\mathcal{W}-symmetry and instanton R-matrix

Tomáš Procházka
Arnold Sommerfeld Center for Theoretical Physics LMU Munich

March 21, 2019

Plan

'algebraic structures in 2d conformal field theory with higher spins'

\mathcal{W}_{∞} : (spherical) degenerate double affine Hecke algebra (Cherednik), cohomological Hall algebra (Kontsevich \& Soibelman), Yangian of $\widehat{\mathfrak{g l}(1)}$, quantum toroidal algebra, Ding-lohara-Miki algebra

W algebras

\mathcal{W}-algebas: extensions of the Virasoro algebra (2d CFT) by higher spin currents - appear in many different contexts:

- integrable hierarchies of PDE (KdV, KP)
- (old) matrix models
- instanton partition functions and AGT
- holographic dual description of 3d higher spin theories
- quantum Hall effect
- topological strings
- higher spin square (Gaberdiel, Gopakumar)
- $\mathcal{N}=4$ SYM at junction of three codimension 1 defects (Gaiotto, Rapčák)
- geometric representation theory (equivariant cohomology of moduli spaces)

Zamolodchikov \mathcal{W}_{3} algebra

\mathcal{W}_{3} algebra constructed by Zamolodchikov (1984) has a stress-energy tensor (Virasoro algebra) with OPE

$$
T(z) T(w) \sim \frac{c / 2}{(z-w)^{4}}+\frac{2 T(w)}{(z-w)^{2}}+\frac{\partial T(w)}{z-w}+r e g .
$$

together with spin 3 primary field $W(w)$

$$
T(z) W(w) \sim \frac{3 W(w)}{(z-w)^{2}}+\frac{\partial W(w)}{z-w}+r e g .
$$

To close the algebra we need to find the OPE of W consistent with associativity.

The result:

$$
\begin{aligned}
W(z) W(w) \sim & \frac{c / 3}{(z-w)^{6}}+\frac{2 T(w)}{(z-w)^{4}}+\frac{\partial T(w)}{(z-w)^{3}} \\
& +\frac{1}{(z-w)^{2}}\left(\frac{32}{5 c+22} \Lambda(w)+\frac{3}{10} \partial^{2} T(w)\right) \\
& +\frac{1}{z-w}\left(\frac{16}{5 c+22} \partial \Lambda(w)+\frac{1}{15} \partial^{3} T(w)\right)
\end{aligned}
$$

Λ is a quasiprimary 'composite' (spin 4) field,

$$
\Lambda(z)=(T T)(z)-\frac{3}{10} \partial^{2} T(z)
$$

The algebra is non-linear, not a Lie algebra in the usual sense (linearity should not be expected for spins ≥ 3).

\mathcal{W}_{∞}

- \mathcal{W}_{∞} : generalizing \mathcal{W}_{3} to fields of spin $2,3,4,5, \ldots$
- solving associativity conditions for this field content \rightsquigarrow two-parameter family (Gaberdiel-Gopakumar)
- parameters: central charge c and rank parameter λ
- choosing $\lambda=N \rightarrow$ truncation of \mathcal{W}_{∞} to $\mathcal{W}_{N}=\mathcal{W}[\mathfrak{s l}(N)]$, i.e. \mathcal{W}_{∞} is interpolating algebra for the whole A_{N-1} series of \mathcal{W}_{N} algebras (cf. $\mathfrak{s l}(N)$ vs $h s[\lambda]$ in $3 d$ higher spin gravities)
- adding spin 1 field, we have $\mathcal{W}_{1+\infty} \rightsquigarrow$ many simplifications
- surprise: $\mathcal{W}_{1+\infty}$ contains all $\mathcal{W}[\mathfrak{g}]$ for all simple \mathfrak{g} (except possibly \mathfrak{f}_{4} ?)
- triality symmetry of the algebra (Gaberdiel \& Gopakumar)

$$
\frac{1}{\lambda_{1}}+\frac{1}{\lambda_{2}}+\frac{1}{\lambda_{3}}=0 \quad c=\left(\lambda_{1}-1\right)\left(\lambda_{2}-1\right)\left(\lambda_{3}-1\right)
$$

- MacMahon function as vacuum character of the algebra

$$
\prod_{n=1}^{\infty} \frac{1}{\left(1-q^{n}\right)^{n}}=1+q+3 q^{2}+6 q^{3}+13 q^{4}+24 q^{5}+48 q^{6}+\cdots
$$

The resulting OPEs look like

$$
\begin{aligned}
U_{3}(z) U_{5}(w) \sim & \frac{1}{(z-w)^{7}}\left(\frac{1}{2} \alpha(n-3)(n-2)(n-1) n\left(4 \alpha^{2}\left(\alpha^{2}(n(5 n-9)+1)-3 n+4\right)+1\right) \mathbb{1}\right) \\
& +\frac{1}{(z-w)^{6}}\left(\frac{1}{6}(n-3)(n-2)(n-1)\left(6 \alpha^{4} n(2 n-3)+\alpha^{2}(10-9 n)+1\right) U_{1}(w)\right) \\
& +\frac{1}{(z-w)^{5}}\left(-\alpha(n-3)(n-2)(n-1)\left(-4 \alpha^{2}+3 \alpha^{2} n-1\right)\left(U_{1} U_{1}\right)(w)\right. \\
& +\alpha(n-3)(n-2)\left(4 \alpha^{2} n^{2}-4 \alpha^{2} n-n-2\right) U_{2}(w) \\
& \left.-\frac{1}{2} \alpha^{2}(n-3)(n-2)(n-1)\left(4 \alpha^{2} n(2 n-3)-3 n+2\right) U_{1}^{\prime}(w)\right) \\
& +\frac{1}{(z-w)^{4}}\left(-\alpha(n-3)(n-2)(n-1)\left(\alpha^{2}(3 n-4)-1\right)\left(U_{1}^{\prime} U_{1}\right)(w)\right. \\
& -\frac{1}{2}(n-3)(n-2)\left(2 \alpha^{2}(n-1)-1\right)\left(U_{1} U_{2}\right)(w) \\
& +(n-3)\left(\alpha^{2}\left(n^{2}+2\right)-3\right) U_{3}(w) \\
& -\frac{1}{4} \alpha^{2}(n-3)(n-2)(n-1)\left(4 \alpha^{2} n(2 n-3)-3 n+2\right) U_{1}^{\prime \prime}(w) \\
& \left.+\alpha(n-3)(n-2)\left(\alpha^{2}(n-1) n-1\right) U_{2}^{\prime}(w)\right) \\
& +\cdots
\end{aligned}
$$

But there are special properties of OPE that allow guessing a general formula

- a basis of local fields $U_{j}(z)$ in which the OPEs have purely quadratic non-linearity (impossible in primary basis)
- all the derivative terms can be resummed and we find a bilocal expansion (Lukyanov)

$$
U_{j}(z) U_{k}(w)+\sum_{I+m<j+k} C_{j k}^{l m}\left(N, \alpha_{0}\right) \frac{U_{l}(z) U_{m}(w)}{(z-w)^{j+k-l-m}} \sim r e g .
$$

- other special properties like $C_{j k}^{l m}(N)=C_{j+1 k+1}^{l+1 m+1}(N+1)$
- how to explain these?

Yangian of $\mathfrak{g l}(1)$

The Yangian of $\widehat{\mathfrak{g l}(1)}$ (Arbesfeld-Schiffmann-Tsymbaliuk) is an associative algebra with generators $\psi_{j}, e_{j}, f_{j}, j \geq 0$ and relations

$$
\begin{aligned}
0= & {\left[e_{j+3}, e_{k}\right]-3\left[e_{j+2}, e_{k+1}\right]+3\left[e_{j+1}, e_{k+2}\right]-\left[e_{j}, e_{k+3}\right] } \\
& +\sigma_{2}\left[e_{j+1}, e_{k}\right]-\sigma_{2}\left[e_{j}, e_{k+1}\right]-\sigma_{3}\left\{e_{j}, e_{k}\right\} \\
0= & {\left[f_{j+3}, f_{k}\right]-3\left[f_{j+2}, f_{k+1}\right]+3\left[f_{j+1}, f_{k+2}\right]-\left[f_{j}, f_{k+3}\right] } \\
& +\sigma_{2}\left[f_{j+1}, f_{k}\right]-\sigma_{2}\left[f_{j}, f_{k+1}\right]+\sigma_{3}\left\{f_{j}, f_{k}\right\} \\
0= & {\left[\psi_{j+3}, e_{k}\right]-3\left[\psi_{j+2}, e_{k+1}\right]+3\left[\psi_{j+1}, e_{k+2}\right]-\left[\psi_{j}, e_{k+3}\right] } \\
& +\sigma_{2}\left[\psi_{j+1}, e_{k}\right]-\sigma_{2}\left[\psi_{j}, e_{k+1}\right]-\sigma_{3}\left\{\psi_{j}, e_{k}\right\} \\
0= & {\left[\psi_{j+3}, f_{k}\right]-3\left[\psi_{j+2}, f_{k+1}\right]+3\left[\psi_{j+1}, f_{k+2}\right]-\left[\psi_{j}, f_{k+3}\right] } \\
& +\sigma_{2}\left[\psi_{j+1}, f_{k}\right]-\sigma_{2}\left[\psi_{j}, f_{k+1}\right]+\sigma_{3}\left\{\psi_{j}, f_{k}\right\} \\
0= & {\left[\psi_{j}, \psi_{k}\right] } \\
\psi_{j+k}= & {\left[e_{j}, f_{k}\right] }
\end{aligned}
$$

'initial/boundary conditions'

$$
\begin{aligned}
{\left[\psi_{0}, e_{j}\right] } & =0, & {\left[\psi_{1}, e_{j}\right]=0, } &
\end{aligned}
$$

and finally the Serre relations

$$
0=\operatorname{Sym}_{\left(j_{1}, j_{2}, j_{3}\right)}\left[e_{j_{1}},\left[e_{j_{2}}, e_{j_{3}+1}\right]\right], \quad 0=\operatorname{Sym}_{\left(j_{1}, j_{2}, j_{3}\right)}\left[f_{j_{1}},\left[f_{j_{2}}, f_{j_{3}+1}\right]\right] .
$$

There are 3 parameters of the algebra, $h_{1}, h_{2}, h_{3} \in \mathbb{C}$ constrained by $h_{1}+h_{2}+h_{3}=0$. Furthermore, we used the shorthand notation

$$
\begin{aligned}
\sigma_{2} & =h_{1} h_{2}+h_{1} h_{3}+h_{2} h_{3} \\
\sigma_{3} & =h_{1} h_{2} h_{3} .
\end{aligned}
$$

We have both commutators and anticommutators in defining quadratic relations (but no \mathbb{Z}_{2} grading).

Introducing generating functions

$$
e(u)=\sum_{j=0}^{\infty} \frac{e_{j}}{u^{j+1}}, \quad f(u)=\sum_{j=0}^{\infty} \frac{f_{j}}{u^{j+1}}, \quad \psi(u)=1+\sigma_{3} \sum_{j=0}^{\infty} \frac{\psi_{j}}{u^{j+1}}
$$

simplifies the first set of formulas above (almost!!) to

$$
\left.\left.\begin{array}{rlrl}
e(u) e(v) & =\varphi(u-v) e(v) e(u), & & f(u) f(v)
\end{array}\right)=\varphi(v-u) f(v) f(u), ~ 子 r(u) e(v)=\varphi(u-v) e(v) \psi(u), \quad \begin{array}{l}
\psi(u) f(v)
\end{array}\right)=\varphi(v-u) f(v) \psi(u)
$$

with structure function

$$
\varphi(u)=\frac{\left(u+h_{1}\right)\left(u+h_{2}\right)\left(u+h_{3}\right)}{\left(u-h_{1}\right)\left(u-h_{2}\right)\left(u-h_{3}\right)}
$$

The representation theory of the algebra is much simpler in this Yangian formulation and it is controlled by this simple function.
$\psi(u), e(u)$ and $f(u)$ in representations act like $\psi(u)|\Lambda\rangle=\psi_{0}(u) \prod_{\square \in \Lambda} \varphi\left(u-h_{\square}\right)|\Lambda\rangle, \quad e(u)|\Lambda\rangle=\sum_{\square \in \Lambda^{+}} \frac{E(\Lambda \rightarrow \Lambda+\square)}{u-h_{\square}}|\Lambda+\square\rangle$
where the states $|\Lambda\rangle$ are associated to geometric configurations of boxes (plane partitions,...) and where $h_{\square}=\sum_{j} h_{j} x_{j}(\square)$ is the weighted geometric position of the box.

Two different descriptions of the algebra:

- usual CFT point of view with local fields $J(z), T(z), W(z), \ldots$ with increasingly complicated OPE as we go to higher spins
- Yangian point of view (Arbesfeld-Schiffmann-Tsymbaliuk) where all the spins are included in the generating functions $\psi(u), e(u)$ and $f(u)$ but accessing higher mode numbers is difficult

mode (CFT)

How to connect these two descriptions?

- the generators with low spin and mode number can be identified, i.e. $\psi_{2}=2 L_{0}, e_{0}=J_{-1}, f_{0}=-J_{+1}$
- $\psi_{3}=3 W_{0}+\ldots+\sigma_{3} \sum_{m>0}(3 m-1) J_{-m} J_{m}$ (cut \& join operator, not a zero mode of a local field!)
- this is sufficient to find the map in principle, but what is the more conceptual way to understand the map?

Miura transformation and \mathcal{R}-matrix

- Miura transformation - free field representation of \mathcal{W}_{N}

$$
\left(\partial+\partial \phi_{1}(z)\right) \cdots\left(\partial+\partial \phi_{N}(z)\right)=\sum_{j=0}^{N} U_{j}(z) \partial^{N-j}
$$

- quantization of differential operators
- the embedding of \mathcal{W}_{N} in the bosonic Fock space depends on the way we order the fields
- Maulik-Okounkov: \mathcal{R}-matrix as transformation between two equivalent orderings

$$
\left(\partial+\partial \phi_{1}\right)\left(\partial+\partial \phi_{2}\right)=\mathcal{R}^{-1}\left(\partial+\partial \phi_{2}\right)\left(\partial+\partial \phi_{1}\right) \mathcal{R}
$$

- \mathcal{R} defined in this way satisfies the Yang-Baxter equation (two ways of reordering $321 \rightarrow 123$)

$$
\begin{aligned}
& \mathcal{R}_{12}\left(u_{1}-u_{2}\right) \mathcal{R}_{13}\left(u_{1}-u_{3}\right) \mathcal{R}_{23}\left(u_{2}-u_{3}\right)= \\
& =\mathcal{R}_{23}\left(u_{2}-u_{3}\right) \mathcal{R}_{13}\left(u_{1}-u_{3}\right) \mathcal{R}_{12}\left(u_{1}-u_{2}\right)
\end{aligned}
$$

- the spectral parameter u - the global $\mathfrak{u}(1)$ charge
- \mathcal{R}-matrix satisfying YBE \rightsquigarrow apply the algebraic Bethe ansatz

- spin chain of length $N \rightsquigarrow \mathcal{W}_{N}$ algebra
- consider an auxiliary Fock space \mathcal{F}_{A} and a quantum space $\mathcal{F}_{Q} \equiv \mathcal{F}_{1} \otimes \ldots \otimes \mathcal{F}_{N}$
- we associate to this the monodromy matrix $\mathcal{T}_{A Q}: \mathcal{F}_{A} \otimes \mathcal{F}_{Q} \rightarrow \mathcal{F}_{A} \otimes \mathcal{F}_{Q}$ defined as

$$
\mathcal{T}_{A Q}=\mathcal{R}_{A 1} \mathcal{R}_{A 2} \cdots \mathcal{R}_{A N}
$$

- if the individual \mathcal{R}-matrices satisfied the $\mathrm{YBE}, \mathcal{T}$ will also satisfy YBE with respect to two auxiliary spaces A and B

$$
\mathcal{R}_{A B} \mathcal{T}_{A} \mathcal{T}_{B}=\mathcal{T}_{B} \mathcal{T}_{A} \mathcal{R}_{A B}
$$

- the algebra of matrix elements of \mathcal{T} satisfying this equation is the Yangian (quadratic defining relations!)
- in our situation the \mathcal{R}-matrix controlling the commutation relations of Yangian has rows and columns labeled by Young diagrams
- we can however restrict to simple matrix elements, i.e.

$$
\mathcal{H}=\left\langle\left. 0\right|_{A} \mathcal{T} \mid 0\right\rangle_{A}, \quad \mathcal{E}=\left\langle\left. 0\right|_{A} \mathcal{T} \mid 1\right\rangle_{A}, \quad \mathcal{F}=\left\langle\left. 1\right|_{A} \mathcal{T} \mid 0\right\rangle_{A}
$$

- the YBE now implies relations between these operators like

$$
0=[\mathcal{H}(u), \mathcal{H}(v)]
$$

(infinite set of commuting Hamiltonians) or

$$
\left(u-v+h_{3}\right) \mathcal{H}(u) \mathcal{E}(v)=(u-v) \mathcal{E}(v) \mathcal{H}(u)+h_{3} \mathcal{H}(v) \mathcal{E}(u)
$$

(ladder operators)

- How are these generating functions related to AST?

$$
\begin{gathered}
\psi(u)=\frac{u+\sigma_{3} \psi_{0}}{u} \frac{\mathcal{H}\left(u+h_{1}\right) \mathcal{H}\left(u+h_{2}\right)}{\mathcal{H}(u) \mathcal{H}\left(u+h_{1}+h_{2}\right)} \\
e(u)=h_{3}^{-1} \mathcal{H}(u)^{-1} \mathcal{E}(u), \quad f(u)=-h_{3}^{-1} \mathcal{F}(u) \mathcal{H}(u)^{-1}
\end{gathered}
$$

- Verification of the relations satisfied by these is difficult and MO Yangian seems in fact to be bigger than AST Yangian (Schiffmann: differ by central elements)

How does the \mathcal{R}-matrix look like?

- a fermionic form obtained by A. Smirnov by studying the large N limit of $\mathfrak{g l}(N) \mathcal{R}$-matrix - complicated
- a bosonic formula is not known so far, but results of Nazarov-Sklyanin can be interpreted as matrix elements of \mathcal{R}-matrix in mixed representation where the two bosonic Fock spaces are associated to different asymptotic directions of \mathcal{W}_{∞}

$$
\begin{aligned}
\mathcal{R}(u)= & \mathbb{1}-\frac{1}{u} \sum_{j_{1}>0} a_{-j_{1}}^{-} a_{j_{1}}^{-} \\
& +\frac{1}{2!u(u+1)} \sum_{j_{1}, j_{2}>0}\left(a_{-j_{1}}^{-} a_{-j_{2}}^{-}+a_{-j_{1}-j_{2}}^{-}\right)\left(a_{j_{1}}^{-} a_{j_{2}}+a_{j_{1}+j_{2}}^{-}\right) \\
& +\ldots
\end{aligned}
$$

with $a_{j}^{-} \equiv a_{j}^{(1)}-a_{j}^{(2)}$.

Application: Calogero models

- instead of building the monodromy matrix \mathcal{T} from the Fock-Fock \mathcal{R}-matrices, we could use the Miura operators $\partial+\partial \phi(z)$, using for the quantum space the space of functions of z coordinate
- this produces for free commuting Hamiltonians of quantum Calogero models as well as ladder operators

$$
\mathcal{H}(u)=\sum_{\text {pairings / unpaired }} \prod_{\text {pairs } j<k}\left(1+u^{-1} h_{3} \partial_{z_{l}}\right) \prod\left(-\frac{h_{1} h_{2}}{u^{2}} \frac{1}{4 \sinh ^{2}\left(\frac{z_{j}-z_{k}}{2}\right)}\right)
$$

(Feynman, Polychronakos)

- moreover these are guaranteed to satisfy the same commutation relations $\rightsquigarrow \mathcal{W}_{\infty}$ action on orbital DOF
- the Hamiltonians can be easily generalized to elliptic case, what about ladder operators?

Lessons, questions

- non-linearity is to be expected and probably cannot be avoided (but quadraticity? Miura, Yangian, RTT)
- other algebras with similarly nice properties? Grassmannian \mathcal{W} ? higher spin square?
- Yangian description of the orthosymplectic case? exceptional subalgebras?
- many things can be generalized to include matrix DOF (rectangular \mathcal{W}, spin Calogero models)
- growth of states like of 3d theory, global subalgebra diffeomorphisms of S^{2}, any connection to membrane?
- classical KP hierarchy has very well developed theory, what are the translations of objects there to the quantum language? tau functions, Hirota equations, Y-systems, T-systems etc.
- BPS state counting, topological vertex, mirror symmetry, spectral curves, topological recursion

Thank you!

