẋtẋt = 0 (4.27)

With ẋi = vi, ẍi = ai and v � 1, vµ can be approximated by vµ =
(

1 +O(v2)
vi

)
and the

second equation in (4.27) is simplified to

ai + δij∂jφ = 0
~a = −~∇φ ⇒ m~a = −m~∇φ (4.28)

Since we can neglect higher order terms of v we can also neglect the first equation given
by the geodesic equation in (4.27) because it contains such higher order terms of v.
For φ one could use −M

r for example. This choice for φ would lead to Newton’s gravity
law. Hence the interaction between particles with masses can be ascribed to the curvature
of spacetime. Since mass deforms spacetime — a result we are going to derive in chapter
7 — the geodesics aren’t straight lines anymore as they would be in flat spacetime and
the equations of motion are given by the geodesic equation. That’s a quite extraordinary
result, since we only used geometrical principles and were hence able to ascribe gravitation
as a geometric phenomenon without the need of a special force. Gravitation can therefore
be “reduced” to a fictitious force. An observer on earth for example seems to be attracted
by some kind of gravitational force just because the ground on earth prevents the observer
from following a geodesic path along the curved spacetime. Without the ground the ob-
server would follow his geodesic path and would therefore “feel” no force! Or take for
example an elevator. An observer resting in an elevator which is relatively accelerating
with respect to a chosen rest frame at 9.81 m

s2 would not be able to tell the difference of
being in an relatively accelerating elevator, or being in an relatively resting elevator in
a gravitational field. This equivalence of a gravitational field and a corresponding accel-
eration of the reference system is a manifestation of the equivalence of gravitational and
inertial mass and therefore the mass independence of relative acceleration in a gravitational
field.

4.2.4. General Geodesics

If the curve whose length we extremize is not timelike, but instead spacelike or lightlike,
we have to make minor adjustments to the geodesic action (4.18). The most general case
is covered by extremizing the action

S = k

τ1∫
τ0

dτ gµν
dxµ

dτ

dxν

dτ
(4.29)

with some irrelevant normalization constant k and the additional normalization condition

gµν
dxµ

dτ

dxν

dτ
=


−1 : timelike

0 : lightlike
+1 : spacelike

(4.30)

Note the action (4.29) is essentially equivalent to the action (4.18) provided we choose
e = −1. In that case τ is the proper time. In the lightlike or spacelike cases it makes
no sense to call τ “proper time”, so in those cases (and in full generality) τ is referred to
as “affine parameter”. The action (4.29) is a 1-dimensional analog of the 2-dimensional
Polyakov action of string theory.
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18 5. Geodesics for Schwarzschild Black Holes

5. Geodesics for Schwarzschild Black Holes
After Einstein published the Einstein field equations, Schwarzschild was the first who
found a nontrivial exact solution. We are going to introduce the Schwarzschild solution
and show some important physical results.
After the definition of the Schwarzschild metric we look at the asymptotic behavior

of light rays and try to interpret them. The redshift of photons, the perihelion shift of
mercury and the bending of light are important tests of general relativity (especially of
the Schwarzschild solution) and will be discussed in this chapter. The geodesic equations
are going to tell us something about the trajectories of test particles and the differences
to the Newtonian world.
The Schwarzschild solution is not only of great importance in black hole physics, it also

describes the gravitational field in the region outside of ordinary spherically symmetric
stars.

5.1. Schwarzschild Solution: Asymptotic Behavior, Light in Radial Motion
The Schwarzschild metric in natural units has the form

ds2 = −
(

1− 2M
r

)
dt2 + 1

1− 2M
r

dr2 + r2dθ2 + r2 sin2 θdϕ2 (5.1)

The relativistic Schwarzschild solution describes the gravitational field around a spherical
symmetric mass M which is placed at r = 0.

Limits of the Schwarzschild solution:
• r →∞: Asymptotically flat space in spherical coordinates.

• r → 0: True singularity of the spacetime structure.

• r → 2M : The singularity is caused by a breakdown of the coordinates (5.1). The
spacetime is not singular at r = 2M .

• M → 0: Flat space in spherical coordinates.
The only difference of the Schwarzschild solution (5.1) to the Newtonian approximation
(4.26) is the dr2 coefficient which asymptotes to the Newtonian result for r → ∞. That
means as long as we are staying far away of the central mass there are only marginal
differences to Newton’s law of gravity. The closer we get and the heavier the central mass
becomes the more our classical approach fails.
Let us now derive how light behaves under radial motion. For photons we have to

set ds = 0 and since we are looking at radial motion we also have to set dϕ = dθ = 0.
Substituting this into equation (5.1) we obtain the coordinate velocity

dr

dt
= ±

(
1− 2M

r

)
(5.2)

If the light is far away (r → ∞) the coordinate velocity takes the expected value 1.
Recalling section 3.1 this is the case where the gamma fish are in the pond and do not feel
the flow of the water. At r = 2M the coordinate velocity is 0. Here the gamma fish want
to swim back but they do not get closer to the pond. So r = 2M is the already mentioned
event horizon of the black hole.
Now we want to see what happens to the light ray in its local coordinate system. Here

we have to differentiate the proper time dτ with respect to the proper length dx

dτ2 =
(

1− 2M
r

)
dt2 dx2 = dr2

1− 2M
r

(5.3)
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5.2. Gravitational Redshift (equivalence principle) 19

and using (5.2) we get
dx

dτ
= dr

dt

1
1− 2M

r

= ±1 (5.4)

So the light ray has in its local coordinate system the expected velocity 1 (c in SI units).

5.2. Gravitational Redshift (equivalence principle)
Consider two static observers OA and OB with the radial coordinates rA and rB in a
Schwarzschild geometry. OA sends light signals with the wavelength τA to observer OB.

ds2 = −
(

1− 2M
rA

)
dt2 = − dτA 2 ds2 = −

(
1− 2M

rB

)
dt2 = − dτB 2 (5.5)

The ratio of the frequency ωA (measured by the emitter) and the frequency ωB (measured
by the observer who receives the signal) results in

ωB
ωA

= dτA
dτB

=

√
1− 2M

rA√
1− 2M

rB

(5.6)

The closer the emitter comes to rA = 2M the more the frequency ωB gets redshifted (we
assume that rA < rB). So for an observer who is looking at an object which is falling into
a black hole it looks like the object moves slower and slower and the frequency gets redder
and redder. The observer would never see the emitter reach rA = 2M .

We assume that Observer OB is in the asymptotic flat region (rB → ∞) and M
rA
� 1

(which is the case for an “ordinary body”) we obtain
ωB
ωA
≈ 1− M

rA
(5.7)

∆ω
ωA

= ωB − ωA
ωA

≈ −M
rA

= φA (5.8)

∆ω
ωA
≈ φA (5.9)

Hence the frequency change equals to the change in potential energy. This effect is known
as gravitational redshift and was observed by Pound and Rebka in 1960 (see figure 5.1).
For a stable static spherical body (with dρ/dr ≤ 0 everywhere inside the body) the

theoretical minimal radius rstar for a given mass Mstar is given by

rstar ≥
9
4Mstar . (5.10)

This minimum radius is valid independently of the specific equation of state of the star.
We can now use equation (5.6) to estimate what the maximum redshift of light emitted
from the surface of such a star is

ω∞
ωstar

=

√
1− 2Mstar

rstar√
1− 2M

∞

→ ωstar = 3 (5.11)

The redshift factor is in general given by

z = λB − λA
λA

= ωA
ωB
− 1 (5.12)

and leads in our current estimation to an maximal redshift of

zmax = ωstar
ω∞

− 1 = 2 . (5.13)

This means that observed redshifts of greater than 2 (as measured for example for Quasars)
can not arise solely from gravitational redshift of a static spherical body.
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20 5. Geodesics for Schwarzschild Black Holes

Figure 5.1: Tests of gravitational redshift (Source: Will - The Confrontation between Gen-
eral Relativity and Experiment)

5.3. Geodesic Equation of the Schwarzschild Solution

Now we want to derive the timelike (M 6= 0) and the null (M = 0) geodesics of the
Schwarzschild solution. One possibility is to substitute (5.1) into the geodesic equation
(4.25) and solve the differential equations. A faster way is to use the geodesic action
(4.18) and parameterize it by the proper time τ (dτ = eds). Since m is constant it does
not contribute to the variation. So we are allowed to drop the first term of the geodesic
action (4.18) which leads to

S = 1
2

∫
dτ [−gµν ẋµẋν ] (5.14)

= 1
2

∫
dτ

[(
1− 2M

r

)
ṫ2 − ṙ2

1− 2M
r

− r2θ̇2 − r2 sin2 θϕ̇2
]

(5.15)

The functional can be parameterized3 in such a way that

k = gµν ẋ
µẋν =

{
−1 timelike geodesics

0 lightlike geodesics (5.16)

Without loss of generality we look at the case θ̇ = 0. Now we vary the geodesic action
(5.14) with respect to θ and obtain the corresponding Euler–Lagrange equation

∂L

∂θ
− d

dτ

∂L

∂θ̇
= −2r2 sin θ cos θϕ̇2 = 0 (5.17)

3It also follows by the definition of the general relativistic proper time τ =
∫

(−gµν ẋµẋν)1/2dt. See also
(4.11)
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Figure 5.2: The effective potential for the timelike (solid, in the case of L2 > 12M2) and
the Newtonian (dotted) trajectory. L=5,M=1

In general r 6= 0 6= ϕ̇ thus 2 sin θ cos θ = sin (2θ) = 0. Without loss of generality we
consider θ = π

2 . The Euler–Lagrange equations for t and ϕ define two constants of motion

d

dτ

((
1− 2M

r

)
2ṫ
)

= 0 =⇒
(

1− 2M
r

)
ṫ = F = const (5.18)

d

dτ

(
r2ϕ̇

)
= 0 =⇒ r2ϕ̇ = l = const (5.19)

Substituting (5.18) and (5.19) into (5.16) gives

K = F 2

1− 2M
r

− ṙ2

1− 2M
r

− l2

r2 (5.20)

Since the problem is equal to the Kepler problem in the Newtonian case we want to get
an equation that looks like

ṙ2

2 + V eff = E (5.21)

5.3.1. Timelike Geodesic

For timelike geodesics (k = −1) we get from (5.20) and (5.21) the effective potential of
the timelike geodesic

ṙ2

2 −
M

r
+ l2

2r2 −
l2M

r3 = E = F 2 − 1
2 (5.22)

V eff = −M
r

+ l2

2r2 −
l2M

r3 (5.23)

The only difference between the relativistic and the Newtonian trajectory of a massive
particle is the − l2M

r3 term. The trajectories for different energy levels are (see figure 5.2):
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Figure 5.3: The effective potential for the lightlike (solid) and the Newtonian (dotted)
trajectory. L=5,M=1

E0 At the right side of the maximum of V eff there are stable circular states. If the energy
is equal to the minimum of the potential the motion is circular. When that circular
state is slightly perturbed the motion leads to a perihelion shifted elliptic trajectory
(see figure 5.4).

E1 Particles left of the maximum will bounce against the potential barrier and fall into
the black hole. Particles on the right side behave similar to the Newtonian case and
are able to escape to infinity.

E2 Contrary to the classical physical expectations the particle falls directly towards r = 0.
In Kepler’s problem that is only possible for L = 0. If the energy equals to V eff at
the maximum ṙ is zero and the mass point moves on an unstable circular orbit.

5.3.2. Lightlike Geodesic

For lightlike geodesics (k = 0) we get

ṙ2

2 + l2

2r2 −
l2M

r3 = E = F 2

2 (5.24)

V eff = l2

2r2 −
l2M

r3 (5.25)

The trajectories is similar to the timelike case except that there are no stable circular
orbits. Also mind the scale factor of the two figures.

5.4. Orbits of the Schwarzschild Black Hole

The stable circular orbits of the timelike trajectories are the minima of the timelike effective
potential (5.23)

dV eff

dr
= 0 d2V eff

dr2 > 0 (5.26)
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Figure 5.4: Perihelion shift

The extrema are

r± = l2

2M

1±

√
1− 12M2

l2

 (
r+r− = 3l2

)
(5.27)

where r+ is the stable orbit and r− is the unstable orbit (the formula in the parentheses
will be usefull in the next section). Since the square root of the potential should not be
negative the bound states are restricted to the condition l2 ≥ 12M2.
For the Innermost marginally Stable Circular Orbit we need

d2V eff

dr2 = 0 (5.28)

so the square root of the extrema (5.27) has to vanish

l2 = 12M2 (5.29)
⇒ rISCO = 6M (5.30)

We can now, following section 5.2, calculate the maximal redshift for signals from this
orbit

zISCO =
(

1− 2M
6M

)−1/2
− 1 ≈ 0.2 (5.31)

The same can be done for lightlike trajectories to get the Lightlike Unstable Circular
Orbit which is always at

rLUCO = 3M (5.32)

5.5. Perihelion shift
For calculating the perihelion shift in general relativity we assume that the body is at a
stable circular orbit (meaning that we are in a region near r+) and perturb it slightly. If
we would perturb it too much the form of an ellipsis would get lost.
The “radius frequency” of the motion is given by

ωr
2 = d2V eff

dr2

∣∣∣∣∣
r=r+

= 1
r+ 4

(
3l2 − 2Mr+ − 4Mr−

)
(5.33)

(in the last term we have used the equation in the parentheses of (5.27) to eliminate a
1/r+ term).

With (5.19) we get the angular frequency ωϕ

ωϕ
2 = ϕ̇2 = l2

r4
+

(5.34)

and derive (by inserting (5.26) and (5.34) into (5.33))

ωr = ωϕ

(
1− 12M2

l2

)1/4

(5.35)

≈ ωϕ

(
1− 3M2

l2

)
for M � l . (5.36)
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The precession rate ∆ϕ is the difference between ωr and ωϕ

∆ϕ = T∆ω = 2π (ωϕ − ωr) ≈
6πM2

l2
(5.37)

If the precession rate is zero the orbit is closed perfectly. This is the case for the Newtonian
theory where we have a effective potential

V eff = −M
r

+ l2

2r2 −
l2M

r3 (5.38)

and
ωr = ωϕ = M2

l3
(5.39)

The nonzero ∆ϕ in general relativity leads to a perihelion shift (see figure 5.4).
Combining now the Newtonian formula for bound motion

l2

M
≈ A(1− e2) (5.40)

with (5.37) leads to

∆ϕ = 6πM
A(1− e2) = 6πGM

c2A(1− e2) (5.41)

where e is the eccentricity and A is the aphelion of the ellipsis.
This remarkable result can be used to calculate the general relativistic contribution to

the perihelion shift of the Mercury. We have to insert

M� ≈ 2 · 1030kg ≈ 1038 (5.42)
A ≈ 6· 107km ≈ 4· 1045 (5.43)
e ≈ 0.2 (5.44)

into (5.41) to get
∆ϕ ≈ 2· 10−5 ≈ 0, 1′′/revolution (5.45)

Since there are around 415 revolutions/century we are now able to compare our calculated
to the observed result

∆ϕ ≈ 42′′/century (5.46)
∆ϕobs = (43.11± 0.5)′′/century (5.47)

When Einstein released his work this result was one of the great achievements of general
relativity.

5.6. Gravitational Light Bending

We are now going to derive another remarkable prediction of general relativity, the grav-
itational light-bending. We are searching for a formula for the deflection angle ∆ϕ of a
light-ray (which moves on a null geodesic) in the gravitational field of a point source (like
the Sun). So we use the Schwarzschild metric (5.1) and the results we derived for null
geodesics in the Schwarzschild background in section 5.3.
First we establish an integral formula for the azimuthal angle ϕ as a function of the

radial coordinate r. We take
ϕ̇ = l

r2 (5.48)
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∆ϕ

r0

Figure 5.5: Gravitational light bending; ∆ϕ is related to ϕ∞ by ∆ϕ = ϕ∞ − π

and divide it by

ṙ =

√
2E − l2

r2 + 2l2M
r3 (5.49)

to get
dϕ

dr
= 1
r2
√

2E
l2 −

1
r2 + 2M

r3

(5.50)

To get the total change in of the azimuthal angle ϕ∞ we have to integrate (5.50) between
−∞ and +∞ (see figure 5.5). That is the same as integrating twice from the turning point
of the light ray r0 to infinity

ϕ∞ = 2
∫ ∞
r0

1
r2
√

2E
l2 −

1
r2 + 2M

r3

dr (5.51)

The integration is more convenient if we make the variable change u = 1/r

ϕ∞ = 2
∫ 1/r0

0

1√
2E
l2 − u2 + 2Mu3

du (5.52)

To eliminate E and l we use the fact that

dr

dϕ

∣∣∣∣
r0

= 0 (5.53)

which leads to
2E
l2

= 1
r0 2 −

2M
r0 3 (5.54)

For the case of flat spacetime we predict a total change of the azimuthal angle ϕ∞ of π
which leads to a straight line. So we set M = 0 in (5.52) and (5.54) to derive

ϕ∞ = 2
∫ 1/r0

0

1√
2E
l2 − u2

du (5.55)

= 2 arctan

 u√
2E
l2 − u2

∣∣∣∣∣∣
1/r0

0

(5.56)

= π (5.57)

For M 6= 0 the trajectory of the light-ray is no straight line anymore. The deflection
is interpreted as the gravitational attraction of the Schwarzschild geometry. To calculate
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the deflection angle ∆ϕ to first order in M we first calculate the change of the angular
coordinate to first order. We substitute (5.54) into (5.52)

ϕ∞ = 2
∫ 1/r0

0

du

(r0−2 − 2Mr0−3 − u2 + 2Mu3)1/2 (5.58)

For the total change of the azimuthal angle ϕ∞ in first order ofM we have to differentiate
ϕ∞ by M and evaluate the result at M = 0

∂(ϕ∞)
∂M

∣∣∣∣
M=0

= 2
∫ 1/r0

0

(r0
−3 − u3)du

(r0−2 − 2Mr0−3 − u2 + 2Mu3)3/2

∣∣∣∣∣
M=0

(5.59)

= 2
∫ 1/r0

0

(r0
−3 − u3)

(r0−2 − u2)3/2du (5.60)

= −2
√
r−2

0 − u2 2 + r0u

1 + r0u

∣∣∣∣1/r0

0
(5.61)

= 4r−1
0 (5.62)

So the deflection angle ∆ϕ in first order of M is

∆ϕ = ϕ∞ − π ≈M
∂(ϕ∞)
∂M

∣∣∣∣
M=0

= 4M
r0

. (5.63)

Inserting

M� ≈ 2 · 1030kg ≈ 1038 (5.64)
r� ≈ 7· 108m ≈ 7 · 1043 (5.65)

predicts a deflection of
∆ϕ ≈ 1, 75′′ (5.66)

for light-rays which graze the sun. Eddington proved this gravitational light bending of
starlight at a solar eclipse in 1919 (up to a measurement accuracy of 10%). Nowadays the
the effect can be measured to an accuracy much better than 1% (see figure 5.6).
For more information about the confrontation between General Relativity and experi-

ment see [1].
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Figure 5.6: Tests for the gravitational light deflection. General relativity predicts γ = 1.
The not very precise optical experiments (Optical) were the first conforma-
tion of general relativity (the top arrows denote anomalously large values from
early eclipse expeditions). Later radio-interferometery (Radio) and very-long-
baseline radio interferometry (VLBI), produced measurements with greatly
improved determinations of the deflection of light. (Source: Will - The Con-
frontation between General Relativity and Experiment)
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6. Curvature and Basics of Differential Geometry
General Relativity is a theory of spacetime curvature. Therefore we need to define and
introduce some of the basic concepts of differential geometry and develop the mathematical
tools to thoroughly describe the phenomenons appearing whilst studying black holes.
In Chapter 4 we have introduced the concept of a geodesic as shortest lines between

two points in a given spacetime. Additionally, we briefly discussed parallel transport and
“autoparallels” (i.e. straightest lines in a spacetime). In Euclidean spacetime, both notions
are identical. In general this is not the case, and we shall see why. It is one of the aims
of this chapter to find circumstances and conditions for arbitrary spacetimes, so that this
equivalence remains true.

6.1. Manifolds and Tangent Spaces
When visiting an one-year course on topology, you will probably go through sets, enlarge
this to topologies and finally arrive at something called a manifold. We do not have time
enough to do so, therefore we will just focus on a special type of manifold - manifolds with
a metric - and define them quite sloppily as “something that locally looks like Rn”. This
could be a strip of paper, a Moebius strip, our Universe, ...
Next to consider is the concept of tangent space. There are various kinds of manifolds.

The ones we are exclusively concerned with have a metric and we can can attach to every
point x of our manifold a tangent space, a real vector space which intuitively contains the
possible “directions” in which one can tangentially pass through x. For example, if the
given manifold is a 2-sphere, one can picture the tangent space at a point as the plane
which touches the sphere at that point and is perpendicular to the sphere’s radius through
the point.

Figure 6.1: Tangent Space of a 2-sphere
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By definition, the directional derivatives ∂i in a certain point form a base of the tangent
space attached to this point. This may be illustrated in the following picture:

γ(t)

υ x

TxM

M

Figure 6.2: Tangent vector of a given path on a 2-sphere

This leads us to the next definition: What is a vector? Hopefully, the definition of a
vector v as linear combination of the base-vectors (v := vµ∂µ) is not new to the reader.
More formal, we define a vector as follows:

Assuming we have a manifold M and there exist a smooth maps F : M → R with F ∈ C∞
then a tangent vector at point P maps an element of F to R.

v(f) = vµ∂µf f ∈ F (6.1)

A vector must fulfill two criteria (with f, g ∈ F and a, b ∈ R):

1. linearity:
v(af + bg) = av(f) + bv(g) (6.2)

2. Leibnitz rule:

v(f · g) = f · v(g) + g · v(f) (6.3)

Linearity combined with the Leibnitz rule implies that a vector acting on any con-
stant h vanishes.

⇒ h · v(h) = v(h · h) = 2hv(h) = 0 (6.4)

There are two important facts about tangent spaces. First, the tangent space in point
P (from here on called VP ) fulfills all criteria of a vector space (please, take a look at your
linear algebra lecture notes for them) and, second, dim(VP ) = dim(M).

The next important concept is the dual vector space. To a given vector space VP ,
the dual space V ∗P consists of all linear maps VP → R . About the dimension of V ∗P we
may say:

dim(V ∗P ) = dim(VP ) (6.5)
With e1, · · · , eD being a basis of VP ( ∂

∂xn in a coordinate basis) and e1, · · · , eD of V ∗P (dxn
in a coordinate basis), we get:

eµeν = δµν or dxµ
(

∂

∂xν

)
= δµν (6.6)

This is a generalization of the fact that differentiation (represented by elements of V ∗P ) is
the dual (i.e. inverse) operation of integration—here represented by the elements of VP .

Since V ∗∗P = VP vectors can also be seen as linear maps V ∗P → R.

Preliminary version – September 20, 2021



30 6. Curvature and Basics of Differential Geometry

6.2. Tensors
A multi-linear map T of the kind

V ∗ ⊗ · · · ⊗ V ∗︸ ︷︷ ︸
p copies

⊗V ⊗ · · · ⊗ V︸ ︷︷ ︸
q copies

→ R (6.7)

is called a “tensor of type (p,q)”.
Accordingly a

• vector is a (1,0)-tensor,

• dual-vector is a (0,1)-tensor,

• metric is a (0,2) tensor: gµνvµwν = α ∈ R

Taking into account the definition of the basis of vector and dual vector space and definition
6.7 we may write an arbitrary (p,q)-tensor in the following form:

T = T̃µ1,...,µp
ν1,...,νqeµ1 ⊗ · · · ⊗ eµp ⊗ eν1 ⊗ · · · ⊗ eνq (6.8)

= Tµ1,...,µp
ν1,...,νq∂µ1 ⊗ · · · ⊗ ∂µp ⊗ dxν1 ⊗ · · · ⊗ dxνq (6.9)

In this notation, a change of basis can be calculated straightforwardly. With

x′µ = x′µ(xν) (6.10)

∂′µ = ∂

∂x′µ
= (∂ν) ∂x

ν

∂x′µ
(6.11)

dx′ν = ∂x′ν

∂xµ
dxµ (6.12)

and the requirement that T is invariant under such transformation (tensors are multi-linear
maps and do not change when altering the basis), we get:

T
′α1,...,αp

β1,...,βq
= Tµ1,...,µp

ν1,...,νq

∂x′α1

∂xµ1
. . .

∂x′αp

∂xµp
· ∂x

ν1

∂x′β1
. . .

∂xνq

∂x′βq
(6.13)

Maybe here is a good point to explain the differences between local and global quantities.
When speaking locally, you consider a tensor evaluated at a specific point P . We shall
also call a tensor field loosely “tensor” — the same applies to vectors/vector fields and
scalars/scalar fields.
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6.3. Another View at the Metric
Up until now, we have used the metric only to calculate the length of a vector or the inner
product between two vectors.
With our newly acquired knowledge concerning dual vector-spaces, we are able to interpret
the metric as a map between a given vector space and its dual space.

gµνv
ν = vµ gµνvν = vµ (6.14)

Even more, this connection provides us with a natural isomorphism of the vector- and the
dual-vector space.
By multiplying equation 6.14 by gµα from “left”, we obtain

gµαgµνv
ν = gµαvµ (6.15)

gµνg
µαvν = vα (6.16)

⇒ gµνg
µα = δαν (6.17)

This last result is important for reasons of consistency.
Example: We start with a metric

ds2 = gµνdx
µdxν = 2dudr − rdu2 = g′µ′ν′dx

′µ′dx′ν
′ (6.18)

where we have xµ = (r, u). We want to make a coordinate transformation to the coordi-
nates x′µ′ = (t, R) given by

u = t+ 2 lnR (6.19)

t = R2

4 (6.20)

In general we could just use the the tensor transformation law (6.13) but it is often more
convenient to use

du = dt+ 2
R
dR (6.21)

dr = R

2 dR (6.22)

to get

ds2 = −R
2

4 dt2 + dR2 (6.23)

or in matrix form

gµν =
(
−r 1
1 0

)
µν

g′µ′ν′ =
(
−R2

4 0
0 1

)
µ′ν′

(6.24)
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6.4. Covariant Derivatives
To begin with, we have to define the action of a covariant derivative ∇ on an element of
our vector space. With v ∈ V

∇µvα = ∂µv
α + Γ̃αµβvβ︸ ︷︷ ︸

linear transformation

(6.25)

The last term in equation (6.25) accounts for linear transformations acting on a vector
as it is transported from an element in VP to an element in VP ′ , where P ′ is a point
sufficiently close to P . In other words: the covariant derivative is the derivative along the
coordinates with correction terms which are unspecified at the moment. Now, by looking
at the first term of above equation, we require that the covariant derivative of a vector is
a tensor — therefore, we can use what we know about tensor transformation to calculate
the covariant derivative in a new basis. Just inserting into 6.13 yields:

∇′µ′vα
′ = ∂xµ

∂xµ′
· ∂x

α′

∂xν

(
∂µv

ν + Γ̃νµλvλ
)

(6.26)

We expand the left-hand side of above equation and rewrite it as transformation of the
“old” (unprimed) coordinates:

∂µ′v
α′ + Γ̃α′µ′ν′vν

′ = ∂xµ

∂xµ′
· ∂x

α′

∂xν
∂µv

ν + ∂xµ

∂xµ′
· ∂2xα

′

∂xµ∂xν
vν + Γ̃α′µ′ν′

∂xν
′

∂xν
vν

= ∂xµ

∂xµ′
· ∂x

α′

∂xν

(
∂µv

ν + Γ̃νµλvλ
)

(6.27)

This finally leads us to a generic transformation rule of the Γ̃-element. Note here that we
have not defined this object yet — but the fact that we called it Γ̃ might be a hint that it
is equal to the known Christoffel-symbol under certain conditions. . .
The transformation rule is:

Γ̃ν′µ′λ′ = Γ̃νµλ · ∂x
µ

∂xµ′
· ∂xλ
∂xλ′
· ∂xν

′

∂xν −
∂xµ

∂xµ′
· ∂xλ
∂xλ′
· ∂2xν

′

∂xµ∂xλ
(6.28)

As the Γ̃-components do not transform as the components of a tensor the quantity Γ̃ it is
no tensor. Only the combination of the partial derivative and the Γ̃-elemtent do transform
as a tensor. Generally, the expression Γ̃ is called a “connection”, as it allows to “connect”
the tangent spaces at different points that are infinitesimally separated from each other.
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6.4.1. Properties of the Covariant Derivative

In this short subsection we will just list four important properties of the covariant deriva-
tive. We do so without proof, but the identities can be checked by inserting definition
(6.25). In all definitions T, T̃ are a (p,q)-tensors, α, β ∈ R, v is a vector and f a scalar
function.

1. Linearity:
∇µ

(
αT + βT̃

)
= α∇µT + β∇µT̃ (6.29)

2. Leibnitz-Rule:
∇µ

(
T T̃

)
= (∇µT ) T̃ +

(
∇µT̃

)
T (6.30)

3. Consistency with directional derivation:

v(f) = vα∇αf = vα∂αf (6.31)

4. Absence of torsion
∇α∇βf = ∇β∇αf (6.32)

5. Metric compatibility (we shall define and use this property below in section 6.7)

Note that 4 and 5 are requirements that are not implicit in the definition (6.25). Let us
write the equation (6.32) in the following form:

∇a (∂bf) = ∇b (∂af) (6.33)
∂a∂bf − Γ̃cab∂cf = ∂b∂af − Γ̃cba∂cf (6.34)

⇒ Γ̃c[a,b] = 0 ⇔ no torsion (6.35)

In equation (6.35) we introduced a new short-hand notation for anti-symmetrization:

Γ̃c[a,b] = 1
2
(
Γ̃cab − Γ̃cba

)
(6.36)
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6.5. Covariant Derivative acting on Dual Vectors
Up until now, we have only considered a covariant derivative acting on vectors. To give
an overview on covariant derivatives, we have to fill this void. We start with the following
ansatz

∇µwν = ∂µwν + Γ̂αµνwα (6.37)

We use now that the covariant derivative of a scalar is equal to its partial derivative (point
3. in section 6.4.1) and the Leibnitz-Rule (point 2. in section 6.4.1) to get

∇µ( vαwα︸ ︷︷ ︸
= scalar

) = ∂µ(vαwα) = vα∂µwα + wα∂µv
α (6.38)

= wα(∂µvα + Γ̃αµνvν) + vα(∂µwα + Γ̂βµαwβ) (6.39)

In the second line above we just used the Leibnitz rule for the covariant derivative. Com-
paring it with the first line we see that the combination of the non-underlined terms has
to be zero and we conclude that (with a little index renaming)

wαΓ̃αµνvν + vαΓ̂αµνwα = 0 (6.40)

wαv
ν
(
Γ̃αµν + Γ̂αµν

)
= 0 (6.41)

⇒ Γ̂αµν = −Γ̃αµν (6.42)

Using this result our ansatz now reads:

∇µwν = ∂µwν − Γ̃αµνwα (6.43)

As a consequence we are able to calculate the covariant derivative of a (p,q)-tensor to get
an (p,q+1)-tensor:

∇µTµ1,...,µp
ν1,...,νq = ∂µT

µ1,...,µp
ν1,...,νq (6.44)

+ Γ̃µ1
µαT

αµ2,...,µp
ν1,...,νq

+ Γ̃µ2
µαT

µ1α,...,µp
ν1,...,νq

+ · · ·+
+ Γ̃µp µαTµ1,...,α

ν1,...,νq

− Γ̃α ν1µT
µ1,...,µp

αν2,...,νq

− · · ·−
− Γ̃α νqµT

µ1,...,µp
ν1,...,α

Despite looking complicated, the rule governing above derivative is quite simple: each
upper index (vector index) leads to a connection term with positive sign, while each lower
(dual) index leads to a connection term with negative sign.
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6.6. Parallel Transport
Finally, we arrived at the point where our knowledge on differential geometry is sufficient
to discuss parallel transport. Take two vectors v, t ∈ V . Then we call a vector v parallel
transported along t if:

ta∇avb = 0 (6.45)

In the beginning of this chapter we mentioned the auto-parallels. With definition (6.45)

Figure 6.3: Parallel transport on a 2-Sphere (Source: Fred the Oyster, CC BY-SA 4.0, via
Wikimedia Commons)

we define an auto-parallel as a curve along a which a vector v is transported parallel to
itself.

va∇avb = 0 (6.46)

Expanding this expression results in

va∂av
b + Γ̃bacvavc = 0 (6.47)

Since vb = ẋb; va∂a = ∂τ we arrive at

ẍb + Γ̃bacẋaẋc = 0 (6.48)

This is, if Γ̃ = Γ, exactly the geodesic equation (4.25).
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6.7. Fixing Γ̃ Uniquely
To derive the Γ̃ we have to impose another condition on parallel transport, namely that if
two vectors v, w ∈ V are transported parallel along t, the angle between v and w should
not change. This means that

ta∇a
(
gbcv

bwc
)

= 0 (6.49)

∀ta, vb, wc. By assuming
ta∇avb = ta∇awb = 0 (6.50)

we obtain
tavbwc (∇agbc) = 0 (6.51)

which is only true ∀ta, vb, wc if
∇agbc = 0 (6.52)

Result (6.52) is called “metricity” or “metric compatibility”.
As said before, we can use this result and the torsion free condition to derive a unique

Γ̃. We expand (6.52) and rewrite it twice with permuted indicies:

∇ρgµν = ∂ρgµν − Γ̃λρµgλν − Γ̃λρνgµλ = 0 (6.53)

∇µgνρ = ∂µgνρ − Γ̃λµνgλρ − Γ̃λµρgνλ = 0 (6.54)

∇νgρµ = ∂νgρµ − Γ̃λρνgλµ − Γ̃λµνgλρ = 0 (6.55)

No we subtract (6.53) - (6.54) - (6.55) and with identity (6.35) all underlined and double-
underlined terms in the above equations cancel, resulting in the determining equation for
Γ̃:

∂ρgµν − ∂µgνρ − ∂νgρµ + 2Γ̃λµνgλρ = 0 (6.56)

After rearranging this equation, we have finally arrived at the key result:

Γ̃λµν = 1
2g

λρ (∂µgνρ + ∂νgµρ − ∂ρgµν) = Γλµν (6.57)

In a space-time with no torsion and with metric compatibility, the covariant derivative
is determined by the Christoffel-symbols of the second kind. Thus, the connection is
determined only by the metric—we call a connection with these properties “Levi-Civita-
connection”.
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6.8. The Riemann-Tensor
This subchapter will be devoted to finding a method of “measuring” curvature in a given
geometry. We will do so by calculating the difference vector of a given vector parallel
transported among two different paths starting and ending at the same points (see figure
6.8).

Figure 6.4: Schematic of 2-way parallel transport

In this derivation we do not demand that the connection is torsion free.

[∇µ,∇ν ] vρ = ∇µ ∇νvρ︸ ︷︷ ︸
(1,1)-tensor

−∇ν ∇µvρ︸ ︷︷ ︸
(1,1)-tensor

(6.58)

= ∂µ (∇νvρ)− Γαµν∇αvρ + Γρµν∇νvα − (µ↔ ν) (6.59)
= ∂µ∂νv

ρ + (∂µΓρνα) vα + Γρνα∂µvα − Γαµν∇αvρ + Γρµα∂µvα+
+ ΓρµαΓαµβvβ − (µ↔ ν) (6.60)

=
(
∂µΓρνα − ∂νΓρµα + Γρµα + ΓρµλΓλνα − ΓρνλΓλµα

)
vα − 2Γα[µ,ν]∇αv

ρ

(6.61)

Identifying the above equation with the following one leads us to the definition of the
Riemann and torsion tensors respectively:

[∇µ,∇ν ] vρ = Rραµνv
α − Tαµν∇αvρ (6.62)

With R being the Riemann-Tensor:

Rραµν = ∂µΓρνα − ∂νΓρµα + ΓρµλΓλνα − ΓρνλΓλµα (6.63)

And T the torsion tensor:
Tαµν = 2Γα[µν] (6.64)

Nota bene: If the Γ-symbols in the torsion tensor are equal to the Christoffel-symbols of
the second kind, the torsion tensor vanishes. In these lectures we shall always assume
vanishing torsion and metric compatibility.

6.8.1. Properties of the Riemann-Tensor

First,the Riemann-tensor in n dimensions has got n2(n2−1)
12 algebraically independent com-

ponents. Evaluating this in various dimensions results in:

• n=1: 0 components
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• n=2: 1 component

• n=3: 6 components

• n=4: 20 components

• n=11: 1210 components
The Riemann-tensor has the following symmetries:

Rαβµν = −Rαβνµ (6.65)
Rαβµν = −Rβαµν (6.66)
Rαβµν = +Rµναβ (6.67)
Rα[βµν] = 0 (→ R[αβµν] = 0) (6.68)

There are also some noteworthy contractions of the Riemann-tensor - especially the
Ricci-tensor and the Ricci-scalar are very important due to their role in Einstein’s general
theory of relativity.
We obtain the (symmetric) Ricci-tensor by contracting the Riemann-tensor over the

“upper” and the third “lower” index:
Rµν := Rρµρν (6.69)

The Ricci-scalar is equal to the trace of the Ricci-tensor:
R := Rµµ (6.70)

When reading literature on differential geometry, you may stumble across the Weyl-tensor
(in n ≥ 3 spacetime dimensions):

Cρσµν = Rρσµν −
2

n− 2

(
gρ[µRν]σ − gσ[µRν]ρ + 2

(n− 2)(n− 1)Rgρ[µgν]σ

)
(6.71)

This tensor has sysmmetries equal to those of the Riemann-tensor, but is additionally
traceless with respect to all possible index contractions: Cρµρν = 0.

6.9. Jacobi / Bianchi Identity
Like any other derivative, the covariant derivative satisfies the Jacobi identity:

[[∇λ,∇ρ] ,∇σ] + [[∇ρ,∇σ] ,∇λ] + [[∇σ,∇λ] ,∇ρ] = 0 (6.72)
Which in the context of General Relativity is also known as Bianchi identity. This, when
applied to the Riemann-curvature-tensor, yields:

∇λRρσµν +∇ρRσλµν +∇σRλρµν = 0 (6.73)
Or, in our short-hand notation

∇[λRρσ]µν = 0 (6.74)
One quite interesting result, noteworthy here, is obtained by multiplying (6.73) twice

with the metric:
gνσgµλ · Bianchi identity = ∇µRµρ −∇ρR+∇νRνρ = 0 (6.75)

This leaves us with:
∇µ
(
Rµρ −

1
2gµρR︸ ︷︷ ︸

:= Einstein tensor

)
= 0 (6.76)

With the Einstein tensor:
Gµρ = Rµρ −

1
2gµρR (6.77)

In a subsequent chapter - dealing with Einstein’s field equations - the importance of this
tensor will become obvious.

Preliminary version – September 20, 2021



6.10. Lie Derivatives 39

6.10. Lie Derivatives
The next important concept to introduce during this differential geometry overview is that
of Lie derivatives - named after Sophus Lie, the Norwegian mathematician who achieved
great breakthroughs in the field of symmetry transformations. Speaking generally, Lie
derivatives allow us to evaluate the change of a given vector (or vector field) along the
time evolution of another known vector (or vector field).
We start by defining a scalar field Φ (x) = Φ (x). Now we introduce a so-called “diffeomor-
phism”, which is an invertible map between two manifolds so that both the function and
it’s inverse are smooth. In this case you can visualize it as “moving points on a sphere”

xµ = xµ − ξµ +O
(
ξ2
)

(6.78)

Applying this to the scalar field Φ results in

Φ (x) = Φ (x+ ξ) = Φ (x) = Φ (x) + ξµ∂µΦ (x) +O
(
ξ2
)

(6.79)

In this equation the last term is obtained by Taylor-expansion at x = x. Rewriting this
last statement gives us the definition of the Lie-derivative of Φ (x) in respect to ξ:

LξΦ (x) := Φ (x)− Φ (x) = ξµ∂µΦ (x) (6.80)

Similarly, we define the Lie-derivative of vectors as the Lie-bracket between these two
vectors:

Lξvµ := [ξ, v]µ = ξν∂νv
µ − vν∂νξµ (6.81)

For dual vectors we use again the Leibniz rule

Lξ
(
vµwµ

)
= wµLξvµ + vµLξwµ = ξα∂α

(
vµwµ

)
= wµξ

α∂αv
µ + vµξα∂αwµ (6.82)

and thus can read off the action of the Lie-derivative on dual vectors:

Lξwµ = ξα∂αwµ + wα∂µξ
α (6.83)

Again, like with co- and contravariant derivatives, we can use these results to calculate
the Lie-derivative of a (q, p)-tensor:

LξT
ν1...νq

µ1...µp := ξµ∂µT
ν1...νq

µ1...µp + T
ν1...νq

µµ2...µp ∂µ1ξ
µ + · · · − T µν2...νq

µ1...µp ∂µξ
ν1 − . . .

(6.84)
This expression is equally valid for any symmetric (torsion free) covariant derivative, i.e.,
one could substitute everywhere ∂ → ∇ in equation (6.84).
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6.11. Killing Vectors

We calculate now the Lie derivative of a metric gµν along a vector ξ.

Lξ (gµν) = ξα∂αgµν + gµα∂νξ
α + gνα∂µξ

α (6.85)
= ξα∇αgµν︸ ︷︷ ︸

=0

+gµα∇νξα + gνα∇µξα (6.86)

This simplifies to
Lξ (gµν) = ∇νξµ +∇µξν (6.87)

A vector that makes the Lie derivate of the metric vanish is called a Killing vector; i.e.
a vector ξ is a Killing vector if

Lξ (gµν) = ∇νξµ +∇µξν = 0 (6.88)

Equation (6.88) is called the Killing-equation.
Killing vectors generate isometries, meaning that the metric is invariant under the flow

generated by a Killing vector. Thus, every Killing vector generates a certain symmetry
and by Noether’s theorem we expect them to produce conserved quantities. We shall see
later how this works in detail when establishing results for the Komar mass and angular
momentum in section 8.4.
The existence of Killing vectors can considerably simplify the geometry and often allows

to find exact solutions (even with “paper-and-pencil”), which is another pragmatic reason
why Killing vectors are useful.
Consider as an example the Schwarzschild metric:

ds2 = −
(

1− 2M
r

)
dt2 + dr2

1− 2M
r

+ r2dθ2 + r2 sin2 θdϕ2 (6.89)

Here, four Killing vectors exist, namely

ξ0 = ∂t (6.90)
ξ1 = ∂φ (6.91)
ξ2 = − cosφ∂θ + sinφ cot θ∂φ (6.92)
ξ3 = sinφ∂θ + cosφ cot θ∂φ (6.93)

ξ0 creates time translations, so the fact that ξ0 is a Killing vector means that the Schwarzschild
metric (6.89) is static. ξ1...3 generate rotations on a 2-sphere—so, the Schwarzschild metric
is spherically symmetric due to the fact that these are Killing vectors. The existence of four
Killing vectors is one way to understand why Schwarzschild was able to find this solution
merely a few weeks after Einstein wrote down the field equations of general relativity.

6.12. Tensor Densities

An object ist called a tensor density of weight ω if it transforms like

Tα̃...β̃ = Tα...β
∂xα

∂xα̃
. . .

∂xβ

∂xβ̃

(
det

(
∂xµ̃

∂xµ

))ω
(6.94)

Hence a tensor density transforms like a tensor under coordinate transformation except
that it is additionally weighted by a power of the Jacobian.
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6.12.1. The Levi-Civita Symbol as a Tensor Density

The Levi-Civita symbol is defined as

ε̃µ1...µD =


+1 for even permutation of µ1 . . . µD

−1 for odd permutation of µ1 . . . µD

0 if 2 or more indices are equal
(6.95)

The determinant of a matrix M can also be written with the Levi-Civita-Symbol

ε̃µ̃1...µ̃D det(M) = ε̃µ1...µDM
µ1
µ̃1 . . .M

µD
µ̃D (6.96)

Hence the Levi-Civita-Symbol transforms under a general coordinate transformation
Mµ

µ̃ = ∂xµ

∂xµ̃
as

ε̃µ̃1...µ̃D = det
(
∂xµ̃

∂xµ

)
ε̃µ1...µD

∂xµ1

∂xµ̃1
. . .

∂xµD

∂xµ̃D
(6.97)

This implies that the Levi-Civita-Symbol is a tensor density of weight 1.

In order to get an expression that will allow us to convert tensor densities of weight
ω into tensors, we recall the transformation of an arbitrary metric.

gµ̃ν̃ = ∂xµ

∂xµ̃
∂xν

∂xν̃
gµν (6.98)

Taking the determinant of (6.98) yields

g := det (gµν) (6.99)

g̃ = g

(
det

(
∂xµ̃

∂xµ

))−2

(6.100)

The transformation law (6.100) implies that the determinant of a metric is a tensor density
of weight -2. Therefore we can use the determinant of the metric to promote tensor
densities of weight ω to tensors.

(tensor density of weight ω) |g|
ω
2 = tensor (6.101)

Remembering that dDx is a tensor density of weight 1 the result of (6.101) can now be
used to create an invariant volume element of the form

dDx |g|
1
2 = invariant volume element (6.102)

dDx can also be written as

dx0 ∧ dx1 ∧ . . . ∧ dxD−1 = 1
D! ε̃µ1...µDdx

µ1 ∧ . . . ∧ dxµD (6.103)

Combining the invariant volume element (6.102) and equation (6.103) yields√
|g|dx0 ∧ dx1 ∧ . . . ∧ dxD−1 = 1

D!εµ1...µDdx
µ1 ∧ . . . ∧ dxµD (6.104)

→ εµ1...µD︸ ︷︷ ︸
ε-tensor

= ε̃µ1...µD

√
|g| (6.105)

This equation for the epsilon tensor (6.105) also shows that the Levi-Civita-Symbol in flat
space(time) equals the epsilon-tensor since in that case

√
|g| = 1.
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As a useful application let us consider now the covariant action of a free scalar field in
D dimensions and derive the Klein–Gordon equation on some arbitrary curved spacetime:

S ∝
∫

d Dx
√
|g|gµν∂µφ∂νφ

→ δS ∝
∫

d Dxδφ∂µ
(√
|g|gµν∂νφ

)
,

using
∂µ

(√
|g|gµν∂νφ

)
= ∇µ

(√
|g|gµν∇νφ

)
=
√
|g|gµν∇µ∇νφ = �φ,

this can also be written as
δS ∝

∫
d Dxδφ�φ.

The result above can also be used to derive the Laplace equation in arbitrary coordinate
systems.
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7. Hilbert Action and Einstein Field Equations

In this chapter we derive the Hilbert action. Its variation yields the Einstein equations
through the principle of least action. First of all we want to obtain some kind of action
that depends functionally on the metric.

S[g] =
∫

(volume)(scalar) (7.1)

7.1. The Action Integral in QED

We have found an invariant expression for the volume in section 6.12. Only the scalar
part of the action (7.1) has to be determined. In order to achieve this let us first take a
little excursus to quantum electrodynamics. The action in QED should depend on Aµ,
the covariant four potential of the electromagnetic field. Using the Minkowski metric the
volume element of the action integral becomes d4x since

√
|det (ηµν)| = 1. The only thing

missing is a scalar element in the action integral which depends on Aµ. We can also write
the scalar part of the action integral in terms of a derivative expansion

S [Aµ] =
∫
d4x [α1AµA

µ + α2∂µA
µ + α3 (∂µAν) (∂νAµ) . . .] (7.2)

The action integral should be invariant under gauge transformations Aµ → Ãµ = Aµ+∂µχ
with χ being an arbitrary scalar field. Therefore the action should only depend on the
gauge invariant Faraday tensor Fµν = ∂µAν − ∂νAµ. We hence obtain an expression for
the action integral of the form

S [Aµ] =
∫
d4x

[
αFµνF

µν + βFµνFαβε
µναβ+

γ (�Fµν)Fµν + δ (FµνFµν)2 + . . .
]

(7.3)

This scalar part of the action integral could have an arbitrary number of terms as long as
they are gauge invariant. The dimensions of the coefficients α, β, γ, δ can be obtained by
a dimensional analysis. Comparison with the dimension of the volume element which has
the dimension of a (length)4 and the Faraday tensor which by definition has a dimension
of a (length)−2 yields for α and β no dimension, for γ4 (length)2, for δ (length)4 and for
the higher order term scalars a dimension>(length)4.
If a field theory is valid for arbitrary energies/lengths then none of these derivative expan-
sion terms could be neglected in the scalar part of the action integral. However, most field
theories are not valid for arbitrary energies/lengths. QED for example is only valid up
to a certain energy limit which is called UV cut. Since high energies correspond to small
lengths, terms with coefficients that contain higher dimensions of length are suppressed
by the UV cut-off scale. Therefore all higher order terms are suppressed by this UV cutoff
and only α and β contribute significantly to the action. This leads to an expression of the
electromagnetic action integral like

S [Aµ] =
∫
d4x

αFµνFµν + βFµνFαβε
µναβ︸ ︷︷ ︸

boundary term

 (7.4)

4dim � = −2
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7.2. Hilbert Action
The derivative expansion used to find an expression for the action in QED can also be
used for the scalar part of the Hilbert action integral

S [gµν ] = − 1
2κ

∫
d4x

√
|g|
[
−2Λ +R+ αR2 + βRµνR

µν+

γCµναβC
µναβ + . . .

]
(7.5)

Λ being the cosmological constant, R the Ricci scalar, Rµν the Ricci Tensor and Cµναβ
the Weyl tensor. The factor κ = 8π is called gravitational coupling constant and refers to
the strength of the gravitational interaction5. Now let us derive which parts of this action
can be omitted and which not.
If the Lagrangian for the spacetime metric is to be a scalar, it cannot solely depend on
the first derivatives of the metric since ∇αgµν = 0. Since the scalar part of the action
should contain as few derivations as possible we have to find a scalar consisting of second
derivatives. This leads to the Ricci scalar R as it is the only scalar linear in the second
derivatives of the metric. By analogy to the QED case above we can neglect the higher
order terms proportional to α, β, γ, . . . . Therefore we obtain the Einstein-Hilbert action

S [gµν ] = − 1
2κ

∫
d4x
√
−g [R− 2Λ] (7.6)

7.3. Einstein Field Equations
The Einstein field equations can now be obtained by varying the Einstein-Hilbert action
(7.6) with respect to the metric (R = gµνRµν).

δS ∝
∫
dDx

[(
δ
√
−g
)

(R− 2Λ) +
√
−g (δgµνRµν + gµνδRµν)

]
= 0 (7.7)

The variation of the first term is pretty straight forward δ√−g = − 1
2
√
−g δg. First let us

write g as

g = det
(
M−1gµνM

)
=

D∏
i=1

λi = exp
(

D∑
i=1

ln (λi)
)

= eTr (ln(gµν)), (7.8)

with M being an invertible matrix that brings gµν into upper triangular form and λi the
eigenvalues of gµν . This implies

δg = g gµνδgµν = −g gµνδgµν , (7.9)

where we have made use of the relation

δ (gµαgαν) = 0. (7.10)

The variation of the determinant of the metric (7.9) follows directly from the following
relation

gµνg
να = δµ

α → δ (gµνgνα) = δgµνg
να + gµνδg

να = 0 (7.11)

After this short calculation the variation of the Einstein-Hilbert action is given by

δS =
∫
dDx
√
−g

[(
Rµν −

1
2gµνR+ gµνΛ

)
δgµν + gµνδRµν

]
= 0 (7.12)

5In SI units this factor equals 8πGN
c4
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The remaining term gµνδRµν is a boundary term and can hence be dropped.

δRµν =
[
∂λδΓλµν − ∂µδΓλλν + δΓαµνΓλλα + ΓαµνδΓλλα

− δΓαµλΓλνα − ΓαµλδΓλνα
]

(7.13)

This yields
δRµν = ∇λδΓλµν −∇µδΓλλν︸ ︷︷ ︸

boundary term

(7.14)

Therefore we obtain the vacuum Einstein equations

Rµν −
1
2gµνR+ gµνΛ = 0 (7.15)

For many applications Λ is neglected (Λ ≈ 0). Hence the vacuum Einstein equations can
often be simplified to

Rµν −
1
2gµνR = Gµν = 0 (7.16)

and by taking the trace of the vacuum Einstein equaions (7.16)

Tr (Gµν) = R

(
1− D

2

)
= 0 (7.17)

it follows that the Ricci scalar has to be 0 in higher dimensions i.e D 6= 2. Gµν is called
Einstein tensor. This reduces the Einstein vacuum equations to

Rµν = 0 (7.18)

Even though equation (7.18) looks simple it nevertheless represents 10 non linear coupled
PDEs which are very hard to solve6.
If we now allow matter to appear in addition to the Einstein-Hilbert action we obtain the
inhomogenous Einstein equations

Rµν −
1
2gµνR+ gµνΛ = κTµν (7.19)

The tensor Tµν is called energy-momentum tensor. Taking the covariant divergence of the
left hand side of the inhomogeneous Einstein equations yields zero, since the covariant
divergence of the Einstein tensor vanishes — ∇µGµν = ∇µ

(
Rµν − 1

2g
µνR

)
= 0 — and

due to metric compatibility ∇µ (Λgµν) = 0. Therefore, also the covariant divergence of
the energy-momentum tensor vanishes.

∇µTµν = 0 (7.20)

Equation (7.20) is called energy-momentum conservation. In chapter 4 we quoted John
Wheeler and found out, that the geodesic equation is equivalent to the statement that
“space tells matter how to move”. We also stated, that “matter tells spacetime how to
curve” and promised to derive the equation motivating that statement in this chapter. If
we take a closer look at the inhomogeneous Einstein equations (7.19) we see that indeed
matter, or to be more accurate the Energy-Momentum tensor tells spacetime how to
curve. Hence the geodesic equation (4.25) and the inhomogeneous Einstein equations
(7.19) motivated the quote of John Wheeler.

6in the case D = 4

Preliminary version – September 20, 2021



46 8. Spherically Symmetric Black Holes and the Birkhoff Theorem

8. Spherically Symmetric Black Holes and the Birkhoff Theorem

In this section we are going to prove that the only spherically symmetric vacuum solu-
tion in general relativity is the Schwarzschild solution which is static. Then we discuss
some concepts concerning Killing vector fields namely Killing horizons, the Killing vector
lemma and surface gravity. After motivating and introducing global coordinates for the
Schwarzschild metric we prove the zeroth law of black hole mechanics. Finally we show
how a mass can be defined in general relativity.

8.1. Birkhoff’s Theorem

We are going to sketch the proof of Birkhoff’s theorem and derive the Schwarzschild
solution

Birkhoff’s theorem: All spherically symmetric vacuum solutions of Einsteins field
equations are static.

First we have to declare what the terms mean:

• Vacuum solution: Remembering the Einstein equations and looking back to (7.18)
vacuum solution means that the Ricci-tensor vanishes Rµν = 0.

• Stationary spacetime: In a stationary spacetime it is possible to find a timelike
Killing vector field7 kµ. This means that if you look at the spacetime after some
time is elapsed it should look the same. More practical insert t 7→ t + a (a is a
constant) into our metric gµν and check if it changes.

As an example imagine a fluid which is rotating around some axis. For the fluid to
be stationary it is allowed to flow as long as the velocity distribution of the fluid
does not change in time.

• Static spacetime: A spacetime is static if in addition to stationary the Killing
vector field is orthogonal to a spacelike hypersurface8. That means if coordinates
are used in which the killing vector kµ = ∂µt the metric is not allowed to have any
cross terms of the form dtdxi. Looking for example at the Schwarzschild solution
(6.89) we have the Killing vector field kµ = ∂µt ; there are no cross terms dt dxi. Thus
the Schwarzschild spacetime is static.

As another example we use again the example of our rotating fluid. In a static
spacetime the fluid is not allowed to move contrary to the stationary case. It is
interesting to note that the failure of a spacetime to be static is due to not being
time reflective. While in the case of staticity the time reflection t 7→ −t makes no
difference in stationary spacetimes the cross terms get influenced. The rotating fluid
is stationary and not static because the time reflection inverts the rotation direction.

• Spherical symmetric spacetime: With an spherical symmetric spacetime9 we
mean a spacetime which has the same symmetries as a 2-sphere i.e. a dΩ2 = dθ2 +
sin2 θdϕ2 term.

7This is equivalent to the existence of a one-parameter group of isometries whose orbits are timelike
curves.

8An necessary and sufficient condition for a timelike Killing vector field to be hypersurface orthogonal is
k[µ∇νkπ] = 0 (this can be derived using the Frobenius Theorem).

9A more precise definition is: A spherical symmetric spacetime has an isometry group which contains a
subgroup isomorphic to the group SO(3). The orbits of the SO(3) have to be 2-spheres.
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Using spherical symmetry one can show10 that the spacetime metric has the form

ds2 = gαβ(xγ)dxαdxβ +X(xγ)dΩ(θ, ϕ)2 (8.1)

where in this case the greek indices only have the values 0, 1. So gαβ(xγ) is a two dimen-
sional metric and X(xγ) is a scalar field. We are now able to fix locally our coordinates
xγ in such a way that

X(xγ) = r2 gtr(xγ) = 0 (8.2)

where we use t = x0 and r = x1. So it has the form

ds2 = gtt(t, r)dt2 + grr(t, r)dr2 + r2dΩ2 (8.3)

Since our spacetime is Lorentzian we require gtt(t, r) to be negative and grr(t, r) to be
positive which can be achieved by writing

ds2 = −e2a(t,r)dt2 + e2b(t,r)dr2 + r2dΩ2 (8.4)

Since our metric should be a solution to the vacuum Einstein equations (Rµν = 0) we
calculate now the Ricci tensor. The nonzero components are given by (the dot ˙ means
∂/∂t while the prime ′ means ∂/∂r)

Rtt = e2(a−b)
(2
r
a′ + a′2 − a′b′ + a′′

)
+ ȧḃ− ḃ2 − b̈ = 0 (8.5)

Rtr = 2ḃ
r

= 0 (8.6)

Rrr = e2(b−a)
(
b̈+ ḃ2 − ȧḃ

)
− a′′ − a′2 + a′b′ + 2

r
b′ = 0 (8.7)

Rθθ = e−2b (−1− ra′ + rb′
)

+ 1 = 0 (8.8)
Rϕϕ = Rθθ sin2 θ = 0 (8.9)

Looking at equation (8.6) we see that Rtr = 0 only if

ḃ(t, r) = 0→ b(t, r) = b(r) (8.10)

which is the first half of Birkhoff’s theorem.
Using (8.8) we calculate

Ṙθθ = −re−2b(r)ȧ′(t, r) = 0→ ȧ′(t, r) = 0→ a(t, r) = a(r) + f(t) (8.11)

Inserting this into the metric (8.4) gives an −e2(a(r)+f(t))dt2 term. We can parameterize
the time such that dt→ e−f(t)dt. Therefore we have a(t, r) = a(r) and we get the metric

ds2 = −e2a(r)dt2 + e2b(r)dr2 + r2dΩ2 (8.12)

which is stationary since there is no time dependence in the gµν terms. There is a
timelike Killing vectorfield kµ = ∂µt where t parametrizes the metric and there are no
cross terms with dt which implies staticity and proves Birkhoff’s theorem.

Furthermore we are now showing that this solution is the Schwarzschild metric. We
combine (8.5) and (8.7) suitably to get

e2(b−a)Rtt +Rrr = 2
r

(a′ + b′) = 0 (8.13)

10See for example [2, Section 5.2] or [3, Appendix B].
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which is solved by
a(r) = −b(r) + c̃ (8.14)

The constant c̃ can be set to zero since we can again reparametrize dt→ e−c̃dt.
One of the remaining nonzero Ricci tensor components is

Rθθ = 1− e2a(1 + 2ra′) = 1− (re2ar)′ = 0 (8.15)

which leads to
e2a = 1 + c

r
(8.16)

If we compare the integration constant c with the weak field regime in the Newtonian limit
(4.26) we get c = −2M . So our solution is the Schwarzschild solution

ds2 = −
(

1− 2M
r

)
dt2 + 1

1− 2M
r

dr2 + r2dθ2 + r2 sin2 θdϕ2 (8.17)

So every spherical symmetric vacuum spacetime is described by the Schwarzschild solu-
tion. A consequence is that there are no gravitational waves if a spherical symmetric star
collapses.

8.2. Killing vectors

Null hypersurfaces

A general co-dimension 1 hypersurface is defined by some condition on the coordinates,
f(xµ) = 0 where f is some smooth function of the coordinates xµ (a simple example
would be a linear function of the coordinates in 3-dimensional Euclidean space, which
defines a 2-dimensional plane). The normal vector to this hypersurface is given by k =
f̃(xα)gµν∂νf∂µ, where f̃ 6= 0 is some arbitrary normalization function. If the normal
vector becomes null, k2 = 0, the hypersurface is called a null hypersurface.
Example: consider constant r hypersurfaces in the Schwarzschild spacetime, f = r−2M .

Then the normal vector has a norm given by k2 = f̃2gµν(∂µf)(∂νf) = f̃2grr = (1 −
2M/r)f̃2. The hypersurface becomes a null hypersurface at r = 2M .

Killing horizon

In a stationary spacetime there exists a timelike Killing vector kµ. A null hypersurface
N is a Killing horizon of a Killing vector field k if, on N , k is normal to N . In the case
of Schwarzschild geometry with the killing vector kµ = (∂t)µ we get the Killing horizon
r = 2M

kµkµ = −
(

1− 2M
r

)
= 0 =⇒ r = 2M (8.18)

Killing vector lemma

Killing vector lemma: ∇µ∇νkρ = Rρνµαk
α (8.19)

Before we discuss the consequences of the Killing vector lemma we prove it. Remember
Killing’s equation (6.88)

∇(µkν) = 0 (8.20)

We start with the definition of the Riemann tensor

[∇µ,∇ν ] kρ = Rραµνk
α (8.21)
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which we expand. With the help of Killing’s equation we get

∇µ∇νkρ +∇ν∇ρkµ = Rραµνk
α (8.22)

Now we lower all indices and write down the same equation with permutations of (µνρ)
to (νρµ) and (ρµν). If we add the (µνρ) to the (νρµ) term and subtract the (ρµν) term
we obtain

2∇ν∇ρkµ = (Rραµν +Rµανρ −Rναρµ)kα (8.23)

Using the antisymmetry condition Rρ[αµν] = 0 (6.68) leads us to

∇ν∇ρkµ = Rανρµk
α (8.24)

Permuting the indices of the Riemann tensor gives

∇ν∇ρkµ = Rµρναk
α (8.25)

Renaming and raising the indices completes the proof.
As you can see via the Killing vector lemma (8.19) the Killing vector field is completely

determined by kµ and ∇νkµ. So for an n dimensional manifold there are maximally as
many independent Killing vector fields as we are able to construct initial data for kµ and
∇νkµ. A maximally symmetric space has

n︸︷︷︸
kµ

+ n(n− 1)
2︸ ︷︷ ︸

∇νkµ is antisymmetric

= n(n+ 1)
2 (8.26)

linear independent Killing fields. Consider as an example Euclidean space Rn where we
have n translation and n(n−1)

2 rotation symmetries.

Surface gravity

On a stationary black hole there exists a Killing field kµ which is normal to the horizon.
Since kνkν = 0 on the horizon ∇µ(kνkν) is also normal to the horizon. So on the horizon
there exists a function κ defined by

1
2∇µ(kνkν) = −κkµ (8.27)

κ is the surface gravity of the black hole and is constant on orbits of kµ.
To get a explicit formula for κ we use the condition for hypersurface orthogonality of

section 8.1 which leads us to
k[µ∇νkρ] = 0 (8.28)

Expanding (8.28) and using Killing’s equation (8.20) we find

kρ∇µkν = −2k[µ∇ν]kρ (8.29)

We multiply it now by the antisymmetric (∇µkν) which makes the brackets on the r.h.s.
needless

kρ(∇µkν)(∇µkν) = −2(∇µkν)kµ∇νkρ (8.30)
= 2kµ(∇νkµ)∇νkρ (8.31)
= ∇ν(kµkµ)∇νkρ (8.32)
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Now we use the definition of the surface gravity (8.27) and again Killings’s equation to
get

kρ(∇µkν)(∇µkν) = −2κkν∇νkρ (8.33)
= 2κkν∇ρkν (8.34)
= κ∇ρ(kνkν) (8.35)
= −2κ2kρ (8.36)

So the explicit formula for the surface gravity κ evaluated at the horizon H is

κ2 = −1
2(∇µkν)(∇µkν)

∣∣
H (8.37)

Evaluating (8.37) for the Schwarzschild metric gives

κ = 1
4M (8.38)

Before we come back to Killing vector fields we need to introduce some new concepts.

8.2.1. Spacetime Singularity

We have already mentioned in the beginning of section 5.1 that there are different causes
for singularities. In general it is not easy to determine which type of singularity a region
or point is but we give here some guidelines:

1. Real singularity: The spacetime is in fact singular. One way to prove that a point is
a real singularity is by calculating a curvature scalar like RαβχδRαβχδ and show that
it blows up at the suspected region. You have to show that the point can be reached
by an geodesics with some finite affine parameter to show that the singularity is not
”at infinity” like e.g. r → ∞ in Schwarzschild. Be aware that it is a sufficient but
not a necessary condition. So even if you are not able to find a curvature scalar that
blows up it could be that there is a real singularity. Conversely if you are able to
find a curvature scalar which blows up at a finite affine parameter you have found a
real singularity.

2. Coordinate singularity: The spacetime is nonsingular but the coordinates fail to
cover the region properly. In this case we try to find a coordinate transformation of
the metric where the metric in the new coordinates is not singular anymore. It is
possible to extend the original metric if the transformed metric includes the original
as a proper set.

In Schwarzschild coordinates the calculation of RαβχδRαβχδ shows that there is a real
singularity at r = 0 which can be reached by a geodesic with a finite affine parameter.
The singularity at r = 2M will be discussed in the next two sections.

8.2.2. Near horizon region of Schwarzschild geometry

We are now taking a closer look at the near horizon region r = 2M of the Schwarzschild
solution

ds2 = −
(

1− 2M
r

)
dt2 + 1

1− 2M
r

dr2 + r2dΩ2 (8.39)

We now identify

r − 2M = x2

8M (8.40)
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Transforming this equation and substituting the surface gravity for the Schwarzschild
metric (8.38) gives

1− 2M
r

= (κx)2

1 + (κx)2 (8.41)

Near the horizon r = 2M or accordingly at x = 0 we get

1− 2M
r
≈ (κx)2 (8.42)

If we differentiate (8.40)
dr2 = (κx)2dx2 (8.43)

and insert this and (8.42) into the Schwarzschild solution we get for the near horizon region
r ≈ 2M the Rindler spacetime

ds2 ≈ −(κx)2dt2 + dx2 + 1
4κ2dΩ2 (8.44)

We now analyze the 2-dim Rindler spacetime

ds2 = −(κx)2dt2 + dx2 x > 0 −∞ < t <∞ (8.45)

This metric seems to be singular at x = 0. Since no curvature invariant shows a bad
behavior at x → 0 we guess that it is maybe a coordinate singularity. So we search for
a proper coordinate transformation to eliminate the singularity. We first introduce null
coordinates. They are constant along incoming/outgoing null geodesics. The condition
for null geodesics parametrized by an affine parameter is

gµνk
µkν = −(κx)2ṫ2 + ẋ2 = 0 (8.46)

Transforming (8.46) to (
dt

dx

)2
= 1

(κx)2 (8.47)

and solving this differential equation for t gives

κt = ± ln x+ constant (8.48)

So we define the outgoing null coordinate u and the ingoing null coordinate v by

u = κt− ln x (8.49)
v = κt+ ln x (8.50)

The Rindler metric in our (u, v) coordinates is

ds2 = −ev−udu dv (8.51)

Since our singularity is not removed yet we make another transformation

U = −e−u (8.52)
V = ev (8.53)

to get
ds2 = −dU dV (8.54)

The original Rindler coordinates with x > 0 cover only the U < 0, V > 0 region. Since
there is no singularity at U = V = 0 anymore we extend our spacetime to−∞ < U, V <∞.
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Figure 8.1: Rindler spacetime (Source: Townsend-Black holes: Lecture notes)

Figure 8.2: Worldlines of particles moving at constant x. It is a hyperbolic motion with
constant proper acceleration a = 1

x . (Source: Townsend-Black holes: Lecture
notes)

So in our approximation there are no difficulties at r = 2M . We now make the final
transformation

T = U + V

2 (8.55)

X = V − U
2 (8.56)

to convert the metric in the well known form

ds2 = −dT 2 + dX2 (8.57)

This shows that the Rindler spacetime is the 2-dimensinal Minkowski spacetime in unusual
coordinates.
The original Rindler coordinates with x > 0 cover only a certain region (see figure 8.1)

of the Minkowski spacetime (see figure 8.1). The time translation symmetry of the Rindler
metric corresponds to the boost symmetry of Minkowski space (see figure 8.2).
The name “surface gravity” can be explained by the following proposition: The surface

gravity κ is the acceleration of a static particle near the horizon as measured at spatial
infinity.
So κ is the acceleration a particle needs to stay at a static orbit compared to an observer

at infinity. For more information please take a look at [4, Section 2.3.7]

8.2.3. Global coordinates of the Schwarzschild geometry

In this section we will proceed very similar to the previous section. We start again with
the Schwarzschild metric (8.39) and search for radial null geodesics. They have to satisfy(

dt

dr

)2
= 1(

1− 2M
r

)2 (8.58)
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Figure 8.3: Collapsing star in ingoing Eddington-Finkelstein coordinates (Source:
Townsend-Black holes: Lecture notes)

which can be solved by
t = ±r∗ + constant (8.59)

where r∗ denotes the Regge-Wheeler radial coordinate

r∗ = r + 2M ln
∣∣∣∣r − 2M

2M

∣∣∣∣ (8.60)

So we define the ingoing radial null coordinate v by

v = t+ r∗ −∞ < v <∞ (8.61)

which leads to the Schwarzschild metric in ingoing Eddington-Finkelstein coordinates
(v, r, θ, ϕ)

ds2 = −
(

1− 2M
r

)
dv2 + 2 dr dv + r2dΩ2 (8.62)

Here we can see already that the metric can be extended to r > 0. To see a collapsing star
ant the light-cone structure in ingoing Eddington-Finkelstein coordinates look at figure
8.3. We define the outgoing radial null coordinate u by

u = t− r∗ −∞ < v <∞ (8.63)

and transform the Schwarzschild metric in outgoing Eddington-Finkelstein coordinates
(u, r, θ, ϕ)

ds2 = −
(

1− 2M
r

)
du2 − 2 dr du+ r2dΩ2 (8.64)

We combine ingoing and outgoing Eddington-Finkelstein coordinates to get

ds2 = −
(

1− 2M
r

)
du dv + r2dΩ2 (8.65)

We finally introduce

U = −e−u/4M (8.66)
V = e−v/4M (8.67)
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Figure 8.4: Kruskal diagram of Schwarzschild space. Note that each point corresponds to
a 2-sphere. (Source: Townsend-Black holes: Lecture notes)

to get the Schwarzschild metric in Kruskal-Szekeres coordinates

ds2 = −32M3

r
e−r/2MdU dV + r2dΩ2 (8.68)

where r is given implicitly by

UV = −r − 2M
2M er/2M (8.69)

There is no singularity at r = 2M (i.e. U = 0, V = 0) so we are allowed to extend the
Schwarzschild solution to all values of U and V which are compatible with r > 0.
The Kruskal extension of Schwarzschild spacetime (see figure 8.4) has the following

structure:

• Region I: It is our initial ”outside region“ r > 2M of the Schwarzschild solution.

• Region II: This is the region of the black hole. Once anything crosses the r = 2M
border between region I and region II it in finite proper time ends up at r = 0 .

• Region III: This time-reversed region of region II is called a white hole. Anything
staying in this region has to leave region III after finite proper time.

• Region IV: This asymptotically flat space has the same properties as region I. There
is no possibility of classical communication between region I and region IV.

How serious should we take this diagram? Since the Schwarzschild solution is a vacuum
solution it only describes the region outside of a collapsing star. The past of the spacetime
of a collapsing star is not fully described by the Schwarzschild metric so region III and IV
are replaced by the spacetime of the matter distribution (see figure 8.5). Region I and II
however, should be taken seriously.
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Figure 8.5: Spacetime of a gravitational collapse of a spherical symmetric body. The
dashed region is not described by the Schwarzschild solution (Tµν 6= 0).
(Source: Townsend-Black holes: Lecture notes)

Figure 8.6: Orbits of the Killing vector field in Kruskal coordinates. (Source: Townsend-
Black holes: Lecture notes)

8.3. Zeroth law of black hole mechanics
We are now going back to our discussion of Killing vectors. The time translation isometry
in Kruskal coordinates is generated by the Killing vector field

kµ = 1
4M (V ∂V − U∂U )µ (8.70)

which is equal to k = ∂t in region I. It follows that {U = 0} and {V = 0} are fixed sets (see
figure 8.6). The point {U = V = 0} is a fixed point (2-sphere) of kµ called the bifurcation
point (bifurcation 2-sphere). Note that the Killing field vanishes at this locus. In other
words, to have a bifurcate Killing horizon we need kµ|S = 0, where S is an (n − 2)-
dimensional spacelike hypersurface where the null surfaces generating the Killing horizon
intersect.
Now we want to prove that the surface gravity κ is constant on the killing horizon. So

we use (8.37) to get

kµ∇µκ2∣∣
H = −1

2k
µ∇µ

[
(∇αkν)(∇αkν)

]∣∣
H (8.71)

= −kµ(∇αkν)∇µ∇αkν
∣∣
H (8.72)
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Now use the Killing vector lemma (8.19) and the fact that Rναµρ is antisymmetric (6.65)
in (µρ) while the Killing vector fields are symmetric in this indices

kµ∇µκ2∣∣
H = −(∇αkν)Rναµρkµkρ

∣∣
H = 0 (8.73)

So we have the proof that κ is constant along orbits of kµ.
Now we want to prove that κ is also constant on the whole bifurcation 2-sphere S. We

take a vector field tµ tangent to S to prove

tµ∇µκ2∣∣
S

= −tµ(∇αkν)∇µ∇αkν
∣∣
S

= −(∇αkν)Rναµρtµkρ
∣∣
S

= 0 (8.74)

In the last equality we used that we have a bifurcate Killing horizon, i.e., kρ|S = 0. So κ
is constant along the bifurcation sphere and we get:
Zeroth law of black hole mechanics: κ is constant on a (bifurcate) Killing horizon H.
Note that this statement resembles the zeroth law of thermodynamics if we identify

surface gravity κ with temperature (up to some multiplicative constant). Thus, we have
a first weak hint that black holes might be thermal states; of course, we need much more
information to really conclude this (see the lectures Black Holes II), but the conclusion
turns out to be correct.

8.4. Komar mass
The Komar mass is a concept of mass in general relativity. Note that is is restricted to
stationary spacetimes and it is not the only mass definition in general relativity.
In this section we are using Stokes theorem so remember∫

M
dω =

∫
∂M

ω (8.75)
∫
M
dDx

√
|g| ∇µV µ =

∫
∂M

dD−1x
√
|γ| nµV µ (8.76)

where γ is the induced metric at the boundary, ∂M is the boundary of M and nµ is the
unit normal vector to ∂M .

As motivation we discuss the definition of chargeQ in electrodynamics. One of Maxwell’s
equations is

∇µF νµ = jν (8.77)
where F νµ is the antisymmetric electromagnetic field tensor and jν is the current density.
It is important to note that jν is a conserved quantity

∇ν∇µF νµ = 1
2[∇ν ,∇µ]F νµ = RνµF

νµ = ∇νjν = 0 (8.78)

Our definition of the ’Komar charge’ is

QK : = 1
4π

∫
M
d3x

√
|γ| nµjµ (8.79)

= − 1
4π

∫
M
d3x

√
|γ| nν∇µFµν (8.80)

and leads with the help of Stokes theorem (8.76) to the so called Komar integral

QK = − 1
4π

∫
∂M

d2x
√
|γ̂| nνσµFµν (8.81)

where γ̂ is the induced metric at the boundary ∂M and σn is the outward pointing unit
normal. Considering

A0 = QC
r

F0r = −∂rA0 = QC
r2 (8.82)
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shows us that our definition reduces to

QK = − 1
4π

∫ π

0
dθ

∫ 2π

0
dφ sin2 θ r2

(
−QC
r2

)
= QC (8.83)

where QC is the Coulomb charge, thus the Komar charge is equivalent to the Coulomb
charge.

In general relativity the situation is more difficult. We need again a conserved mass-
energy current density

∇νjν = 0 (8.84)
If we would define it equivalently to special relativity

jν = T νµvµ (8.85)
where vµ is a velocity our conservation condition would require

∇νjν = ∇ν(T νµvµ) = (∇νT νµ︸ ︷︷ ︸
=0

)vµ + T νµ(∇νvµ)︸ ︷︷ ︸
=0 if ∇(νvµ)=0

= 0 (8.86)

That means that we need a Killing vector field for a conserved quantity.
So we define the conserved current

jµ := Rµνkν (8.87)
We suppose now that there is a timelike killing vector kν . We define the Komar mass by

MK : = 1
4π

∫
M
d3x

√
|γ| nµjµ (8.88)

= 1
4π

∫
M
d3x

√
|γ| nµRµνkν (8.89)

Inserting the contracted Killing vector lemma (8.19)
∇ν∇µkν = Rµνk

ν (8.90)
and using Stokes theorem leads to

MK = 1
4π

∫
M
d3x

√
|γ| nµ∇ν(∇µkν) (8.91)

= 1
4π

∫
∂M

d2x
√
|γ̂| nµσν∇µkν (8.92)

With this procedure we are able to construct conserved quantities for different Killing
vector fields.
We calculate the Komar mass for the Schwarzschild black hole. For unit vectors we have

the requirements
nµn

µ = −1 σµσ
µ = 1 (8.93)

which lead to

nt =
(

1− 2MS

r

) 1
2

σr =
(

1− 2MS

r

)− 1
2

(8.94)

nµσν∇µkν = ∇tkr = gtt(∂tkr︸︷︷︸
=0

+ Γrttkt︸ ︷︷ ︸
=− 1

2g
rr∂rgtt

) (8.95)

= −1
2∂rgtt = MS

r2 (8.96)

Substitute this into our Komar integral (8.92) to get

MK = 1
4π

∫ π

0
dθ

∫ 2π

0
dφ sin θ r2MS

r2 = MS (8.97)

Hence our Komar mass definition corresponds to the mass we used in the Schwarzschild
metric.
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9. Rotating Black Holes: The Kerr Solution
In this chapter we will discuss rotating black holes. They are described by the Kerr metric.

ds2 = −
(
∆− a2 sin2 θ

)
Σ dt2 − 2a sin2 θ

(
r2 + a2 −∆

)
Σ dtdϕ+((

r2 + a2)2 −∆a2 sin2 θ
)

Σ sin2 θdϕ2 + Σ
∆dr2 + Σdθ2 (9.1)

Σ = r2 + a2 cos2 θ ∆ = r2 − 2Mr + a2 a = L

M
= const. (9.2)

L denotes the angular momentum and M the mass of the body. Equation (9.1) is called
the Kerr solution of the Einstein field equations and describes the geometry of spacetime
around a rotating massive body. It is also quite easy to see that if a → 0 i.e. L → 0 in
equation (9.1) we recover the Schwarzschild solution which describes non-rotating black
holes. If on the other hand a 6= 0 then we have nontrivial rotation and obtain a spacetime
which is stationary but not static11.
This spacetime has two killing vectors i.e. ∂t and ∂φ. Additionally one can also find an

object called killing tensor kµνwhich also leads to constants of motion like a killing vector,
but does not have the same geometrical meaning as a killing vector. This killing tensor
satisfies the killing equation ∇(µkνλ) = 0. We also find two classes of singularities, one for
∆ = 0 and one for Σ = 0.
The case ∆ = 0 is a coordinate singularity and is the defining equation for the killing

horizons of the killing vectors ξ± = ∂t+Ω±∂φ with Ω± = a
r±2+a2 and r± = M±

√
M2 − a2.

To see that ∆ = 0 leads to Killing horizons consider the normal vector n ∝ grr∂r whose
norm vanishes when grr = 0, which implies indeed ∆ = 0.
The killing horizon for r+ is also the event horizon of the rotating black hole. While

the Kerr metric for r > r+ is able to describe the space outside the outer horizon r+ we
know very little about the region inside the inner horizon r < r− and a solution for the
Einstein field equations for this region has still not been discovered yet.
The other singularity appears for Σ = 0 which implies r = 0 and θ = π

2 and is called
ring singularity because the gravitational singularity for r = 0 is shaped like a ring. The
curvature invariant RαβγδRαβγδ diverges as we approach Σ = 0.
If we compare mass and Kerr parameter of the rotating black hole then we can distin-

guish 3 cases

• M2 > a2 yields 2 killing horizons at r = r± and therefore a Kerr black hole.

• M2 = a2 describes an extremal Kerr black hole where the two killing horizons
coincide and form one event horizon at r = M .

• M2 < a2 would describe a naked singularity that would not be hidden behind an
event horizon i.e. r± would be imaginary.

Since the case M2 < a2 would describe a naked singularity Roger Penrose conceived in
the year 1969 the concept of cosmic censorship conjecture which basically states that
no naked singularities exist in the universe. In 1991 John Preskill and Kip Thorne bet
against Stephen Hawking that the hypothesis was false. Interestingly this was the bet
Hawking lost most clearly even though he was also very close to the up until now accepted
solution to the problem. In 1997 Hawking conceded the bet because numerical relativists
found initial data leading to a naked singularity which falsified the strict cosmic censorship
11Not static means k[µ∇νkλ] 6= 0 or, equivalently, that the line-element fails to be invariant under time-

inversion t→ −t for a 6= 0.
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conjecture introduced by Penrose. After this violation of the cosmic censorship conjecture
was discovered, a not less restrictive definition of a cosmic censorship was introduced which
has not been falsified up until now.
Though one may assume that a ratio a

M ≈ 1 would be rare for real black holes, since
it is an extremal case and that a

M � 1 would be the expected common ratio for most
observable black holes, that is interestingly not the case. For most of the observed black
holes so far a ratio of a

M ≈ 0.1 − 0.98 has been observed. In particular the ratio for the
black hole GRS1915+105 has been observed to be 1 > a

M > 0.98 which is very close to
the extremal black hole limit.

9.1. Uniqueness Theorem
The uniqueness theorem by Carter and Robinson states that if an asymptotically flat
spacetime solving the vacuum Einstein field equations which is stationary, axial symmetric,
with an event horizon and no singularities outside the horizon, then it has to be the Kerr
solution.
This uniqueness theorem makes the Kerr solution one of the most important spacetimes

for black hole physics since nearly every observed black hole up until now is a Kerr black
hole and not a Schwarzschild black hole.

9.2. No-hair Theorem
The no-hair theorem postulates that all black hole solutions of the Einstein-Maxwell equa-
tions of gravitation and electromagnetism in general relativity can be completely charac-
terized by only three externally observable classical parameters:

• mass

• eletric charge

• angular momentum

All other information about the matter which formed a black hole or is falling into it is
lost disappears behind the black hole horizon and is therefore permanently inaccessible to
external observers.

9.3. The Ergosphere
According to the Kerr solution rotating black holes do not only have more than one Killing
horizon, they also allow an area with very interesting properties to exist called ergosphere.
In order to see where this area is located let us consider the time translation killing

vector ka = (∂t)a. With this relation the squared norm is given as

kak
a = kbgbak

a = ktgttk
t = 0 (9.3)

→ gtt = −
(
∆− a2 sin2 θ

)
Σ = 0 (9.4)

→ r = M +
√
M2 − a2 cos2 θ (9.5)

The calculated radius (9.5) defines the outer radius of the ergosphere and a sketch of this
ergosphere along the killing horizons is given in figure 9.1. The ergosphere is limited by
the radius (9.5) and the event horizon.
Note: a particle can enter this ergosphere — unlike the black hole region behind the

event horizon - and leave the region again if it is thrown in the ergosphere region. In order
to remain stationary, however, an observer would have to go faster than light.
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Figure 9.1: Kerr black hole horizons and ergosphere

9.4. The Penrose Process

The existence of the ergoregion allows an interesting process where energy can be extracted
from a rotating black hole, which is called the Penrose process.
Assume an unstable particle with Energy E1 > 0 comes from infinity and enters the

ergosphere region. Inside this region the particle decays into two new particles, one with
energy −E2 < 0 and the other one with energy E3 = E1 + E2 > E1. Now one may ask
why a particle with negative energy12 could exist inside this ergoregion. This is possible
because the time translation killing vector ka = (∂t)a is spacelike in the ergosphere which
implies that the energy E = −paka of a particle with four momentum pa can be of either
sign. If the particle with −E2 < 0 now passes the event horizon and the particle with
energy E3 escapes the ergosphere region, the escaped particle would now have more energy
than before the decay inside the ergoregion and the black hole must therefore have lost
some of its energy13. Since the surface area of the black hole cannot decrease most of the
energy lost is rotational energy, hence the black hole loses angular momentum during the
process.
Due to this Penrose process one can also find the area theorem mentioned before (see ex.
10.2) for black holes which states that the surface area of a black hole cannot decrease.
Using this area theorem it is also possible to calculate the amount of radiated energy
during the merger of two axial black holes (see ex. 10.3).

Eout = Ein − Ecap > Ein if Ecap < 0 (9.6)

9.5. Frame-dragging/Thirring-Lense Effect [gravimagnetism]

Frame-dragging means that a rotating spacetime can cause inertial observers to rotate
even if they have no angular momentum. Let us consider such an observer. As we
shall see explicitly in section 10.1 the angular momentum parameter is given by ` =
gtϕd t/d τ + gϕϕdϕ/d τ so that vanishing ` implies (dϕ/d τ)/(d t/d τ) = −gtϕ/gϕϕ. The
angular coordinate velocity for trajectories with vanishing angular momentum then reads

ω(r, θ) = dϕ
d t = dϕ

d τ

( d t
d τ

)−1
= − gtϕ

gϕϕ
. (9.7)

That fact that ω 6= 0 for ` = 0 is called “frame dragging”.
12The energy that would be measured by an observer at infinity
13For more details on this phenomenon called super radiance see e.g. section 4.4.2 in gr-qc/9707012
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Relatedly, also the Thirring-Lense effect is a phenomenon predicted by general relativity
for non-static (stationary) spacetimes and is caused by rotating bodies which drag space-
time around themselves. This effect causes objects to be dragged out of their original
position relatively to the rotating body. For example an object which moves contrariwise

1Figure 9.2: Frame dragging

on a circular orbit in respect to the rotation of a rotating black hole, would be dragged
along by the black hole spacetime and would be forced to follow the black holes rotation.
It is a bit like trying to swim upwards against a current but you are not strong enough to
swim upwards so the current drags you along.
A satellite orbiting earth for example would not hit the exact point where it started after
one orbit14 and a gyroscope would undergo a precession depending on the location of the
gyroscope.
One experiment to measure the displacement of satellite orbits15 was done by NASA and
the Italian space agency ASI. The orbits and the displacement of the two satellites LA-
GEOS and LAGEOS 2 have been recorded for years and then evaluated, which proved
to be very difficult because of the deviation of Earth’s gravitational field from spherical
symmetry and many other perturbations. In 2004 evaluation of 11 years of position data
led to 99%±5% of the predicted value of orbital displacement. However these results have
not been confirmed by another independent research group evaluating the given data. An-
other experiment to measure gravitational effects including frame dragging is the Gravity
probe B experiment. Gravity probe B is a satellite placed in a polar orbit around Earth
containing four gyroscopes with quartz rotors — the roundest objects ever made —. The

14The predicted effect is small for a body like the earth - about 0,1 mm for an orbit like that of Gravity
Probe B for example.

15The original task of this experiment involving the two satellites mentioned was a precise determination
of the Earth’s gravitational field.
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goal is to measure the precession whose frequency can be determined via

ωµ = −1
2ε

µνρσξν∇ρξσ, (9.8)

where ξµ is a timelike killing vector16, of these four gyroscopes as accurate as possible
which proved to be very difficult. The experiment concluded with an article published in
the journal Physical Rewiev Letters in 2011 which confirmed the precission effect predicted
by general relativity caused by frame dragging within an discrepancy of 5%.

x

z
axis of rotation

precession

1

Figure 9.3: Thirring-Lense precession

16For more details see IJMPD 14, Special issue on the Thirring-Lense effect.
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10. Geodesics for Kerr Black Holes
To derive the geodesics for Kerr black holes we proceed similar to section 5.3. We are
going to point out the differences of the Kerr geodesics to the Schwarzschild geodesics.
Finally we calculate the innermost stable circular orbit.

10.1. Geodesic Equation of the Kerr Black Hole
We assume that θ = π/2. So the Kerr solution (9.1) reduces to

Σ = r2 ∆ = r2 − 2Mr + a2 a = L

M
= const. (10.1)

ds2 = −
(

1− 2M
r

)
dt2 − 4aM

r
dtdϕ+ r2

∆dr2 +
(
r4 + a2 + 2Ma2

r

)
dϕ2 (10.2)

We use again the geodesic action (5.14)

S = 1
2

∫
dτ [−gµν ẋµẋν ] (10.3)

= 1
2

∫
dτ

[(
1− 2M

r

)
ṫ2 + 4aM

r
ṫϕ̇− r2

∆ ṙ2 −
(
r2 + a2 + 2Ma2

r

)
ϕ̇2
]

(10.4)

Varying the action in order to derive the Euler-Lagrange equations for t and ϕ we find
two constants of motion (

1− 2M
r

)
ṫ+ 2aM

r
ϕ̇ = F = const (10.5)

− 2aM
r

ṫ+
(
r2 + a2 + 2Ma2

r

)
ϕ̇ = l = const (10.6)

In addition we can also write down a corresponding Hamiltonian

F ṫ− lϕ̇− r2

∆ ṙ2 = k =


1, spacelike Geodesic
0, lightlike Geodesic
−1, timelike Geodesic.

(10.7)

Solving this two equations for ṫ and ϕ̇ and rearranging the equations to get an equation
of the form

ṙ2

2 + V eff = E = F 2 − 1
2 (10.8)

leads to the effective potential Veff (k = −1)

Veff = −M
r

+ l2 − 2a2E

2r2 −
M
(
l − a

√
2E + 1

)2

r3 (10.9)

In comparison to the effective potential of the Schwarzschild case (5.23) we see:
• The energy is also in the potential. It is not possible to solve the equation for ṙ and
E simultaneous.

• If l2 < 2a2E the centrifugal term gets attractive.

• Both effects are most pronounced for extremal Kerr M2 = a2.
For a graphical comparison see figure 10.1.
Above we have solved the geodesic equation in the plane θ = π/2. Thanks to the Killing-

tensor of the Kerr solution it turns out that the geodesic equations are integrable even
for arbitrary values of θ, so that all orbits around the Kerr black hole can be described in
closed form, depending on three constants of motion (in addition to the norm k = −1, 0).
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Figure 10.1: Effective potentials for Newton, Schwarzschild and Kerr

10.2. ISCO of the Kerr Black Hole
To calculate the Innermost (marginally) Stable Circular Orbit of the Kerr solution we use
three algebraic equations in the three unknown r, E and l

V eff = E (10.10)
dV eff

dr
= 0 (10.11)

d2V eff

dr2 = 0 (10.12)

Since there should be no radial motion ṙ = 0 we get (10.10). Combined with (10.11) it
ensures circularity of the orbit. To get the innermost marginally stable orbit at r = r∗ we
also need the marginality condition (10.12). We can solve these three algebraic equations
for r∗, ` and E. Suitably combining them yields a cubic equation for the value of the
radius of the ISCO:

r2
∗ (r∗ − 6M)2 − 2a2r∗ (3r∗ + 14M) + 9a4 = 0 (10.13)

Solving this equation leads to
r∗
M

= 3 +
√
x2 + 3a2/M2 ∓

√
(3− x)A (10.14)

A = 3 + x+ 2
√
x2 + 3a2/M2 (10.15)

x = 1 +
(
1− a2/M2

)1/3 [
(1 + a/M)1/3 + (1− a/M)1/3

]
, (10.16)

where the upper sign denotes co-rotation and the lower sign represents counter-rotation.
If we set a = 0 we see that x = 3 and (10.14) reduces to

r∗ = 6M (10.17)

which is the innermost stable circular orbit rISCO of the Schwarzschild solution.
For the extremal Kerr solution (a/M = 1 :→ x = 1, A = 8) the equation leads to

r∗/M = 5∓ 4 (10.18)
→ r∗CO = M (10.19)

→ r∗COUNT = 9M (10.20)

Preliminary version – September 20, 2021



10.2. ISCO of the Kerr Black Hole 65

In the case of a counter-rotating test-particle the ISCO of the Kerr Solution is r∗COUNT.
For co-rotating particles the ISCO is r∗CO. Since the innermost stable circular orbit r∗CO
equals to the event horizon of the extremal Kerr Solution there is no gap between the
accretion disc and the horizon. This means that accretion disks in extremal Kerr black
hole backgrounds are able to probe physics close to a black hole horizon. By contrast,
in the Schwarzschild black hole there is a gap of minimum 4M between the horizon and
some circular orbit.
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11. Accretion Discs and Black Hole Observations
Up until now we explained and elaborated only theoretical concepts of black hole sciences.
This chapter will introduce a method to obtain knowledge about a specific black hole by
observing not the hole itself - which is, matter-of-factedly impossible - but a phenomenon
associated with black holes in binary systems: the accretion disc.
In the (quite rare) case that a black hole has formed out of the partner in a binary star

system or a that black hole was “attracted” by a single, massive star, it could be the case
that the black hole starts “sucking” out mass (i.e. matter) from its star-partner. As this
matter streams nearer to the black hole it is heated up (due to inter-particle friction) and
ultimately starts spiraling into the black hole - and this “spiral” region is what we call
accretion disc. Below is depicted an artists’ impression of such process:

Figure 11.1: Artistic depiction of an accretion disc (Illustration Credit: ESA, NASA, and
Felix Mirabel)

So, why are these accretion discs so important to us? As mentioned above, the matter
accredited starts to heat up during the process - thus sending out electromagnetic waves
up to the X-ray spectrum. And these X-rays (more precisely, their spectrum) contains
information about the spin and mass of the black hole17 and - even more important - they
allow us to distinguish between black holes, neutron stars, protostars and white dwarfs -
all of which can form accretion discs in binary systems!
This is the point where theory kicks in again - to extract information out of the X-ray

spectrum we need to understand and describe the processes in the accretion discs leading
to the X-ray spectra. From here on we try to establish a (simplified) model of accretion
discs.

17One model used to describe accretion discs coined by Kip Thorne yields an angular momentum to mass
ratio as |a|

M
≤ 0.998.
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11.1. Simple Theoretical Model: General Relativistic Perfect Fluid
We start with an assumption that greatly simplifies our calculation, though it does not
capture all essential aspects of accretion disc physics (in particular, we neglect here vis-
cosity and magnetic fields). Our assumption is that we only consider perfect fluids (i.e.
with no viscosity). This is owed to the fact the general relativistic fluid dynamics is quite
a demanding topic and it would be far beyond the scope of this course to thoroughly
investigate it.
Furthermore, we define:

• fluid velocity: uµ and its norm: uµuµ = −1

• a density function: ρ

• and the pressure distribution P .

In General Relativity the stress-energy-tensor for perfect fluids reads:

Tµν = (ρ+ P )uµuν + Pgµν (11.1)

This, in flat space with uµuν only having a (0,0)-component, would be T̂µν = diag (ρ, P, P, P )
For consistency we have to assume conservation of the energy momentum tensor.

∇µTµν = 0 (11.2)

Equation (11.2) imposes a quite strong restriction on the stress-energy-tensor with an
astonishing consequence:

∇µTµν = 0 (11.3)
uν∇µ ((ρ+ P )uµuν + Pgµν) = 0 (11.4)

uνu
µuν︸ ︷︷ ︸

=−uµ
∇µ (ρ+ P ) + (ρ+ P )

[
uν (∇µuν)uµ︸ ︷︷ ︸

=−(∇µuµ)

+uν (∇µuν)uµ︸ ︷︷ ︸
= 1

2∇µ(uνuν)=0

]
+ uµg

µν∇µP = 0 (11.5)

− (∇µuµ) (ρ+ P )− uµ∇µ (ρ+ P ) + uµ∇µP = 0 (11.6)

∇µ (uµρ) + P (∇µuµ) = 0 (11.7)

Equation (11.7) is nothing less then the general relativistic continuity equation for ideal
fluids! In classical mechanics, we need 2 equations to describe ideal fluids - first, the conti-
nuity equation (which we’ve already found) and second, a force equation (Euler equation),
which we have yet to find.
We do so in contracting eq. (11.2) with the projection operator18 δσν + uσuν = Πσ

ν :

(δσν + uσuν)∇µ [(ρ+ P )uµuν ] + (δσν + uσuν)∇νP = 0 (11.8)

(ρ+ P )
[
∇µ (uµuσ)︸ ︷︷ ︸

=uµ∇µuσ+uσ∇µuµ

+uσ uν (∇µuµ)uν︸ ︷︷ ︸
=−∇µuµ

]
+ uµuν (δσν + uσuν)︸ ︷︷ ︸

=uµuσ+uµuσ(uµuν)=0

∇µ (ρ+ P ) +

+ (δσν + uσuν)∇νP = 0 (11.9)

(ρ+ P )uµ∇µuσ + (δσν + uσuν)∇νP = 0 (11.10)

These are the force equations for — again — general relativistic, ideal fluids. The only
thing left to do now is to prove that — in non-relativistic limits — equations (11.7) and
(11.10) are identical to the known continuitiy and Euler equations (11.11) & (11.12):

∂ρ

∂t
+ ~∇ · (ρ~v) = 0 (11.11)

18This projection operator satisfies Πµ
νu

ν = 0 and Πµ
νΠν

α = Πµ
α.

Preliminary version – September 20, 2021



68 11. Accretion Discs and Black Hole Observations

∂ (ρ~v)
∂t

+ ~∇ · [~v ⊗ ρ~v] + ~∇P = 0 (11.12)

As done before, we introduce the classic limit by setting

uµ =
(
1 +O

(
v2
)
, vi
)

P � ρ (11.13)

With this eq. (11.7) reads (N.B.: no curvature):

∇t
(
ρ ut︸︷︷︸

=1

)
+∇i

(
ρvi
)

+ P
(
∇tut +∇ivi

)
︸ ︷︷ ︸

≈0+O(P ·v)

= 0 (11.14)

∂ρ

∂t
+ ∂i

(
ρvi
)
≈ 0 +O (P · v) (11.15)

And this is the classic continuity equation. No we apply all limits to eq. (11.10) and result
in:

ρ
[
∂t~v +

(
~v~∇
)
~v
]

+ ~∇P = 0 (11.16)

Taking the difference of (11.16) and (11.12) shows that they are equivalent if the continuity
equation holds. Thus we have proved that — in classic limits — both general relativistic
fluid equations are identical to the Euler and continuity equations, respectively.
Actually, there are some types of perfect fluids — with special equations of state —

these equations apply to:

• dust: P = 0 ⇒ Tµν = ρuµuν

• light-like fluid: ρ = 3P ⇒ Tµµ = 0

• polytropic: P = αρn

• barotropic: P = P (ρ)

Summarizing, the main purpose of this chapter was to learn something about the influence
of the background geometry on a relativistic fluid and the corresponding equation of state.
In order to treat real accretion discs one would also have to take into account viscosity

and electromagnetic interactions. This is hard to do in a full general relativistic framework
and therefore is often done in quasi-Newtonian simulations, where the Newton potential
is replaced by some effective potential similar to (10.9).
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Figure 12.1: Tilted sound cones in moving fluid (Source: Barceló et al. - Analogue Gravity)

12. Black hole analogs in condensed matter physics

As we have already seen analogies provide a rich source of inspiration and understanding.
That is especially valuable in fields that are unfamiliar to us like general relativity. Analog
gravity19 is motivated among other things by:

• Classical analogies: Giving easy and pedagogical examples for complex phenomena.
For example the fishy Gedankenexperiment 3.1 and the draining bathtub 12.4.

• Semiclassical: The predicted Hawking effect for stellar black holes is in practice
unobservable. There are approches to show this effect with analog models.

• Quantum gravity: As toy model for quantum gravity.

As a motivation look at figure 12.1 where you can see sound cones tilted by the flow of
fluid in analogy to light cones in a gravitational field.
In this section we are going to proof that sound waves in some special fluid behave

similar to fields in general relativity. Furthermore we bring an example which is a good
analogy to the Kerr black hole.

12.1. Analogy theorem

We assume the fluid to be

• barotropic

• inviscid (ideal)

and the flow to be

• irrotational.

Then the equation of motion for the velocity potential φ that describes the acoustic dis-
turbance is equal to the general relativistic massless Klein-Gordon equation

∆φ = 1√
−g

∂µ
(√
−g gµν ∂νφ

)
= 0 (12.1)

19For more information see: Barceló et al. - Analogue Gravity [5].
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with the acoustic metric

gµν(t, ~x) = ρ

c

[
−
(
c2 − v2) −vi
−vj δij

]
(12.2)

(where i, j = 1..3). The acoustic metric depends on the density ρ, the flow velocity ~v and
the local speed of sound in the fluid c.

12.2. Proof
We start with the continuity equation

∂tρ+ ~∇ · (ρ~v) = 0 (12.3)

and Euler’s equation of inviscid flow

ρ
[
∂t~v +

(
~v · ~∇

)
~v
]

+ ~∇P = 0 (12.4)

We use the fact that (
~v · ~∇

)
~v + ~v ×

(
~∇× ~v

)
= 1

2
~∇v2 (12.5)

and get with some manipulations on Euler’s equation

∂t~v = ~v ×
(
~∇× ~v

)
− 1
ρ
~∇P − 1

2
~∇v2 (12.6)

We assume the flow to be irrotational ~∇×~v = 0. Locally the velocity flow is given by the
velocity potential ~v = −~∇φ. Our fluid is also barotropic which means that ρ is a function
of P . That makes it possible to define the specific enthalpy h(P )

h(P ) =
∫ p

0

dP ′

ρ(P ′) =⇒ ~∇h = 1
ρ
~∇P (12.7)

Using the above informations Euler’s equation (12.6) simplifies to

− ∂tφ+ h+ 1
2
(
~∇φ
)2

= 0 (12.8)

Now we split our equations of motion in background (ρ0, P0, φ0) and linearized fluctu-
ations (ερ1, εP1, εφ1)

ρ = ρ0 + ερ1 +O(ε2) (12.9)
P = P0 + εP1 +O(ε2) (12.10)
φ = φ0 + εφ1 +O(ε2) (12.11)

You can imagine the background as the motion of the fluid “in total”. The linearized
fluctuations are the small relative oscillatory motions known by definition as sound. As
an example you can think of some floating liquid (background) where somewhere in the
middle of this liquid a small disturbance (sound) occurred.
We use the Taylor expansions (12.9) and (12.11) to linearize the continuity equation

(12.3) to zeroth

∂tρ0 + ~∇ · (ρ0~v0) = 0 (12.12)

and first order in ε

∂tρ1 + ~∇ · (ρ1~v0 + ρ0~v1) = 0 (12.13)
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Using the barotropic condition we derive

h(P ) = h(P0 + εP1 +O(ε2)) = h(P0) + εh′(P0)P1 +O(ε2) = h0 + ε
P1
ρ0

+O(ε2) (12.14)

With the above result we linearize the Euler equation (12.8) to zeroth

−∂tφ0 + h0 + 1
2(~∇φ0)2 = 0 (12.15)

and first order in ε

−∂tφ1 + P1
ρ0
− ~v0 · ~∇φ1 = 0 (12.16)

We transform the last equation to get

P1 = ρ0(∂tφ1 + ~v0 · ~∇φ1) (12.17)

The fact that our fluid is barotropic leads us to

ρ1 = ∂ρ

∂P
P1 = ∂ρ

∂P
ρ0(∂tφ1 + ~v0 · ~∇φ1) (12.18)

In this equation we recognize the term for the speed of sound

c−2 := ∂ρ

∂P
(12.19)

We substitute ρ1 into our linearized continuity equation (12.13) to get the wave equation

∂t

(
∂ρ

∂P
ρ0(∂tφ1 + ~v0 · ~∇φ1)

)
+ ~∇ ·

(
∂ρ

∂P
ρ0(∂tφ1 + ~v0 · ~∇φ1)~v0 − ρ0~∇φ1

)
= 0 (12.20)

Substituting the speed of light in this equation and rearranging the terms leads us to

− ∂t

ρ0
c2 (∂tφ1 + ~v0︸︷︷︸

vj0

·~∇φ1)

− ~∇ ·

ρ0
c2 [ ~v0︸︷︷︸

vi0

∂tφ1 + ~v0(~v0︸ ︷︷ ︸
vi0v

j
0

·~∇φ1)− c2~∇φ1]

 = 0 (12.21)

Since we got rid of the ρ1 and P1 terms we have a wave equation where we just have to
know ρ0 and v0 to solve for φ1. Once we have solved this equation we are able to calculate
ρ1 and P1 by (12.17) and (12.18). Also observe that if there is no background speed v0 = 0
and if the background density is constant the equation (12.21) reduces to the well known
form

∂t
2 φ1 = c2∆φ1 (12.22)

We now define the matrix

fµν(t, ~x) := ρ0
c2

[
−1 −vj0
−vi0 (c2δij − vi0v

j
0)

]
(12.23)

and observe that it is possible to write our wave equation (12.21) compactly as

∂µ(fµν∂νφ1) = 0 (12.24)

That looks already similar to our Klein-Gordon equation (g =det(gµν))

∆φ = 1√
−g

∂µ
(√
−g gµν ∂νφ

)
= 0 (12.25)
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For them to coincide we have to set
√
−g gµν := fµν (12.26)

We use the determinant property det(aA) = andet(A) for n× n matrices to get

det(fµν) = (
√
−g)4g−1 = g (12.27)

Expanding the determinant by minors leads to

det(fµν) = − ρ0
4

c2
(12.27)=⇒ g = − ρ0

4

c2 =⇒
√
−g = ρ0

2

c
(12.28)

So we get the inverse acoustic metric

gµν(t, ~x) = 1√
−g

fµν = 1
ρ0c

[
−1 −vj0
−vi0 (c2δij − vi0v

j
0)

]
(12.29)

and by matrix inversion the acoustic metric

gµν(t, ~x) = ρ0
c

[
−
(
c2 − v2) −vi
−vj δij

]
(12.30)

This completes the proof. �Q.e.d

12.3. General remaks
• gµν has the signature (−,+,+,+)

• There are two different metrics
– Physical spacetime metric: Since we neglect general relativity it is the flat

metric of Minkowski space. It is used for all fluid particles.
– Acoustic metric: The sound waves propagate effectively on the acoustic metric.

• Concepts like killing horizon, ergo-region and event horizon generalize to acoustic
metrics:
– Killing horizon: Equivalent to general relativity (8.18) we calculate kµkµ = 0

with kµ = ∂µt and get |~v| = c for the killing horizon.
– Ergo-region: The region where |~v| > c i.e. the region of supersonic flow is an

ergo-region.
– Event horizon: Is the boundary of the region from where sound with the speed

of c is not able to escape (see figure 12.2).

12.4. Example: Vortex geometry
As an example we are now considering the vortex geometry which looks similar to a
draining bathtub (see figure 12.3). The background velocity potential has the form

φ0 = −A ln(r/a)−B θ (12.31)

which leads to a velocity of the fluid flow of

vi0 = (∂rφ, ∂θφ) = (∂rφ, ∂θφ/r2) = −
(
A

r
,
B

r2

)
(12.32)
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Figure 12.2: Trapped surfaces formed by moving fluid. (Source: Barceló et al. - Analogue
Gravity)

Figure 12.3: Vortex Geometry: The spirals are the streamlines of the fluid flow. The outer
circle is the killing horizon of ∂µt while the inner is the event horizon. The
region in between is the ergo-region. (Source: Barceló et al. - Analogue
Gravity)
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74 12. Black hole analogs in condensed matter physics

and to
v2

0 = A2 +B2

r2 (12.33)

Calculating the acoustic metric explicitly leads to

ds2 = −
(
c2 − A2 +B2

r2

)
dt2 − 2A

r
dr dt− 2B dθ dt+ dr2 + r2 dθ2 + dz2 (12.34)

The killing horizon is at

rergo =
√
A2 +B2

c
(12.35)

Since for the event horizon only the radial part counts we set B = 0 and get the event
horizon

rhorizon = |A|
c

(12.36)

Given this similarities with the Kerr black hole makes it an interesting and acceptable
analogy.
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A. Useful formulas
The following formulas were collected by Robert McNess and are available online at
http://jacobi.luc.edu/Useful.html.
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Conventions, Definitions, Identities,
and Other Useful Formulae

V
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3 Euler Densities 3
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10 Converting to ADM Variables 10

1. Curvature tensors

Consider a d + 1 dimensional manifold M with metric gµν . The covariant derivative on M that is metric-
compatible with gµν is ∇µ.

Christoffel Symbols

Γλµν =
1

2
gλρ (∂µgρν + ∂νgµρ − ∂ρgµν) (1)

Riemann Tensor
Rλµσν = ∂σΓλµν − ∂νΓλµσ + ΓκµνΓλκσ − ΓκµσΓλκν (2)

Ricci Tensor
Rµν = δσλR

λ
µσν (3)

Schouten Tensor

Sµν =
1

d− 1

(
Rµν −

1

2 d
gµνR

)
(4)

∇νSµν = ∇µSνν (5)

Weyl Tensor

Cλµσν = Rλµσν + gλν Sµσ − gλσ Sµν + gµσ S
λ
ν − gµν Sλσ (6)

1
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Commutators of Covariant Derivatives

[∇µ,∇ν ]Aλ = RλσµνA
σ (7)

[∇µ,∇ν ]Aλ = RλσµνA
σ (8)

Bianchi Identity

∇κRλµσν −∇λRκµσν +∇µRκλσν = 0 (9)

∇νRλµσν = ∇µRλσ −∇λRµσ (10)

∇νRµν =
1

2
∇µR (11)

Bianchi Identity for Weyl

∇νCλµσν = (d− 2)
(
∇µSλσ −∇λSµσ

)
(12)

∇λ∇σCλµσν =
d− 2

d− 1

[
∇2Rµν −

1

2d
gµν∇2R− d− 1

2d
∇µ∇νR−

(
d+ 1

d− 1

)
R λ
µ Rνλ (13)

+ CλµσνR
λσ +

(d+ 1)

d(d− 1)
RRµν +

1

d− 1
gµν

(
RλσRλσ −

1

d
R2

)]

2. Conventions for Differential Forms

p-Form Components

A(p) =
1

p!
Aµ1...µp dx

µ1 ∧ . . . ∧ dxµp (14)

Exterior Derivative
(
dA(p)

)
µ1...µp+1

= (p+ 1) ∂ [µ1Aµ2...µp+1 ] (15)

B [µ1...µn] :=
1

n!

(
Bµ1...µn + permutations

)
(16)

Hodge-Star

(
?A(p)

)
µ1...µd+1−p

=
1

p!
εµ1...µd+1−p

ν1...νp Aν1...νp (17)

? ? =
(
− 1

)p(d+1−p)+1
(18)

Wedge Product

(
A(p) ∧B(q)

)
µ1...µp+q

=
(p+ q)!

p! q!
A [µ1...µp Bµp+1...µp+q ] (19)

2
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3. Euler Densities

Let M be a manifold with dimension d+ 1 = 2n an even number. Normalized so that χ(S2n) = 2.

Euler Number

χ(M) =

∫

M
d 2nx

√
g E2n (20)

=

∫

M
e2n (21)

Euler Density

E2n =
1

(8π)n Γ(n+ 1)
εµ1 ...µ2n εν1 ...ν2n R

µ1µ2ν1ν2 . . . Rµ2n−1µ2nν2n−1ν2n (22)

e2n =
1

(4π)n Γ(n+ 1)
εa1 ...a2nRa1a2 ∧ . . . ∧Ra2n−1a2n (23)

Curvature Two-Form

Ra
b =

1

2
Rab c d ec ∧ ed (24)

Examples

E2 =
1

8π
εµνελρR

µνλρ (25)

=
1

4π
R

E4 =
1

128π2
εµνλρ εαβγδ R

µναβ Rλργδ (26)

=
1

32π2

(
RµνλρRµνλρ − 4RµνRµν +R2

)

=
1

32π2
CµνλρCµνλρ −

1

8π2

(
d− 2

d− 1

) (
RµνRµν −

d+ 1

4 d
R2

)

4. Hypersurfaces

Let Σ ⊂M be a d dimensional hypersurface whose embedding is described locally by an outward-pointing, unit
normal vector nµ. Rather than keeping track of the signs associated with nµ being either spacelike or timelike,
we will just assume that nµ is spacelike. Indices are lowered and raised using gµν and gµν , and symmetrization
of indices is implied when appropriate.

First Fundamental Form / Induced Metric on Σ

hµν = gµν − nµnν (27)

Projection onto Σ
⊥Tµ ... ν ... = hµλ . . . h

σ
ν . . . T

λ ...
σ ... (28)

Second Fundamental Form / Extrinsic Curvature of Σ

Kµν = ⊥(∇µnν) = h λ
µ h σ

ν ∇λnσ =
1

2
£nhµν (29)

3
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Trace of Extrinsic Curvature
K = ∇µnµ (30)

‘Acceleration’ Vector
aµ = nν∇νnµ (31)

Surface-Forming Normal Vectors

nµ =
1√

gνλ ∂να∂λα
∂µα ⇒ ⊥∇[µnν ] = 0 (32)

Covariant Derivative on Σ compatible with hµν

DµTα ... β ... = ⊥∇µTα ... β ... ∀ T = ⊥T (33)

Intrinsic Curvature of (Σ, h)
[Dµ,Dν ]Aλ = RλσµνAσ ∀ Aλ = ⊥Aλ (34)

Gauss-Codazzi

⊥Rλµσν = Rλµσν −KλσKµν +KµσKνλ (35)

⊥
(
Rλµσν n

λ
)

= DνKµσ −DσKµν (36)

⊥
(
Rλµσν n

λnσ
)

= − LnKµν +K λ
µ Kλν +Dµaν − aµaν (37)

Projections of the Ricci tensor

⊥ (Rµν) = Rµν +Dµaν − aµaν − LnKµν −KKµν + 2K λ
µ Kν λ (38)

⊥ (Rµν n
µ) = DµKµν −DνK (39)

Rµνn
µnν = − LnK −Kµν Kµν +Dµaµ − aµaµ (40)

Decomposition of the Ricci scalar

R = R−K2 −Kµν Kµν − 2LnK + 2Dµaµ − 2 aµa
µ (41)

Lie Derivatives along nµ

£nKµν = nλ∇λKµν +Kλν∇µnλ +Kµλ∇νnλ (42)

⊥ (£nFµ ... ν ...) = £nFµ ... ν ... ∀ ⊥F = F (43)

5. Sign Conventions for the Action

These conventions follow Weinberg, keeping in mind that he defines the Riemann tensor with a minus sign
relative to our definition. They are appropriate when using signature (−,+, . . . ,+). The d + 1-dimensional
Newton’s constant is 2κ2 = 16πGd+1. The sign on the boundary term follows from our definition of the extrinsic
curvature.

4
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Gravitational Action

IG =
1

2κ2

∫

M
d d+1x

√
g
(
R− 2 Λ

)
+

1

κ2

∫

∂M
d dx
√
γ K (44)

=
1

2κ2

∫

M
d d+1x

√
g
(
R+K2 −Kµν Kµν − 2 Λ

)
(45)

Gauge Field Coupled to Particles

IM = − 1

4

∫

M
d d+1x

√
g FµνFµν (46)

−
∑

n

mn

∫
dp

(
−gµν(xn(p))

dxµn(p)

dp

dxνn(p)

dp

)1/2

(47)

+
∑

n

en

∫
dp
dxµn(p)

dp
Aµ(xn(p)) (48)

Gravity Minimally Coupled to a Gauge Field

I =

∫

M
d d+1x

√
g

[
1

2κ2
(R− 2 Λ)− 1

4
FµνFµν

]
+

1

κ2

∫

∂M
d dx
√
γ K (49)

6. Hamiltonian Formulation

The canonical variables are the metric hµν on Σ and its conjugate momenta πµν . The momenta are defined
with respect to evolution in the spacelike direction nµ, so this is not the usual notion of the Hamiltonian as the
generator of time translations.

Bulk Lagrangian Density

LM =
1

2κ2

(
K2 −Kµν Kµν +R− 2 Λ

)
(50)

Momentum Conjugate to hµν

πµν =
∂LM

∂ (£nhµν)
=

1

2κ2
(
hµν K −Kµν

)
(51)

Momentum Constraint

Hµ =
1

κ2
⊥ (nνGµν) = 2Dνπµν = 0 (52)

Hamiltonian Constraint

H = − 1

κ2
nµnνGµν = 2κ2

(
πµν πµν −

1

d− 1
π2
)

+
1

2κ2
(
R− 2 Λ

)
= 0 (53)

7. Conformal Transformations

The dimension of spacetime is d+ 1. Indices are raised and lowered using the metric gµν and its inverse gµν .

Metric

ĝµν = e 2σ gµν (54)

5
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Christoffel

Γ̂λµν = Γλµν + Θλ
µν (55)

Θλ
µν = δλµ∇νσ + δλν ∇µσ − gµν ∇λσ (56)

Riemann Tensor

R̂λµρν = Rλµρν + δλν ∇µ∇ρσ − δλρ∇µ∇νσ + gµρ∇ν∇λσ − gµν ∇ρ∇λσ (57)

+ δλρ∇µσ∇νσ − δλν ∇µσ∇ρσ + gµν ∇ρσ∇λσ − gµρ∇νσ∇λσ (58)

+
(
gµρ δ

λ
ν − gµν δλρ

)
∇ασ∇ασ (59)

Ricci Tensor

R̂µν = Rµν − gµν ∇2σ − (d− 1)∇µ∇νσ + (d− 1)∇µσ∇νσ (60)

− (d− 1) gµν∇λσ∇λσ (61)

Ricci Scalar

R̂ = e−2σ
(
R− 2 d∇2σ − d (d− 1)∇µσ∇µσ

)
(62)

Schouten Tensor

Ŝµν = Sµν −∇µ∇νσ +∇µσ∇νσ −
1

2
gµν∇λσ∇λσ (63)

Weyl Tensor

Ĉλµρν = Cλµρν (64)

Normal Vector

n̂µ = e−σ nµ n̂µ = eσ nµ (65)

Extrinsic Curvature

K̂µν = eσ
(
Kµν + hµν n

λ∇λσ
)

(66)

K̂ = e−σ
(
K + dnλ∇λσ

)
(67)

8. Small Variations of the Metric

Consider a small perturbation to the metric of the form gµν → gµν + δgµν . All indices are raised and lowered
using the unperturbed metric gµν and its inverse. All quantities are expressed in terms of the perturbation to
the metric with lower indices, and never in terms of the perturbation to the inverse metric. As in the previous
sections, ∇µ is the covariant derivative on M compatible with gµν and Dµ is the covariant derivative on a
hypersurface Σ compatible with hµν .

Inverse Metric
gµν → gµν − gµα gνβ δgαβ + gµα gνβ gλρ δgαλ δgβρ + . . . (68)

6
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Square Root of Determinant
√
g → √g

(
1 +

1

2
gµνδgµν + . . .

)
(69)

Variational Operator

δ(gµν) = δgµν δ 2(gµν) = δ(δgµν) = 0 (70)

δ(gµν) = −gµα gνβ δgαβ δ 2(gµν) = δ
(
−gµλ gνρ δgλρ

)
= 2 gµα gνβ gλρ δgαλ δgβρ (71)

F(g + δg) = F(g) + δF(g) +
1

2
δ 2F(g) + . . .+

1

n!
δ nF(g) + . . . (72)

Christoffel (All Orders)

δ Γλµν =
1

2
gλρ

(
∇µ δgρν +∇ν δgµρ −∇ρ δgµν

)
(73)

δ 2 Γλµν = −gλα gρβ δgαβ
(
∇µ δgρν +∇ν δgµρ −∇ρ δgµν

)
(74)

δ n Γλµν =
n

2
δ n−1

(
gλρ
) (
∇µ δgρν +∇ν δgµρ −∇ρ δgµν

)
(75)

Riemann Tensor

δ Rλµσν = ∇σδ Γλµν −∇νδ Γλµσ (76)

Ricci Tensor

δ Rµν = ∇λδ Γλµν −∇νδ Γλµλ (77)

=
1

2

(
∇λ∇µ δgλν +∇λ∇ν δgµλ − gλρ∇µ∇ν δgλρ −∇2 δgµν

)
(78)

Ricci Scalar

δ R = −Rµν δgµν +∇µ
(
∇ν δgµν − gλρ∇µ δgλρ

)
(79)

Surface Forming Normal Vector

δ nµ =
1

2
nµ n

νnλδgνλ =
1

2
δgµν n

ν + cµ (80)

cµ =
1

2
nµ n

νnλδgνλ −
1

2
δgµν n

ν = −1

2
h λ
µ δgλνn

ν (81)

Extrinsic Curvatures

δ Kµν =
1

2
nαnβδgαβKµν + δgλρ n

ρ
(
nµK

λ
ν + nνK

λ
µ

)
(82)

− 1

2
hµ

λ hν
ρnα

(
∇λδgαρ +∇ρδgλα −∇αδgλρ

)

δ K = −1

2
Kµν δgµν −

1

2
nµ
(
∇νδgµν − gνλ∇µδgνλ

)
+Dµcµ (83)

7
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9. The ADM Decomposition

The conventions and notation in this section (and the next) are different than what was used in the preceding
sections. We consider a d-dimensional spacetime with metric hab.

We start by identifying a scalar field t whose isosurfaces Σt are normal to the timelike unit vector given by

ua = −α∂at , (84)

where the lapse function α is

α :=
1√

−hab ∂at ∂bt
. (85)

An observer whose worldline is tangent to ua experiences an acceleration given by the vector

ab = uc · d∇cub , (86)

which is orthogonal to ua. The (spatial) metric on the d− 1 dimensional surface Σt is given by

σab = hab + uaub . (87)

The intrinsic Ricci tensor built from this metric is denoted by Rab, and its Ricci scalar is R. The covariant
derivative on Σt is defined in terms of the d dimensional covariant derivative as

DaVb := σa
cσb

e
(
d∇cVe

)
for any Vb = σb

cVc . (88)

The extrinsic curvature of Σt embedded in the ambient d dimensional spacetime (the constant r surfaces from
the previous section) is

θab := −σacσbd
(
d∇cud

)
= −d∇aub − uaab = −1

2
£uσab . (89)

This definition has an additional minus sign, compared to the extrinsic curvature Kµν for the constant r surfaces
of the previous section. This is merely for compatibility with the standard conventions in the literature.

Now we consider a ‘time flow’ vector field ta, which satisfies the condition

ta ∂at = 1 . (90)

The vector ta can be decomposed into parts normal and along Σt as

ta = αua + βa , (91)

where α is the lapse function (85) and βa := σabt
b is the shift vector. An important result in the derivations

that follow relates the Lie derivative of a scalar or spatial tensor (one that is orthogonal to ua in all of its
indices) along the time flow vector field, to Lie derivatives along ua and βa. Let S be a scalar. Then

£tS = £αuS + £βS = α£uS + £βS . (92)

Rearranging this expression then gives

£uS =
1

α

(
£tS −£βS

)
. (93)

Similarly, for a spatial tensor with all lower indices we have

£tWa... = α£uWa... + £βWa... . (94)

8
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This is not the case when the tensor has any of its indices raised. In a moment, these identities will allow us to
express certain Lie derivatives along ua in terms of regular time derivatives and Lie derivatives along the shift
vector βa.

Next, we construct the coordinate system that we will use for the decomposition of the equations of motion.
The adapted coordinates (t, xi) are defined by

∂tx
a := ta . (95)

The xi are d dimensional coordinates along the surface Σt. If we define

Pi
a :=

∂xa

∂xi
, (96)

then it follows from the definition of the coordinates that Pi
a∂at = 0 and we can use Pi

a to project tensors onto
Σt. For example, in the adapted coordinates the spatial metric, extrinsic curvature, and acceleration and shift
vectors are

σij = Pi
aPj

bσab (97)

θij = Pi
aPj

bθab (98)

aj = Pj
bab (99)

βi = Pi
aβa = Pi

ata . (100)

The line element in the adapted coordinates takes a familiar form:

habdx
adxb = hab

(
∂xa

∂t
dt+

∂xa

∂xi
dxi
)(

∂xb

∂t
dt+

∂xb

∂xj
dxj
)

(101)

= hab
(
tadt+ Pi

adxi
)(
tbdt+ Pj

bdxj
)

(102)

= tatadt
2 + 2tadtPi

adxi + habPi
aPj

bdxidxj (103)

=
(
− α2 + βiβi

)
dt2 + 2βidtdx

i + σijdx
idxj (104)

⇒ habdx
adxb = − α2dt2 + σij

(
dxi + βidt

)(
dxj + βjdt

)
. (105)

Thus, in the adapted coordinate system we can express the components of the (d dimensional) metric hab and
its inverse hab as

hab =

(
−α2 + βiβi σijβ

j

σijβ
j σij

)
(106)

hab =

(
− 1
α2

1
α2 β

i

1
α2 β

i σij − 1
α2 β

iβj

)
(107)

det(hab) = −α2 det(σij) (108)

Obtaining the components of the inverse is a short algebraic calculation. Note that the spatial indices ‘i, j, . . .’
in the adapted coordinates are lowered and raised using the spatial metric σij and its inverse σij .

In adapted coordinates there are several results concerning the projections of Lie derivatives of scalars and
tensors which will be important in what follows. The first, which is trivial, is that the Lie derivative of a scalar
S along the time-flow vector ta is just the regular time-derivative

£tS = ta∂aS =
∂xa

∂t

∂S

∂xa
= ∂tS . (109)

Next, we consider the projector Pi
a applied to the Lie derivative along ta of a general vector Wa, which gives

Pi
a£tWa = ∂tWa ∀ Wa . (110)

9

Preliminary version – September 20, 2021



The important point is that this applies not just to spatial vectors but to any vector Wa, as a consequence of
the result

Pi
a£tua = 0 . (111)

Finally, we can show that the Lie derivative along ta of any contravariant spatial vector satisfies

P ia£tV
a = ∂tV

i ∀ V i = P iaV
a . (112)

This follows from a lengthier calculation than what is required for the first two results.
Given these results, we can express various geometric quantities and their projections normal to and along

Σt in terms of quantities intrinsic to Σt and simple time derivatives. First, the extrinsic curvature is

θij = − 1

2
Pi
aPj

b£uσab (113)

= − 1

2
Pi
aPj

b

(
1

α

(
£tσab −£βσab

))
(114)

⇒ θij = − 1

2α

(
∂tσab −

(
Daβb +Dbβa

))
. (115)

Since θab is a spatial tensor, projections of its Lie derivative along ua can be expressed in a similar manner

Pi
aPj

b£uθab =
1

α

(
∂tθab −£βθab

)
. (116)

Now we present the Gauss-Codazzi and related equations in adapted coordinates:

Pi
aPj

b
(
dRab

)
= Rij + θθij − 2θi

kθjk −
1

α

(
∂tθij −£βθij

)
− 1

α
DiDjα (117)

Pi
a
(
dRabu

b
)

= Diθ −Djθij (118)

dRabu
aub =

1

α

(
∂tθ − βi∂iθ

)
− θijθij +

1

α
DiD

iα (119)

dR = R+ θ2 + θijθij −
2

α

(
∂tθ − βi∂iθ

)
− 2

α
DiD

iα . (120)

10. Converting to ADM Variables

The metric is often presented in the form

habdx
adxb = httdt

2 + 2htidtdx
i + hijdx

idxj . (121)

We would like to relate these components to the ADM variables: the lapse function α, the shift vector βi, and
the spatial metric σij . This is a fairly straightforward exercise in linear algebra. Comparing with (105), we first
note that

σij = hij . (122)

The inverse spatial metric, σij , is literally the inverse of hij , which is not the same thing as hij

σij = (σij)
−1 = (hij)

−1 6= hij . (123)

For the shift vector we have

hti = σijβ
j → σikhtk = σikσklβ

l = βi (124)

⇒ βi = σijhtj . (125)

Finally, for the lapse we obtain

α2 = σijhtihtj − htt . (126)
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