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Conformal Higher Spin (CHS) Gravity: 


A. Higher spin analog of Conformal Gravity


B. Theory of interacting conformal higher spin fields

1. What is CHS Gravity, more precisely?


2. Why CHS Gravity is interesting for me (and for you)?


3. Some news on CHS Gravity 



What is CHS Gravity?
A. Higher spin analog of Conformal Gravity


• Conformal Gravity in even d dim


(1) Made by Weyl tensor: ex. (Weyl tensor)^2 in d=4


(2) Gauge Symmetry: Diffeo + Weyl


(3) Global Symmetry: Conformal Group SO(2,d)


(4) (Holographic) Weyl Anomaly (even d)



(1) Spin s Weyl tensor: 


• s derivative of rank s field


• traceless (s,s) Young diagram


• Form a multiplet under HS gauge symmetry


• HS gauge symmetry?

A.  Higher spin analog of Conformal Gravity

• The equation of motion of the action (2.1) reads

P
s
TT !

s+ d−4
2 hs ≈ 0 . (2.4)

This equation is referred to as the spin-s Bach equation where equalities that only

hold on-shell will be denoted by the weak equality symbol≈ hereafter. An equivalence

class (2.2) of fields hs obeying this equation will be referred to as on-shell Fradkin-

Tseytlin field.

• The action (2.1) can be also rewritten, after integrating by part, as

SFT[hs] = (−1)s
∫

Md

ddx Cs,s!
d−4
2 Cs,s , (2.5)

where Cs,s = P
s,s
T ∂s hs is the (generalized) Weyl tensor of the FT field (here P

s,s
T

denotes the traceless projector onto the two-row Young diagram displayed in (2.6)

below). It is a traceless tensor with the symmetry of a rectangular two-row Young

diagram,

Cs,s ∼
so(1,d−1)

s
s

. (2.6)

The Weyl tensor Cs,s is a primary field with conformal weight ∆Cs,s = 2 and is in-

variant under the gauge transformations (2.2). In particular, for s = 2 it corresponds

to the linearized Weyl tensor.

So far we have considered the free theory of conformal spin-s gauge fields. An in-

teracting theory of CHS gauge fields can be constructed from the effective (also called

“induced”) action of a free scalar field [27, 29, 34, 67] in a higher-spin background. Start-

ing from the action of a free complex scalar field φ coupled to higher-spin sources hs via

traceless conserved currents Js = φ̄ ∂sφ (where φ̄ denotes the complex conjugate of φ) :

S[φ; {hs}s∈N] =
∫

Md

ddx
(

φ̄!φ+
∞
∑

s=0

Js hs
)

, (2.7)

we obtain the effective action

e−WΛ[{hs}s∈N] =

∫

Λ
Dφ e−S[φ;{hs}s∈N] , (2.8)

where Λ is the ultraviolet (UV) cut-off. The logarithmically divergent part Wlog of the

effective action WΛ is a local and nonlinear functional of the shadow fields hs. Moreover it

can be shown (see e.g. [67]) to reproduce the free action (2.1) at the quadratic order:

Wlog[{hs}s∈N] =
∞
∑

s=0

SFT[hs] +O(h3s) , (2.9)

and contains also the interaction terms O(h3s), which can be perturbatively calculated —

see for instance [29, 48, 67]. Therefore, Wlog can be regarded as an action of interacting FT

fields, up to the introduction of a dimensionless coupling constant κ : SCHS = κWlog. Note
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(2) Gauge Symmetry: HS gauge (diffeo) + HS Weyl


• HS gauge symmetry


• Gauge symmetry of HS Gravity?


• Spin s symmetry generated by rank s-1 tensor 


• HS Weyl symmetry


• Spin s symmetry generated by rank s-2 tensor

A.  Higher spin analog of Conformal Gravity



(2) Gauge Symmetry: HS gauge (diffeo) + HS Weyl


• Linearization

A.  Higher spin analog of Conformal Gravity

theories. We start by describing the field theoretical realization of the type-Aℓ CHS theory

in Section 3.1 and move on to show that (1.1) holds for the type-Aℓ in Section 3.2 and for

the type-Bℓ in Section 3.3. We conclude the paper in Section 4 by discussing our main

result and commenting on its implication for the computation of the thermal partition

function and the free energy on AdS background of this theory. In particular, we point out

that turning on chemical potentials for the so(d) angular momenta provides an alternative

regularization of the sum over the infinite tower of higher-spin fields, which we also compare

to the previously used regularization in the literature. Finally, Appendix A contains the

derivation of identity (1.2), together with a more detailed description of the various modules

of importance and their field theoretical interpretations in AdSd+1/CFTd. In Appendix B

we detail the d = 2 case as a toy model, while Appendix C contains the branching rule

of the on-shell (totally-symmetric) CHS field module. In Appendix D, we provide a short

review of nonlinear CHS theory. In particular, we reexamine the formal operator approach

of Segal [28] and provide a heuristic argument supporting the “topological” nature of CHS

gravity.

2 Type-A Conformal Higher-Spin Gravity

2.1 Field theory of type-A conformal higher-spin gravity

The free theory of the conformal spin-s field in even d-dimensional Minkowski6 spacetime

Md, is described by the local action

SFT[hs] =

∫

Md

ddxhs P
s
TT !

s+ d−4
2 hs , (2.1)

where hs is a totally symmetric rank-s tensor and Ps
TT is the projector to transverse and

traceless symmetric tensors of rank s. The differential operator !s+ d−4
2 compensates the

non-locality of Ps
TT so that the action is local and conformally invariant.

• The field hs, referred to as off-shell Fradkin-Tseytlin (FT) field is a symmetric rank-s

field of conformal weight ∆hs = 2 − s. It is also called as the shadow field. Due to

the projector Ps
TT, the action has the gauge symmetry

hs ∼ hs + ∂ ξs−1 + η σs−2 , (2.2)

with ξs−1 a rank-(s− 1) symmetric tensor, η the Minkowski metric and σs−2 a rank-

(s− 2) symmetric tensor. Here, we used the schematic notation where all the indices

are implicit.

• The conformal Killing tensor is the set of parameters (ξs−1,σs−2) satisfying the

conformal Killing equation

∂ ξs−1 + η σs−2 = 0 , (2.3)

i.e. the gauge parameters leaving the FT field inert under (2.2).

6Whenever global issues would be relevant, Md should stand for its conformal compactification S1×Sd−1.
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(3) Global Symmetry


• HS conformal Killing


• HS analog of conformal symmetry algebra so(2,d)


➡ HSA(2,d)


 HSA(2,d-1): HS analog of isometry algebra so(2,d-1)

A.  Higher spin analog of Conformal Gravity

theories. We start by describing the field theoretical realization of the type-Aℓ CHS theory

in Section 3.1 and move on to show that (1.1) holds for the type-Aℓ in Section 3.2 and for

the type-Bℓ in Section 3.3. We conclude the paper in Section 4 by discussing our main

result and commenting on its implication for the computation of the thermal partition

function and the free energy on AdS background of this theory. In particular, we point out

that turning on chemical potentials for the so(d) angular momenta provides an alternative

regularization of the sum over the infinite tower of higher-spin fields, which we also compare

to the previously used regularization in the literature. Finally, Appendix A contains the

derivation of identity (1.2), together with a more detailed description of the various modules

of importance and their field theoretical interpretations in AdSd+1/CFTd. In Appendix B

we detail the d = 2 case as a toy model, while Appendix C contains the branching rule

of the on-shell (totally-symmetric) CHS field module. In Appendix D, we provide a short

review of nonlinear CHS theory. In particular, we reexamine the formal operator approach

of Segal [28] and provide a heuristic argument supporting the “topological” nature of CHS

gravity.

2 Type-A Conformal Higher-Spin Gravity

2.1 Field theory of type-A conformal higher-spin gravity

The free theory of the conformal spin-s field in even d-dimensional Minkowski6 spacetime

Md, is described by the local action

SFT[hs] =

∫

Md

ddxhs P
s
TT !

s+ d−4
2 hs , (2.1)

where hs is a totally symmetric rank-s tensor and Ps
TT is the projector to transverse and

traceless symmetric tensors of rank s. The differential operator !s+ d−4
2 compensates the

non-locality of Ps
TT so that the action is local and conformally invariant.

• The field hs, referred to as off-shell Fradkin-Tseytlin (FT) field is a symmetric rank-s

field of conformal weight ∆hs = 2 − s. It is also called as the shadow field. Due to

the projector Ps
TT, the action has the gauge symmetry

hs ∼ hs + ∂ ξs−1 + η σs−2 , (2.2)

with ξs−1 a rank-(s− 1) symmetric tensor, η the Minkowski metric and σs−2 a rank-

(s− 2) symmetric tensor. Here, we used the schematic notation where all the indices

are implicit.

• The conformal Killing tensor is the set of parameters (ξs−1,σs−2) satisfying the

conformal Killing equation

∂ ξs−1 + η σs−2 = 0 , (2.3)

i.e. the gauge parameters leaving the FT field inert under (2.2).

6Whenever global issues would be relevant, Md should stand for its conformal compactification S1×Sd−1.
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(4) (Holographic) Weyl Anomaly


• From Bulk


• HS Gravity in D=d+1 dimensional bulk (AdS) 


• Anomaly of radial direction diffeomorphism


• Match of Global Symmetries


✤ Anomaly of radial direction HS gauge symmetry?

A.  Higher spin analog of Conformal Gravity

Segal; Bekaert, EJ, Mourad, … 



(4) (Holographic) Weyl Anomaly


• From Boundary


• d-dim CFT dual of D-dim HS Gravity


• For type A, B, C: it’s free scalar, spinor, vector!


• Anomaly of Weyl symmetry

A.  Higher spin analog of Conformal Gravity

Segal; Bekaert, EJ, Mourad; Ponomarev
Bonora, Cvitan, Dominis Prester, 

Giaccari, Lima de Souza, Stemberga



Why CHS Gravity is 
interesting?

• Action principle as Weyl anomaly of free CFT


• Metric formulation 


   (and also unfolded and twistor formulation)


• All interaction vertices are local
Vasiliev, Shaynkman Adamo, Hahnel, McLoughlin



• Free conformal spin s field (Fradkin-Tseytlin field)


• Conformal Killing tensor


• Equation invariant under linearized gauge symmetry


  

B.  Theory of interacting conformal higher spin fields

theories. We start by describing the field theoretical realization of the type-Aℓ CHS theory

in Section 3.1 and move on to show that (1.1) holds for the type-Aℓ in Section 3.2 and for

the type-Bℓ in Section 3.3. We conclude the paper in Section 4 by discussing our main

result and commenting on its implication for the computation of the thermal partition

function and the free energy on AdS background of this theory. In particular, we point out

that turning on chemical potentials for the so(d) angular momenta provides an alternative

regularization of the sum over the infinite tower of higher-spin fields, which we also compare

to the previously used regularization in the literature. Finally, Appendix A contains the

derivation of identity (1.2), together with a more detailed description of the various modules

of importance and their field theoretical interpretations in AdSd+1/CFTd. In Appendix B

we detail the d = 2 case as a toy model, while Appendix C contains the branching rule

of the on-shell (totally-symmetric) CHS field module. In Appendix D, we provide a short

review of nonlinear CHS theory. In particular, we reexamine the formal operator approach

of Segal [28] and provide a heuristic argument supporting the “topological” nature of CHS

gravity.

2 Type-A Conformal Higher-Spin Gravity

2.1 Field theory of type-A conformal higher-spin gravity

The free theory of the conformal spin-s field in even d-dimensional Minkowski6 spacetime

Md, is described by the local action

SFT[hs] =

∫

Md

ddxhs P
s
TT !

s+ d−4
2 hs , (2.1)

where hs is a totally symmetric rank-s tensor and Ps
TT is the projector to transverse and

traceless symmetric tensors of rank s. The differential operator !s+ d−4
2 compensates the

non-locality of Ps
TT so that the action is local and conformally invariant.

• The field hs, referred to as off-shell Fradkin-Tseytlin (FT) field is a symmetric rank-s

field of conformal weight ∆hs = 2 − s. It is also called as the shadow field. Due to

the projector Ps
TT, the action has the gauge symmetry

hs ∼ hs + ∂ ξs−1 + η σs−2 , (2.2)

with ξs−1 a rank-(s− 1) symmetric tensor, η the Minkowski metric and σs−2 a rank-

(s− 2) symmetric tensor. Here, we used the schematic notation where all the indices

are implicit.

• The conformal Killing tensor is the set of parameters (ξs−1,σs−2) satisfying the

conformal Killing equation

∂ ξs−1 + η σs−2 = 0 , (2.3)

i.e. the gauge parameters leaving the FT field inert under (2.2).

6Whenever global issues would be relevant, Md should stand for its conformal compactification S1×Sd−1.
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• The equation of motion of the action (2.1) reads

P
s
TT !

s+ d−4
2 hs ≈ 0 . (2.4)

This equation is referred to as the spin-s Bach equation where equalities that only

hold on-shell will be denoted by the weak equality symbol≈ hereafter. An equivalence

class (2.2) of fields hs obeying this equation will be referred to as on-shell Fradkin-

Tseytlin field.

• The action (2.1) can be also rewritten, after integrating by part, as

SFT[hs] = (−1)s
∫

Md

ddx Cs,s!
d−4
2 Cs,s , (2.5)

where Cs,s = P
s,s
T ∂s hs is the (generalized) Weyl tensor of the FT field (here P

s,s
T

denotes the traceless projector onto the two-row Young diagram displayed in (2.6)

below). It is a traceless tensor with the symmetry of a rectangular two-row Young

diagram,

Cs,s ∼
so(1,d−1)

s
s

. (2.6)

The Weyl tensor Cs,s is a primary field with conformal weight ∆Cs,s = 2 and is in-

variant under the gauge transformations (2.2). In particular, for s = 2 it corresponds

to the linearized Weyl tensor.

So far we have considered the free theory of conformal spin-s gauge fields. An in-

teracting theory of CHS gauge fields can be constructed from the effective (also called

“induced”) action of a free scalar field [27, 29, 34, 67] in a higher-spin background. Start-

ing from the action of a free complex scalar field φ coupled to higher-spin sources hs via

traceless conserved currents Js = φ̄ ∂sφ (where φ̄ denotes the complex conjugate of φ) :

S[φ; {hs}s∈N] =
∫

Md

ddx
(

φ̄!φ+
∞
∑

s=0

Js hs
)

, (2.7)

we obtain the effective action

e−WΛ[{hs}s∈N] =

∫

Λ
Dφ e−S[φ;{hs}s∈N] , (2.8)

where Λ is the ultraviolet (UV) cut-off. The logarithmically divergent part Wlog of the

effective action WΛ is a local and nonlinear functional of the shadow fields hs. Moreover it

can be shown (see e.g. [67]) to reproduce the free action (2.1) at the quadratic order:

Wlog[{hs}s∈N] =
∞
∑

s=0

SFT[hs] +O(h3s) , (2.9)

and contains also the interaction terms O(h3s), which can be perturbatively calculated —

see for instance [29, 48, 67]. Therefore, Wlog can be regarded as an action of interacting FT

fields, up to the introduction of a dimensionless coupling constant κ : SCHS = κWlog. Note

– 5 –

theories. We start by describing the field theoretical realization of the type-Aℓ CHS theory

in Section 3.1 and move on to show that (1.1) holds for the type-Aℓ in Section 3.2 and for

the type-Bℓ in Section 3.3. We conclude the paper in Section 4 by discussing our main

result and commenting on its implication for the computation of the thermal partition

function and the free energy on AdS background of this theory. In particular, we point out

that turning on chemical potentials for the so(d) angular momenta provides an alternative

regularization of the sum over the infinite tower of higher-spin fields, which we also compare

to the previously used regularization in the literature. Finally, Appendix A contains the

derivation of identity (1.2), together with a more detailed description of the various modules

of importance and their field theoretical interpretations in AdSd+1/CFTd. In Appendix B

we detail the d = 2 case as a toy model, while Appendix C contains the branching rule

of the on-shell (totally-symmetric) CHS field module. In Appendix D, we provide a short

review of nonlinear CHS theory. In particular, we reexamine the formal operator approach

of Segal [28] and provide a heuristic argument supporting the “topological” nature of CHS

gravity.

2 Type-A Conformal Higher-Spin Gravity

2.1 Field theory of type-A conformal higher-spin gravity

The free theory of the conformal spin-s field in even d-dimensional Minkowski6 spacetime

Md, is described by the local action

SFT[hs] =

∫

Md

ddxhs P
s
TT !

s+ d−4
2 hs , (2.1)

where hs is a totally symmetric rank-s tensor and Ps
TT is the projector to transverse and

traceless symmetric tensors of rank s. The differential operator !s+ d−4
2 compensates the

non-locality of Ps
TT so that the action is local and conformally invariant.

• The field hs, referred to as off-shell Fradkin-Tseytlin (FT) field is a symmetric rank-s

field of conformal weight ∆hs = 2 − s. It is also called as the shadow field. Due to

the projector Ps
TT, the action has the gauge symmetry

hs ∼ hs + ∂ ξs−1 + η σs−2 , (2.2)

with ξs−1 a rank-(s− 1) symmetric tensor, η the Minkowski metric and σs−2 a rank-

(s− 2) symmetric tensor. Here, we used the schematic notation where all the indices

are implicit.

• The conformal Killing tensor is the set of parameters (ξs−1,σs−2) satisfying the

conformal Killing equation

∂ ξs−1 + η σs−2 = 0 , (2.3)

i.e. the gauge parameters leaving the FT field inert under (2.2).

6Whenever global issues would be relevant, Md should stand for its conformal compactification S1×Sd−1.
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• Free conformal spin s field (Fradkin-Tseytlin field)


• Conformal Killing tensor


• Equation invariant under linearized gauge symmetry


  

B.  Theory of interacting conformal higher spin fields

Conformal Killing tensors. The last module we shall introduce is the one correspond-

ing to conformal Killing tensors,

D
(

1− s; (s− 1)
) ∼=

V
(

1− s; (s− 1)
)

U
(

2− s; (s)
) . (2.21)

Here V
(

1 − s; (s − 1)
)

corresponds to the (large) gauge parameters of FT field hs and

U
(

2 − s; (s)
)

has the interpretation of pure gauge shadow fields, thus quotienting by this

submodule corresponds to imposing the conformal Killing equation (2.3). Notice that there

is a one-to-one correspondence between Killing tensors on AdSd+1 and conformal Killing

tensors on Md, so the finite-dimensional irreducible so(d, 2)-module D
(

1 − s; (s − 1)
)

has

clear bulk and boundary interpretations.

2.3 Character of the Fradkin-Tseytlin module

The characters of the modules presented in the previous section can be related to the

characters of the Verma module,

χV(∆,Y)(q,x) = q∆ Pd(q,x)χ
so(d)
Y

(x) , (2.22)

where χso(d)
Y

is the character of the subalgebra so(d) of so(2, d) and the function Pd is given,

both for even and odd d, by

Pd(q,x) =
1

(1− q)d−2r

r
∏

k=1

1

(1− q xk)(1− q x−1
k )

. (2.23)

Let us point out one important property of the above character,

χV(∆,Y)(q
−1,x) = (−1)d χV(d−∆,Y)(q,x) , (2.24)

which is simply a consequence of the behaviour of Pd under q → q−1.

In this paper, we aim to find the character of the total linearized spectrum of CHS

theory. For that, we need first the character of the spin-s on-shell FT field — which had

been obtained in [64] using the BGG resolution of finite-dimensional so(2, d)-modules [57]

— then sum over all the spins. In order to avoid the technicalities, we shall present only

key steps of the derivation, but interested readers can find more details in Appendix A.

Let us begin with the character of the spin-s on-shell FT field. From the definition

(2.18), we first find

χD(2;(s,s)) = χS(2−s;(s)) − χD(s+d−2;(s)) , (2.25)

where the off-shell FT field character χS(2−s;(s)) and the Bach tensor (or conserved current)

character χD(s+d−2;(s)) are given by

χS(2−s;(s)) = χV(2−s;(s)) − χV(1−s;(s−1)) + χD(1−s;(s−1)) , (2.26)

χD(s+d−2;(s)) = χV(s+d−2;(s)) − χV(s+d−1;(s−1)) . (2.27)

The equation (2.27) follows directly from the definition (2.16). The heuristic behind (2.26)

is that one should subtract from the character of the module V(2 − s; (s)) describing hs
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Conformal Killing tensors. The last module we shall introduce is the one correspond-

ing to conformal Killing tensors,

D
(

1− s; (s− 1)
) ∼=

V
(

1− s; (s− 1)
)

U
(

2− s; (s)
) . (2.21)

Here V
(

1 − s; (s − 1)
)

corresponds to the (large) gauge parameters of FT field hs and

U
(

2 − s; (s)
)

has the interpretation of pure gauge shadow fields, thus quotienting by this

submodule corresponds to imposing the conformal Killing equation (2.3). Notice that there

is a one-to-one correspondence between Killing tensors on AdSd+1 and conformal Killing

tensors on Md, so the finite-dimensional irreducible so(d, 2)-module D
(

1 − s; (s − 1)
)

has

clear bulk and boundary interpretations.

2.3 Character of the Fradkin-Tseytlin module

The characters of the modules presented in the previous section can be related to the

characters of the Verma module,

χV(∆,Y)(q,x) = q∆ Pd(q,x)χ
so(d)
Y

(x) , (2.22)

where χso(d)
Y

is the character of the subalgebra so(d) of so(2, d) and the function Pd is given,

both for even and odd d, by

Pd(q,x) =
1

(1− q)d−2r

r
∏

k=1

1

(1− q xk)(1− q x−1
k )

. (2.23)

Let us point out one important property of the above character,

χV(∆,Y)(q
−1,x) = (−1)d χV(d−∆,Y)(q,x) , (2.24)

which is simply a consequence of the behaviour of Pd under q → q−1.

In this paper, we aim to find the character of the total linearized spectrum of CHS

theory. For that, we need first the character of the spin-s on-shell FT field — which had

been obtained in [64] using the BGG resolution of finite-dimensional so(2, d)-modules [57]

— then sum over all the spins. In order to avoid the technicalities, we shall present only

key steps of the derivation, but interested readers can find more details in Appendix A.

Let us begin with the character of the spin-s on-shell FT field. From the definition

(2.18), we first find

χD(2;(s,s)) = χS(2−s;(s)) − χD(s+d−2;(s)) , (2.25)

where the off-shell FT field character χS(2−s;(s)) and the Bach tensor (or conserved current)

character χD(s+d−2;(s)) are given by

χS(2−s;(s)) = χV(2−s;(s)) − χV(1−s;(s−1)) + χD(1−s;(s−1)) , (2.26)

χD(s+d−2;(s)) = χV(s+d−2;(s)) − χV(s+d−1;(s−1)) . (2.27)

The equation (2.27) follows directly from the definition (2.16). The heuristic behind (2.26)

is that one should subtract from the character of the module V(2 − s; (s)) describing hs
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Conformal Killing tensors. The last module we shall introduce is the one correspond-

ing to conformal Killing tensors,

D
(

1− s; (s− 1)
) ∼=

V
(

1− s; (s− 1)
)

U
(

2− s; (s)
) . (2.21)

Here V
(

1 − s; (s − 1)
)

corresponds to the (large) gauge parameters of FT field hs and

U
(

2 − s; (s)
)

has the interpretation of pure gauge shadow fields, thus quotienting by this

submodule corresponds to imposing the conformal Killing equation (2.3). Notice that there

is a one-to-one correspondence between Killing tensors on AdSd+1 and conformal Killing

tensors on Md, so the finite-dimensional irreducible so(d, 2)-module D
(

1 − s; (s − 1)
)

has

clear bulk and boundary interpretations.

2.3 Character of the Fradkin-Tseytlin module

The characters of the modules presented in the previous section can be related to the

characters of the Verma module,

χV(∆,Y)(q,x) = q∆ Pd(q,x)χ
so(d)
Y

(x) , (2.22)

where χso(d)
Y

is the character of the subalgebra so(d) of so(2, d) and the function Pd is given,

both for even and odd d, by

Pd(q,x) =
1

(1− q)d−2r

r
∏

k=1

1

(1− q xk)(1− q x−1
k )

. (2.23)

Let us point out one important property of the above character,

χV(∆,Y)(q
−1,x) = (−1)d χV(d−∆,Y)(q,x) , (2.24)

which is simply a consequence of the behaviour of Pd under q → q−1.

In this paper, we aim to find the character of the total linearized spectrum of CHS

theory. For that, we need first the character of the spin-s on-shell FT field — which had

been obtained in [64] using the BGG resolution of finite-dimensional so(2, d)-modules [57]

— then sum over all the spins. In order to avoid the technicalities, we shall present only

key steps of the derivation, but interested readers can find more details in Appendix A.

Let us begin with the character of the spin-s on-shell FT field. From the definition

(2.18), we first find

χD(2;(s,s)) = χS(2−s;(s)) − χD(s+d−2;(s)) , (2.25)

where the off-shell FT field character χS(2−s;(s)) and the Bach tensor (or conserved current)

character χD(s+d−2;(s)) are given by

χS(2−s;(s)) = χV(2−s;(s)) − χV(1−s;(s−1)) + χD(1−s;(s−1)) , (2.26)

χD(s+d−2;(s)) = χV(s+d−2;(s)) − χV(s+d−1;(s−1)) . (2.27)

The equation (2.27) follows directly from the definition (2.16). The heuristic behind (2.26)

is that one should subtract from the character of the module V(2 − s; (s)) describing hs
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Conformal Killing tensors. The last module we shall introduce is the one correspond-

ing to conformal Killing tensors,

D
(

1− s; (s− 1)
) ∼=

V
(

1− s; (s− 1)
)

U
(

2− s; (s)
) . (2.21)

Here V
(

1 − s; (s − 1)
)

corresponds to the (large) gauge parameters of FT field hs and

U
(

2 − s; (s)
)

has the interpretation of pure gauge shadow fields, thus quotienting by this

submodule corresponds to imposing the conformal Killing equation (2.3). Notice that there

is a one-to-one correspondence between Killing tensors on AdSd+1 and conformal Killing

tensors on Md, so the finite-dimensional irreducible so(d, 2)-module D
(

1 − s; (s − 1)
)

has

clear bulk and boundary interpretations.

2.3 Character of the Fradkin-Tseytlin module

The characters of the modules presented in the previous section can be related to the

characters of the Verma module,

χV(∆,Y)(q,x) = q∆ Pd(q,x)χ
so(d)
Y

(x) , (2.22)

where χso(d)
Y

is the character of the subalgebra so(d) of so(2, d) and the function Pd is given,

both for even and odd d, by

Pd(q,x) =
1

(1− q)d−2r

r
∏

k=1

1

(1− q xk)(1− q x−1
k )

. (2.23)

Let us point out one important property of the above character,

χV(∆,Y)(q
−1,x) = (−1)d χV(d−∆,Y)(q,x) , (2.24)

which is simply a consequence of the behaviour of Pd under q → q−1.

In this paper, we aim to find the character of the total linearized spectrum of CHS

theory. For that, we need first the character of the spin-s on-shell FT field — which had

been obtained in [64] using the BGG resolution of finite-dimensional so(2, d)-modules [57]

— then sum over all the spins. In order to avoid the technicalities, we shall present only

key steps of the derivation, but interested readers can find more details in Appendix A.

Let us begin with the character of the spin-s on-shell FT field. From the definition

(2.18), we first find

χD(2;(s,s)) = χS(2−s;(s)) − χD(s+d−2;(s)) , (2.25)

where the off-shell FT field character χS(2−s;(s)) and the Bach tensor (or conserved current)

character χD(s+d−2;(s)) are given by

χS(2−s;(s)) = χV(2−s;(s)) − χV(1−s;(s−1)) + χD(1−s;(s−1)) , (2.26)

χD(s+d−2;(s)) = χV(s+d−2;(s)) − χV(s+d−1;(s−1)) . (2.27)

The equation (2.27) follows directly from the definition (2.16). The heuristic behind (2.26)

is that one should subtract from the character of the module V(2 − s; (s)) describing hs
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the character of the pure gauge modes. This can be done by subtracting the character of

the module V(1 − s; (s − 1)) describing the gauge parameters. However, this removes too

much. Indeed, when the gauge parameters are equal to conformal Killing tensors, they

leave hs inert (by definition). For this reason one has to correct by adding the character of

D(1− s; (s− 1)). In more physical terms, the module V(1− s; (s− 1)) of gauge parameters

contains large gauge transformations — which are physical — associated with the conformal

Killing tensor module D(1− s; (s− 1)). Inserting (2.26) and (2.27) in (2.25), we obtain

χD(2;(s,s)) = χD(1−s;(s−1))+χV(2−s;(s))−χV(1−s;(s−1))−χV(s+d−2;(s))+χV(s+d−1;(s−1)) , (2.28)

which relates the spin-s on-shell FT field module χD(2;(s,s)) to the character of the conformal

Killing tensor module χD(1−s;(s−1)) up to the characters of a few Verma modules. The

relation (2.28) does not yet express the character χD(2;(s,s)) in terms of Verma module

characters χV(∆;Y) alone due to the presence of χD(1−s;(s−1)) on the right-hand-side. In

principle, we could further work out to get rid of the latter module using another relation

for the modules but it will turn out to be useful to do the opposite. In fact, the expression

(2.28) naturally leads to an interesting and suggestive expression of the character of the

full CHS theory. This is thanks to the special property that the Verma module part of

(2.28) enjoys:

χV(2−s;(s))(q,x)− χV(1−s;(s−1))(q,x) = (−)dχD(s+d−2;(s))(q
−1,x) . (2.29)

Note that the above property is a simple consequence of (2.24) and (2.27). This leads to

the relation [64]

χS(2−s;(s))(q,x) = χD(1−s;(s−1))(q,x) + (−)dχD(s+d−2;(s))(q
−1,x) , (2.30)

which is valid in any dimension d > 2 (even or odd). Finally for even d, the character

of the spin-s on-shell FT field module coincides with that of the conformal Killing tensor

module up to just two additional terms:

χD(2;(s,s))(q,x) = χD(1−s;(s−1))(q,x) + χD(s+d−2;(s))(q
−1,x)− χD(s+d−2;(s))(q,x) , (2.31)

as follows from (2.25) and (2.29). Interestingly, both of these terms are given by the

characters of the conserved current module, but one is with q while the other is with q−1.

The formula (2.31) is the instance of the identity (1.2) which is relevant for type-A CHS

gravity. It applies to the degenerate case s = 0 as well, except that the first term of the

right-hand-side is absent in this case.

2.4 Character of type-A on-shell conformal higher-spin gravity

We shall use the relation (2.31) to derive the character of the CHS theory linearized spec-

trum. The theory contains the FT fields of spin 1 to ∞ and the scalar field with a kinetic

operator containing d− 4 derivatives. Focusing first on the FT fields, we consider
∞
∑

s=0

χD(2;(s,s))(q,x) =
∞
∑

s=1

χD(1−s;(s−1))(q,x) +

+
∞
∑

s=0

χD(s+d−2;(s))(q
−1,x)−

∞
∑

s=0

χD(s+d−2;(s))(q,x) . (2.32)
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the character of the pure gauge modes. This can be done by subtracting the character of

the module V(1 − s; (s − 1)) describing the gauge parameters. However, this removes too

much. Indeed, when the gauge parameters are equal to conformal Killing tensors, they

leave hs inert (by definition). For this reason one has to correct by adding the character of

D(1− s; (s− 1)). In more physical terms, the module V(1− s; (s− 1)) of gauge parameters

contains large gauge transformations — which are physical — associated with the conformal

Killing tensor module D(1− s; (s− 1)). Inserting (2.26) and (2.27) in (2.25), we obtain

χD(2;(s,s)) = χD(1−s;(s−1))+χV(2−s;(s))−χV(1−s;(s−1))−χV(s+d−2;(s))+χV(s+d−1;(s−1)) , (2.28)

which relates the spin-s on-shell FT field module χD(2;(s,s)) to the character of the conformal

Killing tensor module χD(1−s;(s−1)) up to the characters of a few Verma modules. The

relation (2.28) does not yet express the character χD(2;(s,s)) in terms of Verma module

characters χV(∆;Y) alone due to the presence of χD(1−s;(s−1)) on the right-hand-side. In

principle, we could further work out to get rid of the latter module using another relation

for the modules but it will turn out to be useful to do the opposite. In fact, the expression

(2.28) naturally leads to an interesting and suggestive expression of the character of the

full CHS theory. This is thanks to the special property that the Verma module part of

(2.28) enjoys:

χV(2−s;(s))(q,x)− χV(1−s;(s−1))(q,x) = (−)dχD(s+d−2;(s))(q
−1,x) . (2.29)

Note that the above property is a simple consequence of (2.24) and (2.27). This leads to

the relation [64]

χS(2−s;(s))(q,x) = χD(1−s;(s−1))(q,x) + (−)dχD(s+d−2;(s))(q
−1,x) , (2.30)

which is valid in any dimension d > 2 (even or odd). Finally for even d, the character

of the spin-s on-shell FT field module coincides with that of the conformal Killing tensor

module up to just two additional terms:

χD(2;(s,s))(q,x) = χD(1−s;(s−1))(q,x) + χD(s+d−2;(s))(q
−1,x)− χD(s+d−2;(s))(q,x) , (2.31)

as follows from (2.25) and (2.29). Interestingly, both of these terms are given by the

characters of the conserved current module, but one is with q while the other is with q−1.

The formula (2.31) is the instance of the identity (1.2) which is relevant for type-A CHS

gravity. It applies to the degenerate case s = 0 as well, except that the first term of the

right-hand-side is absent in this case.

2.4 Character of type-A on-shell conformal higher-spin gravity

We shall use the relation (2.31) to derive the character of the CHS theory linearized spec-

trum. The theory contains the FT fields of spin 1 to ∞ and the scalar field with a kinetic

operator containing d− 4 derivatives. Focusing first on the FT fields, we consider
∞
∑

s=0

χD(2;(s,s))(q,x) =
∞
∑

s=1

χD(1−s;(s−1))(q,x) +

+
∞
∑

s=0

χD(s+d−2;(s))(q
−1,x)−

∞
∑

s=0

χD(s+d−2;(s))(q,x) . (2.32)
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the character of the pure gauge modes. This can be done by subtracting the character of

the module V(1 − s; (s − 1)) describing the gauge parameters. However, this removes too

much. Indeed, when the gauge parameters are equal to conformal Killing tensors, they

leave hs inert (by definition). For this reason one has to correct by adding the character of

D(1− s; (s− 1)). In more physical terms, the module V(1− s; (s− 1)) of gauge parameters

contains large gauge transformations — which are physical — associated with the conformal

Killing tensor module D(1− s; (s− 1)). Inserting (2.26) and (2.27) in (2.25), we obtain

χD(2;(s,s)) = χD(1−s;(s−1))+χV(2−s;(s))−χV(1−s;(s−1))−χV(s+d−2;(s))+χV(s+d−1;(s−1)) , (2.28)

which relates the spin-s on-shell FT field module χD(2;(s,s)) to the character of the conformal

Killing tensor module χD(1−s;(s−1)) up to the characters of a few Verma modules. The

relation (2.28) does not yet express the character χD(2;(s,s)) in terms of Verma module

characters χV(∆;Y) alone due to the presence of χD(1−s;(s−1)) on the right-hand-side. In

principle, we could further work out to get rid of the latter module using another relation

for the modules but it will turn out to be useful to do the opposite. In fact, the expression

(2.28) naturally leads to an interesting and suggestive expression of the character of the

full CHS theory. This is thanks to the special property that the Verma module part of

(2.28) enjoys:

χV(2−s;(s))(q,x)− χV(1−s;(s−1))(q,x) = (−)dχD(s+d−2;(s))(q
−1,x) . (2.29)

Note that the above property is a simple consequence of (2.24) and (2.27). This leads to

the relation [64]

χS(2−s;(s))(q,x) = χD(1−s;(s−1))(q,x) + (−)dχD(s+d−2;(s))(q
−1,x) , (2.30)

which is valid in any dimension d > 2 (even or odd). Finally for even d, the character

of the spin-s on-shell FT field module coincides with that of the conformal Killing tensor

module up to just two additional terms:

χD(2;(s,s))(q,x) = χD(1−s;(s−1))(q,x) + χD(s+d−2;(s))(q
−1,x)− χD(s+d−2;(s))(q,x) , (2.31)

as follows from (2.25) and (2.29). Interestingly, both of these terms are given by the

characters of the conserved current module, but one is with q while the other is with q−1.

The formula (2.31) is the instance of the identity (1.2) which is relevant for type-A CHS

gravity. It applies to the degenerate case s = 0 as well, except that the first term of the

right-hand-side is absent in this case.

2.4 Character of type-A on-shell conformal higher-spin gravity

We shall use the relation (2.31) to derive the character of the CHS theory linearized spec-

trum. The theory contains the FT fields of spin 1 to ∞ and the scalar field with a kinetic

operator containing d− 4 derivatives. Focusing first on the FT fields, we consider
∞
∑

s=0

χD(2;(s,s))(q,x) =
∞
∑

s=1

χD(1−s;(s−1))(q,x) +

+
∞
∑

s=0

χD(s+d−2;(s))(q
−1,x)−

∞
∑

s=0

χD(s+d−2;(s))(q,x) . (2.32)
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the character of the pure gauge modes. This can be done by subtracting the character of

the module V(1 − s; (s − 1)) describing the gauge parameters. However, this removes too

much. Indeed, when the gauge parameters are equal to conformal Killing tensors, they

leave hs inert (by definition). For this reason one has to correct by adding the character of

D(1− s; (s− 1)). In more physical terms, the module V(1− s; (s− 1)) of gauge parameters

contains large gauge transformations — which are physical — associated with the conformal

Killing tensor module D(1− s; (s− 1)). Inserting (2.26) and (2.27) in (2.25), we obtain

χD(2;(s,s)) = χD(1−s;(s−1))+χV(2−s;(s))−χV(1−s;(s−1))−χV(s+d−2;(s))+χV(s+d−1;(s−1)) , (2.28)

which relates the spin-s on-shell FT field module χD(2;(s,s)) to the character of the conformal

Killing tensor module χD(1−s;(s−1)) up to the characters of a few Verma modules. The

relation (2.28) does not yet express the character χD(2;(s,s)) in terms of Verma module

characters χV(∆;Y) alone due to the presence of χD(1−s;(s−1)) on the right-hand-side. In

principle, we could further work out to get rid of the latter module using another relation

for the modules but it will turn out to be useful to do the opposite. In fact, the expression

(2.28) naturally leads to an interesting and suggestive expression of the character of the

full CHS theory. This is thanks to the special property that the Verma module part of

(2.28) enjoys:

χV(2−s;(s))(q,x)− χV(1−s;(s−1))(q,x) = (−)dχD(s+d−2;(s))(q
−1,x) . (2.29)

Note that the above property is a simple consequence of (2.24) and (2.27). This leads to

the relation [64]

χS(2−s;(s))(q,x) = χD(1−s;(s−1))(q,x) + (−)dχD(s+d−2;(s))(q
−1,x) , (2.30)

which is valid in any dimension d > 2 (even or odd). Finally for even d, the character

of the spin-s on-shell FT field module coincides with that of the conformal Killing tensor

module up to just two additional terms:

χD(2;(s,s))(q,x) = χD(1−s;(s−1))(q,x) + χD(s+d−2;(s))(q
−1,x)− χD(s+d−2;(s))(q,x) , (2.31)

as follows from (2.25) and (2.29). Interestingly, both of these terms are given by the

characters of the conserved current module, but one is with q while the other is with q−1.

The formula (2.31) is the instance of the identity (1.2) which is relevant for type-A CHS

gravity. It applies to the degenerate case s = 0 as well, except that the first term of the

right-hand-side is absent in this case.

2.4 Character of type-A on-shell conformal higher-spin gravity

We shall use the relation (2.31) to derive the character of the CHS theory linearized spec-

trum. The theory contains the FT fields of spin 1 to ∞ and the scalar field with a kinetic

operator containing d− 4 derivatives. Focusing first on the FT fields, we consider
∞
∑

s=0

χD(2;(s,s))(q,x) =
∞
∑

s=1

χD(1−s;(s−1))(q,x) +

+
∞
∑

s=0

χD(s+d−2;(s))(q
−1,x)−

∞
∑

s=0

χD(s+d−2;(s))(q,x) . (2.32)
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Conformal Killing tensors. The last module we shall introduce is the one correspond-

ing to conformal Killing tensors,

D
(

1− s; (s− 1)
) ∼=

V
(

1− s; (s− 1)
)

U
(

2− s; (s)
) . (2.21)

Here V
(

1 − s; (s − 1)
)

corresponds to the (large) gauge parameters of FT field hs and

U
(

2 − s; (s)
)

has the interpretation of pure gauge shadow fields, thus quotienting by this

submodule corresponds to imposing the conformal Killing equation (2.3). Notice that there

is a one-to-one correspondence between Killing tensors on AdSd+1 and conformal Killing

tensors on Md, so the finite-dimensional irreducible so(d, 2)-module D
(

1 − s; (s − 1)
)

has

clear bulk and boundary interpretations.

2.3 Character of the Fradkin-Tseytlin module

The characters of the modules presented in the previous section can be related to the

characters of the Verma module,

χV(∆,Y)(q,x) = q∆ Pd(q,x)χ
so(d)
Y

(x) , (2.22)

where χso(d)
Y

is the character of the subalgebra so(d) of so(2, d) and the function Pd is given,

both for even and odd d, by

Pd(q,x) =
1

(1− q)d−2r

r
∏

k=1

1

(1− q xk)(1− q x−1
k )

. (2.23)

Let us point out one important property of the above character,

χV(∆,Y)(q
−1,x) = (−1)d χV(d−∆,Y)(q,x) , (2.24)

which is simply a consequence of the behaviour of Pd under q → q−1.

In this paper, we aim to find the character of the total linearized spectrum of CHS

theory. For that, we need first the character of the spin-s on-shell FT field — which had

been obtained in [64] using the BGG resolution of finite-dimensional so(2, d)-modules [57]

— then sum over all the spins. In order to avoid the technicalities, we shall present only

key steps of the derivation, but interested readers can find more details in Appendix A.

Let us begin with the character of the spin-s on-shell FT field. From the definition

(2.18), we first find

χD(2;(s,s)) = χS(2−s;(s)) − χD(s+d−2;(s)) , (2.25)

where the off-shell FT field character χS(2−s;(s)) and the Bach tensor (or conserved current)

character χD(s+d−2;(s)) are given by

χS(2−s;(s)) = χV(2−s;(s)) − χV(1−s;(s−1)) + χD(1−s;(s−1)) , (2.26)

χD(s+d−2;(s)) = χV(s+d−2;(s)) − χV(s+d−1;(s−1)) . (2.27)

The equation (2.27) follows directly from the definition (2.16). The heuristic behind (2.26)

is that one should subtract from the character of the module V(2 − s; (s)) describing hs
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the character of the pure gauge modes. This can be done by subtracting the character of

the module V(1 − s; (s − 1)) describing the gauge parameters. However, this removes too

much. Indeed, when the gauge parameters are equal to conformal Killing tensors, they

leave hs inert (by definition). For this reason one has to correct by adding the character of

D(1− s; (s− 1)). In more physical terms, the module V(1− s; (s− 1)) of gauge parameters

contains large gauge transformations — which are physical — associated with the conformal

Killing tensor module D(1− s; (s− 1)). Inserting (2.26) and (2.27) in (2.25), we obtain

χD(2;(s,s)) = χD(1−s;(s−1))+χV(2−s;(s))−χV(1−s;(s−1))−χV(s+d−2;(s))+χV(s+d−1;(s−1)) , (2.28)

which relates the spin-s on-shell FT field module χD(2;(s,s)) to the character of the conformal

Killing tensor module χD(1−s;(s−1)) up to the characters of a few Verma modules. The

relation (2.28) does not yet express the character χD(2;(s,s)) in terms of Verma module

characters χV(∆;Y) alone due to the presence of χD(1−s;(s−1)) on the right-hand-side. In

principle, we could further work out to get rid of the latter module using another relation

for the modules but it will turn out to be useful to do the opposite. In fact, the expression

(2.28) naturally leads to an interesting and suggestive expression of the character of the

full CHS theory. This is thanks to the special property that the Verma module part of

(2.28) enjoys:

χV(2−s;(s))(q,x)− χV(1−s;(s−1))(q,x) = (−)dχD(s+d−2;(s))(q
−1,x) . (2.29)

Note that the above property is a simple consequence of (2.24) and (2.27). This leads to

the relation [64]

χS(2−s;(s))(q,x) = χD(1−s;(s−1))(q,x) + (−)dχD(s+d−2;(s))(q
−1,x) , (2.30)

which is valid in any dimension d > 2 (even or odd). Finally for even d, the character

of the spin-s on-shell FT field module coincides with that of the conformal Killing tensor

module up to just two additional terms:

χD(2;(s,s))(q,x) = χD(1−s;(s−1))(q,x) + χD(s+d−2;(s))(q
−1,x)− χD(s+d−2;(s))(q,x) , (2.31)

as follows from (2.25) and (2.29). Interestingly, both of these terms are given by the

characters of the conserved current module, but one is with q while the other is with q−1.

The formula (2.31) is the instance of the identity (1.2) which is relevant for type-A CHS

gravity. It applies to the degenerate case s = 0 as well, except that the first term of the

right-hand-side is absent in this case.

2.4 Character of type-A on-shell conformal higher-spin gravity

We shall use the relation (2.31) to derive the character of the CHS theory linearized spec-

trum. The theory contains the FT fields of spin 1 to ∞ and the scalar field with a kinetic

operator containing d− 4 derivatives. Focusing first on the FT fields, we consider
∞
∑

s=0

χD(2;(s,s))(q,x) =
∞
∑

s=1

χD(1−s;(s−1))(q,x) +

+
∞
∑

s=0

χD(s+d−2;(s))(q
−1,x)−

∞
∑

s=0

χD(s+d−2;(s))(q,x) . (2.32)
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the character of the pure gauge modes. This can be done by subtracting the character of

the module V(1 − s; (s − 1)) describing the gauge parameters. However, this removes too

much. Indeed, when the gauge parameters are equal to conformal Killing tensors, they

leave hs inert (by definition). For this reason one has to correct by adding the character of

D(1− s; (s− 1)). In more physical terms, the module V(1− s; (s− 1)) of gauge parameters

contains large gauge transformations — which are physical — associated with the conformal

Killing tensor module D(1− s; (s− 1)). Inserting (2.26) and (2.27) in (2.25), we obtain

χD(2;(s,s)) = χD(1−s;(s−1))+χV(2−s;(s))−χV(1−s;(s−1))−χV(s+d−2;(s))+χV(s+d−1;(s−1)) , (2.28)

which relates the spin-s on-shell FT field module χD(2;(s,s)) to the character of the conformal

Killing tensor module χD(1−s;(s−1)) up to the characters of a few Verma modules. The

relation (2.28) does not yet express the character χD(2;(s,s)) in terms of Verma module

characters χV(∆;Y) alone due to the presence of χD(1−s;(s−1)) on the right-hand-side. In

principle, we could further work out to get rid of the latter module using another relation

for the modules but it will turn out to be useful to do the opposite. In fact, the expression

(2.28) naturally leads to an interesting and suggestive expression of the character of the

full CHS theory. This is thanks to the special property that the Verma module part of

(2.28) enjoys:

χV(2−s;(s))(q,x)− χV(1−s;(s−1))(q,x) = (−)dχD(s+d−2;(s))(q
−1,x) . (2.29)

Note that the above property is a simple consequence of (2.24) and (2.27). This leads to

the relation [64]

χS(2−s;(s))(q,x) = χD(1−s;(s−1))(q,x) + (−)dχD(s+d−2;(s))(q
−1,x) , (2.30)

which is valid in any dimension d > 2 (even or odd). Finally for even d, the character

of the spin-s on-shell FT field module coincides with that of the conformal Killing tensor

module up to just two additional terms:

χD(2;(s,s))(q,x) = χD(1−s;(s−1))(q,x) + χD(s+d−2;(s))(q
−1,x)− χD(s+d−2;(s))(q,x) , (2.31)

as follows from (2.25) and (2.29). Interestingly, both of these terms are given by the

characters of the conserved current module, but one is with q while the other is with q−1.

The formula (2.31) is the instance of the identity (1.2) which is relevant for type-A CHS

gravity. It applies to the degenerate case s = 0 as well, except that the first term of the

right-hand-side is absent in this case.

2.4 Character of type-A on-shell conformal higher-spin gravity

We shall use the relation (2.31) to derive the character of the CHS theory linearized spec-

trum. The theory contains the FT fields of spin 1 to ∞ and the scalar field with a kinetic

operator containing d− 4 derivatives. Focusing first on the FT fields, we consider
∞
∑

s=0

χD(2;(s,s))(q,x) =
∞
∑

s=1

χD(1−s;(s−1))(q,x) +

+
∞
∑

s=0

χD(s+d−2;(s))(q
−1,x)−

∞
∑

s=0

χD(s+d−2;(s))(q,x) . (2.32)
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Conformal Killing tensors. The last module we shall introduce is the one correspond-

ing to conformal Killing tensors,

D
(

1− s; (s− 1)
) ∼=

V
(

1− s; (s− 1)
)

U
(

2− s; (s)
) . (2.21)

Here V
(

1 − s; (s − 1)
)

corresponds to the (large) gauge parameters of FT field hs and

U
(

2 − s; (s)
)

has the interpretation of pure gauge shadow fields, thus quotienting by this

submodule corresponds to imposing the conformal Killing equation (2.3). Notice that there

is a one-to-one correspondence between Killing tensors on AdSd+1 and conformal Killing

tensors on Md, so the finite-dimensional irreducible so(d, 2)-module D
(

1 − s; (s − 1)
)

has

clear bulk and boundary interpretations.

2.3 Character of the Fradkin-Tseytlin module

The characters of the modules presented in the previous section can be related to the

characters of the Verma module,

χV(∆,Y)(q,x) = q∆ Pd(q,x)χ
so(d)
Y

(x) , (2.22)

where χso(d)
Y

is the character of the subalgebra so(d) of so(2, d) and the function Pd is given,

both for even and odd d, by

Pd(q,x) =
1

(1− q)d−2r

r
∏

k=1

1

(1− q xk)(1− q x−1
k )

. (2.23)

Let us point out one important property of the above character,

χV(∆,Y)(q
−1,x) = (−1)d χV(d−∆,Y)(q,x) , (2.24)

which is simply a consequence of the behaviour of Pd under q → q−1.

In this paper, we aim to find the character of the total linearized spectrum of CHS

theory. For that, we need first the character of the spin-s on-shell FT field — which had

been obtained in [64] using the BGG resolution of finite-dimensional so(2, d)-modules [57]

— then sum over all the spins. In order to avoid the technicalities, we shall present only

key steps of the derivation, but interested readers can find more details in Appendix A.

Let us begin with the character of the spin-s on-shell FT field. From the definition

(2.18), we first find

χD(2;(s,s)) = χS(2−s;(s)) − χD(s+d−2;(s)) , (2.25)

where the off-shell FT field character χS(2−s;(s)) and the Bach tensor (or conserved current)

character χD(s+d−2;(s)) are given by

χS(2−s;(s)) = χV(2−s;(s)) − χV(1−s;(s−1)) + χD(1−s;(s−1)) , (2.26)

χD(s+d−2;(s)) = χV(s+d−2;(s)) − χV(s+d−1;(s−1)) . (2.27)

The equation (2.27) follows directly from the definition (2.16). The heuristic behind (2.26)

is that one should subtract from the character of the module V(2 − s; (s)) describing hs
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the character of the pure gauge modes. This can be done by subtracting the character of

the module V(1 − s; (s − 1)) describing the gauge parameters. However, this removes too

much. Indeed, when the gauge parameters are equal to conformal Killing tensors, they

leave hs inert (by definition). For this reason one has to correct by adding the character of

D(1− s; (s− 1)). In more physical terms, the module V(1− s; (s− 1)) of gauge parameters

contains large gauge transformations — which are physical — associated with the conformal

Killing tensor module D(1− s; (s− 1)). Inserting (2.26) and (2.27) in (2.25), we obtain

χD(2;(s,s)) = χD(1−s;(s−1))+χV(2−s;(s))−χV(1−s;(s−1))−χV(s+d−2;(s))+χV(s+d−1;(s−1)) , (2.28)

which relates the spin-s on-shell FT field module χD(2;(s,s)) to the character of the conformal

Killing tensor module χD(1−s;(s−1)) up to the characters of a few Verma modules. The

relation (2.28) does not yet express the character χD(2;(s,s)) in terms of Verma module

characters χV(∆;Y) alone due to the presence of χD(1−s;(s−1)) on the right-hand-side. In

principle, we could further work out to get rid of the latter module using another relation

for the modules but it will turn out to be useful to do the opposite. In fact, the expression

(2.28) naturally leads to an interesting and suggestive expression of the character of the

full CHS theory. This is thanks to the special property that the Verma module part of

(2.28) enjoys:

χV(2−s;(s))(q,x)− χV(1−s;(s−1))(q,x) = (−)dχD(s+d−2;(s))(q
−1,x) . (2.29)

Note that the above property is a simple consequence of (2.24) and (2.27). This leads to

the relation [64]

χS(2−s;(s))(q,x) = χD(1−s;(s−1))(q,x) + (−)dχD(s+d−2;(s))(q
−1,x) , (2.30)

which is valid in any dimension d > 2 (even or odd). Finally for even d, the character

of the spin-s on-shell FT field module coincides with that of the conformal Killing tensor

module up to just two additional terms:

χD(2;(s,s))(q,x) = χD(1−s;(s−1))(q,x) + χD(s+d−2;(s))(q
−1,x)− χD(s+d−2;(s))(q,x) , (2.31)

as follows from (2.25) and (2.29). Interestingly, both of these terms are given by the

characters of the conserved current module, but one is with q while the other is with q−1.

The formula (2.31) is the instance of the identity (1.2) which is relevant for type-A CHS

gravity. It applies to the degenerate case s = 0 as well, except that the first term of the

right-hand-side is absent in this case.

2.4 Character of type-A on-shell conformal higher-spin gravity

We shall use the relation (2.31) to derive the character of the CHS theory linearized spec-

trum. The theory contains the FT fields of spin 1 to ∞ and the scalar field with a kinetic

operator containing d− 4 derivatives. Focusing first on the FT fields, we consider
∞
∑

s=0

χD(2;(s,s))(q,x) =
∞
∑

s=1

χD(1−s;(s−1))(q,x) +

+
∞
∑

s=0

χD(s+d−2;(s))(q
−1,x)−

∞
∑

s=0

χD(s+d−2;(s))(q,x) . (2.32)
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principle, we could further work out to get rid of the latter module using another relation

for the modules but it will turn out to be useful to do the opposite. In fact, the expression
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full CHS theory. This is thanks to the special property that the Verma module part of
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χV(2−s;(s))(q,x)− χV(1−s;(s−1))(q,x) = (−)dχD(s+d−2;(s))(q
−1,x) . (2.29)

Note that the above property is a simple consequence of (2.24) and (2.27). This leads to
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χS(2−s;(s))(q,x) = χD(1−s;(s−1))(q,x) + (−)dχD(s+d−2;(s))(q
−1,x) , (2.30)

which is valid in any dimension d > 2 (even or odd). Finally for even d, the character

of the spin-s on-shell FT field module coincides with that of the conformal Killing tensor

module up to just two additional terms:

χD(2;(s,s))(q,x) = χD(1−s;(s−1))(q,x) + χD(s+d−2;(s))(q
−1,x)− χD(s+d−2;(s))(q,x) , (2.31)

as follows from (2.25) and (2.29). Interestingly, both of these terms are given by the

characters of the conserved current module, but one is with q while the other is with q−1.

The formula (2.31) is the instance of the identity (1.2) which is relevant for type-A CHS

gravity. It applies to the degenerate case s = 0 as well, except that the first term of the

right-hand-side is absent in this case.

2.4 Character of type-A on-shell conformal higher-spin gravity

We shall use the relation (2.31) to derive the character of the CHS theory linearized spec-

trum. The theory contains the FT fields of spin 1 to ∞ and the scalar field with a kinetic

operator containing d− 4 derivatives. Focusing first on the FT fields, we consider
∞
∑

s=0

χD(2;(s,s))(q,x) =
∞
∑

s=1

χD(1−s;(s−1))(q,x) +

+
∞
∑

s=0

χD(s+d−2;(s))(q
−1,x)−

∞
∑

s=0

χD(s+d−2;(s))(q,x) . (2.32)
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the character of the pure gauge modes. This can be done by subtracting the character of

the module V(1 − s; (s − 1)) describing the gauge parameters. However, this removes too

much. Indeed, when the gauge parameters are equal to conformal Killing tensors, they

leave hs inert (by definition). For this reason one has to correct by adding the character of

D(1− s; (s− 1)). In more physical terms, the module V(1− s; (s− 1)) of gauge parameters

contains large gauge transformations — which are physical — associated with the conformal
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Killing tensor module χD(1−s;(s−1)) up to the characters of a few Verma modules. The

relation (2.28) does not yet express the character χD(2;(s,s)) in terms of Verma module

characters χV(∆;Y) alone due to the presence of χD(1−s;(s−1)) on the right-hand-side. In

principle, we could further work out to get rid of the latter module using another relation

for the modules but it will turn out to be useful to do the opposite. In fact, the expression

(2.28) naturally leads to an interesting and suggestive expression of the character of the

full CHS theory. This is thanks to the special property that the Verma module part of

(2.28) enjoys:

χV(2−s;(s))(q,x)− χV(1−s;(s−1))(q,x) = (−)dχD(s+d−2;(s))(q
−1,x) . (2.29)

Note that the above property is a simple consequence of (2.24) and (2.27). This leads to

the relation [64]

χS(2−s;(s))(q,x) = χD(1−s;(s−1))(q,x) + (−)dχD(s+d−2;(s))(q
−1,x) , (2.30)

which is valid in any dimension d > 2 (even or odd). Finally for even d, the character

of the spin-s on-shell FT field module coincides with that of the conformal Killing tensor

module up to just two additional terms:

χD(2;(s,s))(q,x) = χD(1−s;(s−1))(q,x) + χD(s+d−2;(s))(q
−1,x)− χD(s+d−2;(s))(q,x) , (2.31)

as follows from (2.25) and (2.29). Interestingly, both of these terms are given by the

characters of the conserved current module, but one is with q while the other is with q−1.

The formula (2.31) is the instance of the identity (1.2) which is relevant for type-A CHS

gravity. It applies to the degenerate case s = 0 as well, except that the first term of the

right-hand-side is absent in this case.

2.4 Character of type-A on-shell conformal higher-spin gravity

We shall use the relation (2.31) to derive the character of the CHS theory linearized spec-

trum. The theory contains the FT fields of spin 1 to ∞ and the scalar field with a kinetic

operator containing d− 4 derivatives. Focusing first on the FT fields, we consider
∞
∑

s=0

χD(2;(s,s))(q,x) =
∞
∑

s=1

χD(1−s;(s−1))(q,x) +

+
∞
∑

s=0

χD(s+d−2;(s))(q
−1,x)−

∞
∑

s=0

χD(s+d−2;(s))(q,x) . (2.32)
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characters χV(∆;Y) alone due to the presence of χD(1−s;(s−1)) on the right-hand-side. In
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for the modules but it will turn out to be useful to do the opposite. In fact, the expression

(2.28) naturally leads to an interesting and suggestive expression of the character of the

full CHS theory. This is thanks to the special property that the Verma module part of

(2.28) enjoys:

χV(2−s;(s))(q,x)− χV(1−s;(s−1))(q,x) = (−)dχD(s+d−2;(s))(q
−1,x) . (2.29)

Note that the above property is a simple consequence of (2.24) and (2.27). This leads to

the relation [64]

χS(2−s;(s))(q,x) = χD(1−s;(s−1))(q,x) + (−)dχD(s+d−2;(s))(q
−1,x) , (2.30)

which is valid in any dimension d > 2 (even or odd). Finally for even d, the character

of the spin-s on-shell FT field module coincides with that of the conformal Killing tensor

module up to just two additional terms:

χD(2;(s,s))(q,x) = χD(1−s;(s−1))(q,x) + χD(s+d−2;(s))(q
−1,x)− χD(s+d−2;(s))(q,x) , (2.31)

as follows from (2.25) and (2.29). Interestingly, both of these terms are given by the

characters of the conserved current module, but one is with q while the other is with q−1.

The formula (2.31) is the instance of the identity (1.2) which is relevant for type-A CHS

gravity. It applies to the degenerate case s = 0 as well, except that the first term of the

right-hand-side is absent in this case.

2.4 Character of type-A on-shell conformal higher-spin gravity

We shall use the relation (2.31) to derive the character of the CHS theory linearized spec-

trum. The theory contains the FT fields of spin 1 to ∞ and the scalar field with a kinetic

operator containing d− 4 derivatives. Focusing first on the FT fields, we consider
∞
∑

s=0

χD(2;(s,s))(q,x) =
∞
∑

s=1

χD(1−s;(s−1))(q,x) +

+
∞
∑

s=0

χD(s+d−2;(s))(q
−1,x)−

∞
∑

s=0

χD(s+d−2;(s))(q,x) . (2.32)
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• Flato-Fronsdal

The first term in the right-hand-side of the equality is nothing but the character of the

adjoint module of the CHS symmetry algebra. Re-expressing the two series in the second

line using the Flato-Fronsdal theorem [76–78]:

(

χRac(q,x)
)2

=
∞
∑

s=0

χD(s+d−2;(s))(q,x) , (2.33)

the series (2.32) becomes

∞
∑

s=0

χD(2;(s,s))(q,x) =
∞
∑

s=0

χD(1−s;(s−1))(q,x) +

+
(

χRac(q
−1,x)

)2
−

(

χRac(q,x)
)2

. (2.34)

The second line of the above formula vanishes because the character of the Rac singleton

obeys the property

χRac(q
−1,x) = (−1)d+1 χRac(q,x) . (2.35)

Finally, we find that the character of all the on-shell fields in the free CHS theory

coincides with that of the global symmetry of CHS theory:

∞
∑

s=0

χD(2;(s,s)) =
∞
∑

s=1

χD(1−s;(s−1)) . (2.36)

This result can be understood as the equality (1.1) for type-A CHS gravity.10 Actually,

both sides of (2.36) involve divergent series which require some regularization. However,

the equality (2.36) itself only assumed the validity of the Flato-Fronsdal theorem which

does not need any regularization.11 Consequently, confident in the validity of (2.36) one

might somehow reduce the issue of regularizing the character of the CHS spectrum (the left-

hand-side) to the one of the higher-spin algebra12 (the right-hand-side). By construction,

the corresponding regularization of CHS theory would preserve higher-spin symmetries, an

important requirement of a sensible regularization but which is usually not guaranteed.

There is another virtuous corollary of the relation (1.1): the Casimir energy of free

CHS theory on the Einstein static universe R × Sd−1 is ensured to vanish in any regular-

ization consistent with (1.1). In fact, the vanishing of the Casimir energy is ensured when

10Let us illustrate why (1.1) does not hold for minimal CHS gravity with only even spins in the spectrum.

In such case, the Flato-Fronsdal theorem involves a symmetric plethysm of the Rac module:

1
2

[(

χRac(q, xi)
)2

− χRac(q
2, x2

i )
]

=
∑

s∈2N

χD(s+d−2;(s))(q,x) . (2.37)

Then (2.31) and the analogue of (2.35) imply the relation
∑

s∈2N

χD(2;(s,s))(q, xi) =
∑

s∈2N0

χD(1−s;(s−1))(q, xi) + χRac(q
2, x2

i ) , (2.38)

where the extra term on the right-hand-side has no clear interpretation in this context (as it decomposes

into an alternating sum of the characters of massless AdSd+1 fields of all integer spin).
11The only assumption is that it holds for each sum of characters (in q and in 1/q) separately, despite

the fact that the corresponding power series have distinct region of convergence (|q| < 1 and |q| > 1).
12Some convergence and regularization issues of the latter were addressed in [79].

– 11 –

The first term in the right-hand-side of the equality is nothing but the character of the

adjoint module of the CHS symmetry algebra. Re-expressing the two series in the second

line using the Flato-Fronsdal theorem [76–78]:

(

χRac(q,x)
)2

=
∞
∑

s=0

χD(s+d−2;(s))(q,x) , (2.33)

the series (2.32) becomes

∞
∑

s=0

χD(2;(s,s))(q,x) =
∞
∑

s=0

χD(1−s;(s−1))(q,x) +

+
(

χRac(q
−1,x)

)2
−

(

χRac(q,x)
)2

. (2.34)

The second line of the above formula vanishes because the character of the Rac singleton

obeys the property

χRac(q
−1,x) = (−1)d+1 χRac(q,x) . (2.35)

Finally, we find that the character of all the on-shell fields in the free CHS theory

coincides with that of the global symmetry of CHS theory:

∞
∑

s=0

χD(2;(s,s)) =
∞
∑

s=1

χD(1−s;(s−1)) . (2.36)

This result can be understood as the equality (1.1) for type-A CHS gravity.10 Actually,

both sides of (2.36) involve divergent series which require some regularization. However,

the equality (2.36) itself only assumed the validity of the Flato-Fronsdal theorem which

does not need any regularization.11 Consequently, confident in the validity of (2.36) one

might somehow reduce the issue of regularizing the character of the CHS spectrum (the left-

hand-side) to the one of the higher-spin algebra12 (the right-hand-side). By construction,

the corresponding regularization of CHS theory would preserve higher-spin symmetries, an

important requirement of a sensible regularization but which is usually not guaranteed.

There is another virtuous corollary of the relation (1.1): the Casimir energy of free

CHS theory on the Einstein static universe R × Sd−1 is ensured to vanish in any regular-
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1
2

[(

χRac(q, xi)
)2

− χRac(q
2, x2

i )
]

=
∑

s∈2N

χD(s+d−2;(s))(q,x) . (2.37)

Then (2.31) and the analogue of (2.35) imply the relation
∑

s∈2N

χD(2;(s,s))(q, xi) =
∑

s∈2N0

χD(1−s;(s−1))(q, xi) + χRac(q
2, x2

i ) , (2.38)

where the extra term on the right-hand-side has no clear interpretation in this context (as it decomposes

into an alternating sum of the characters of massless AdSd+1 fields of all integer spin).
11The only assumption is that it holds for each sum of characters (in q and in 1/q) separately, despite

the fact that the corresponding power series have distinct region of convergence (|q| < 1 and |q| > 1).
12Some convergence and regularization issues of the latter were addressed in [79].
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The first term in the right-hand-side of the equality is nothing but the character of the
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∞
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∞
∑

s=0
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∞
∑

s=0

χD(1−s;(s−1))(q,x) +

+
(

χRac(q
−1,x)
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−

(

χRac(q,x)
)2
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∞
∑
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∞
∑

s=1

χD(1−s;(s−1)) . (2.36)
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CHS theory on the Einstein static universe R × Sd−1 is ensured to vanish in any regular-
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10Let us illustrate why (1.1) does not hold for minimal CHS gravity with only even spins in the spectrum.
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• Remarks


• Divergent series


• Converge only as a distribution


• PF: chemical potential as a natural regulator 

Partition Function of CHS Gravity



Why CHS Gravity is 
interesting?

• Very special scattering amplitudes


• Zero scattering of external conformal scalars 


• Zero scattering of conformal spin 1 and 2  


• Very special partition function


• Zero Casimir energy and a-anomaly


• Linearized spectrum = Symmetry Algebra

Joung, Nakach, Tseytlin

Beccaria, Nakach, Tseytlin

Giombi, Klebanov, Pufu, Safidi, Tarnopolsky, Tseytlin



Higher Order 
Extension



Type-Al HS Gravity

• AdS dual of


• PM fields of spin s and depth t=1,3,…,2l-1


• Type-Al HSA : generated by 


•  Any d HSA with sp2 projector to 2l-1 dim rep


• Any d Vasiliev equation with sp2 projector to 2l-1 dim rep                    

An interacting theory of the depth-t FT fields can be obtained as an effective action,

similarly to the t = 1 case. We replace the free scalar action by its analog of order 2ℓ in

the derivatives and couple the system to the higher-spin sources h(t)
s via a set of currents

J (t)
s which are traceless and t-ple divergenceless:

η · J (t)
s ≈ 0 , (∂·)tJ (t)

s ≈ 0 . (3.5)

One can show that for a given free scalar action with a fixed ℓ, we can find currents of all

integers spin with t = 1, 3, . . . , 2ℓ− 1 [31, 93, 94]. These currents take the form

J (2k−1)
s = φ̄ ∂s !ℓ−k φ+ · · · , (k = 1, 2, . . . , ℓ) (3.6)

where the “. . . ” stands for additional terms ensuring (3.5), and it has the conformal weight

∆s,k = s+ d− 2k . (3.7)

The tensors J (t)
s with t > s do not satisfy any (partial-)conservation condition since (3.5)

is not defined in such case. Still, these tensors can be used as part of the basis operators

for the space of operators bilinear in the order-ℓ scalar singleton. When ℓ " d
4 , all these

operators are primary, and the space of operators with dimension s+ d− 2k and spin s is

spanned by the basis

{J (2k−1)
s ,! J (2k+1)

s , . . . ,!ℓ J (2k+2ℓ−1)
s } . (3.8)

Starting from the 2ℓ-derivative scalar field action in the background of higher-spin

fields of depths t = 1, 3, . . . , 2ℓ− 1,

S
[

φ; {h(2k−1)
s }s∈N , k∈{1,2,...,ℓ}

]

=

∫

Md

ddx
(

φ̄!ℓ φ+
∞
∑

s=0

ℓ
∑

k=1

J (2k−1)
s h(2k−1)

s

)

, (3.9)

and integrating out the scalar field φ, we obtain an effective action. Again, the logarith-

mically divergent part of the effective action is a local functional of higher-spin fields, and

for ℓ " d
4 , it has the structure

W (ℓ)

log

[

{h(2k−1)
s }s∈N , k∈{1,2,...,ℓ}

]

=
∞
∑

s=0

ℓ
∑

k=1

S(2k−1)
FT [h(2k−1)

s ] +O(h3) . (3.10)

The functional W (ℓ)

log can be regarded as an action of interacting higher-depth FT fields up

to the introduction of a dimensionless coupling constant κ : S(ℓ)
CHS = κW (ℓ)

log. This interacting

theory contains not only the higher-depth FT fields but also other non-gauge conformal

fields, referred to as special in [95]. We will refer to this class of fields as “special FT”

for the sake of uniformity in the terminology. They correspond to the fields of spin-s and

conformal weight ∆ = 1 − s + t with t # s + 1. Although they do not enjoy any gauge

symmetry, we will keep referring to the parameter t defining those fields as their depth. In

the quadratic part (3.10), the fields with 0 " s " 2 (ℓ − 1) and s+2
2 " k " ℓ correspond to

this class. The free Lagrangians of these fields still has 2(s− t) + d− 2 derivatives but do

not have any gauge symmetry. A trivial but important restriction to these fields is that the
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Type-Al HS Algebra
• Howe duality


• SO(2,d):                


• Sp(2):


• Type-A𝜆


• Quotient: 


• Type-A1/2 HSA(2,d): Subalgebra of Type-A HSA(2,d+1)

may well correspond to its global symmetry algebra. However, the viability of such a theory

is not obvious: since the value of the quadratic Casimir used for the quotienting does not

correspond any more to that of a free scalar field on the boundary, it is not clear what might

be the CFT dual. The ideal qℓ appearing for the integer value of λ = ℓ corresponds to an

(higher-order) on-shell condition for the boundary scalar, but Aλ does not admit such an

ideal, hence the boundary scalar seems to be an off-shell one with a fixed conformal weight.

It will be interesting to examine the relevant Flato-Fronsdal theorem to see whether this

CFT might be dual to the putative PM HS theory, but it is beyond the scope of the current

paper.5

4 Howe Duality and Oscillator Realization

The coset construction from UEA provides a concise definition of the PM symmetries, but

for explicit calculations we may consider another description of PM algebra. Similarly to

massless case, PM algebra Aλ can be defined using a reductive dual pair correspondence

(introduced in HS context in [4]), aka Howe duality, as

(
Sp(2) , O(d+ 2)

)
⊂ Sp(2(d+ 2)) . (4.1)

The starting point is again the metaplectic representation of sp2(d+2) which can be realized

by the star product algebra with the product,6

(f ⋆ g)(y) = exp
(1
2
ϵαβ ∂yα · ∂zβ

)
f(y) g(z)

∣∣∣
z=y

. (4.2)

The mutual stabilizers sp2 and sod+2 correspond to

Kαβ = yα · yβ , Mab = yαa y
α
b , (4.3)

and the off-shell HS algebra h̃s(sod+2) is defined as the centralizer of sp2 : any element

f(y) in h̃s(sod+2) satisfies

[ f(y) ⋆, Kαβ ] = 0 . (4.4)

By solving this condition, one can show that h̃s(sod+2) is spanned by polynomials of Mab .

The usual (on-shell) massless HS algebra is the coset of h̃s(sod+2) by the sp2-triviality

relation, Kαβ ∼ 0 . This relation actually defines the trivial representation of sp2 , which

is dual to the singleton representation of sod+2 . In the following, we shall consider gener-

alization of the last step and define the PM algebras Aλ and pℓ .

5We are indebted to the anonymous referee for pointing out this subtle point.
6As in [6], we denote sp2 indices by greek letters and sod+2 indices by roman letters. The sp2 indices

are rised and lowered using antisymmetric invariant tensors ϵαβ and ϵαβ, while sod+2 indices are rised and

lowered by symmetric metric tensor of sod+2 (which can be taken as Kroneker delta, since we work with

the complex algebra, not a particular real form) and its inverse.
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PM algebra Aλ In order to obtain Aλ from h̃s(sod+2) , we can quotient the latter with

the sp2 Casimir relation,

C2(sp2) =
1

2
Kαβ ⋆Kαβ ∼ (1− λ)(1 + λ) , (4.5)

which also fixes the quadratic Casimir of sod+2 in terms of λ to (3.5) since in h̃s(sod+2)

the two Casimirs are related by

Kαβ ⋆Kαβ +Mab ⋆M
ba = −

(d+ 2)(d− 2)

2
. (4.6)

In the case of λ = ℓ , the relation (4.5) gives an indecomposable representation consisting

of the (ℓ+ 1)-dimensional representation and the infinite-dimensional representation with

lowest (or heighest) weight ℓ+ 1 (or −(ℓ+ 1)) . Hence, the algebra Aℓ becomes the semi-

direct-sum of the coset algebra pℓ and the ideal algebra qℓ as in (3.9).

PM algebra pℓ In order to obtain directly pℓ from h̃s(sod+2) , we can quotient the latter

with the following equivalence relations

K++ ∼ 0 , K ℓ
−− ∼ 0 , (K+− + ℓ− 1) ∼ 0 , (4.7)

which define the (ℓ+1)-dimensional representation of sp2 . This relations have asymmetric

form with respect to sp2 indices, but one can show in fact that any other relations defining

the (ℓ+ 1)-dimensional representation such as,

K 1+k
++ ∼ 0 , K ℓ−k

−− ∼ 0 , (K+− + ℓ− k − 1) ∼ 0 , [ k = 0, 1, . . . , ℓ ] , (4.8)

give the same algebra pℓ. Instead of (4.8), one may also use the equivalence relation7

K(α1α2
⋆K α3α4

⋆ · · · ⋆Kα2ℓ−1α2ℓ) ∼ 0 , (4.9)

which generalizes the relation Kαβ ∼ 0 of the massless HS algebra to PM cases in a

manifestly sp2 covariant manner. However, this relation is weaker than (4.8) since the

relations K(α1α2
⋆ · · · ⋆Kα2n−1α2n) ∼ 0 with n = 0, 1, . . . , ℓ− 1 also imply (4.9). Therefore,

only complemented by (4.5), the relation (4.9) becomes equivalent to (4.8) so defines the

PM algebra pℓ . The condition (4.5) implies multiplicity one for each generator of given

spin and depth. In the following we shall use the relations (4.5) and (4.9) to derive the

trace of PM algebras. Instead, in Appendix A, we make use of relations (4.7) for alternative

derivation of the trace.

Decomposition of traceful generators into PM ones

For concreteness, let us look at the generators of Aλ (and pℓ) more closely and show that

they indeed correspond to PM Killing tensors given in (2.9). We begin with h̃s(sod+2)

spanned by

M̃ (r)

a1···ar ,b1···br = ya1α1 yb1
α1 · · · yarαr ybr

αr , (4.10)

7The same sp2 tensors have been used in decomposing generators of off-shell HS algebra into PM ones

in [14].
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Type-Al HS Algebra
• Type-Al 

• Type-A𝜆 has an ideal when 𝜆=l 

• Quotient:


• Projector:


PM algebra Aλ In order to obtain Aλ from h̃s(sod+2) , we can quotient the latter with

the sp2 Casimir relation,

C2(sp2) =
1

2
Kαβ ⋆Kαβ ∼ (1− λ)(1 + λ) , (4.5)

which also fixes the quadratic Casimir of sod+2 in terms of λ to (3.5) since in h̃s(sod+2)

the two Casimirs are related by

Kαβ ⋆Kαβ +Mab ⋆M
ba = −

(d+ 2)(d− 2)

2
. (4.6)

In the case of λ = ℓ , the relation (4.5) gives an indecomposable representation consisting

of the (ℓ+ 1)-dimensional representation and the infinite-dimensional representation with

lowest (or heighest) weight ℓ+ 1 (or −(ℓ+ 1)) . Hence, the algebra Aℓ becomes the semi-

direct-sum of the coset algebra pℓ and the ideal algebra qℓ as in (3.9).

PM algebra pℓ In order to obtain directly pℓ from h̃s(sod+2) , we can quotient the latter

with the following equivalence relations

K++ ∼ 0 , K ℓ
−− ∼ 0 , (K+− + ℓ− 1) ∼ 0 , (4.7)

which define the (ℓ+1)-dimensional representation of sp2 . This relations have asymmetric

form with respect to sp2 indices, but one can show in fact that any other relations defining

the (ℓ+ 1)-dimensional representation such as,

K 1+k
++ ∼ 0 , K ℓ−k

−− ∼ 0 , (K+− + ℓ− k − 1) ∼ 0 , [ k = 0, 1, . . . , ℓ ] , (4.8)

give the same algebra pℓ. Instead of (4.8), one may also use the equivalence relation7

K(α1α2
⋆K α3α4

⋆ · · · ⋆Kα2ℓ−1α2ℓ) ∼ 0 , (4.9)
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⋆ · · · ⋆Kα2n−1α2n) ∼ 0 with n = 0, 1, . . . , ℓ− 1 also imply (4.9). Therefore,

only complemented by (4.5), the relation (4.9) becomes equivalent to (4.8) so defines the

PM algebra pℓ . The condition (4.5) implies multiplicity one for each generator of given

spin and depth. In the following we shall use the relations (4.5) and (4.9) to derive the
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Gaussian projector

The integral form (5.10) of Πn is simple but not very useful for actual computations as it

involves

exp

(

i s

√
yα · yβ yα · yβ

2

)

. (5.12)

However, using the same method as the one described in the Appendix of [6], one can show

that the expression

Pn =

∫ 1

0
dxx

1
2 (1− x)

d−2
2 −n e−2

√
x y+· y− (5.13)

is equivalent to Πn in the following sense:

(Πn ⋆ f)(0) = (d− 2n) (Pn ⋆ f)(0) . (5.14)

Here, one can see that the problematic factor d − 2n cancels out when working with the

Gaussian projector. Since ∆λ will be used only within the setting of (5.3), we can replace

Πn by (d− 2n)Pn in the formula of the projector. Evaluating the sum in (5.7), we obtain

new projector as

Dλ = Nλ

∫ 1

0
dxx

1
2 (1− x)

d−4
2 2F1

(
1 + λ , 1− λ ;

3

2
;

1

1− x

)
e−2

√
x y+· y− , (5.15)

with

Nλ =
(−1)λ−1 Γ(d+ 1)

2d−1 Γ(d2 − λ)Γ(d2 + λ)
. (5.16)

Let us emphasize again that this projector is equivalent to ∆λ since

Tr(f) = (∆λ ⋆ f) (0) = (Dλ ⋆ f) (0) , ∀ f ∈ h̃s(sod+2) . (5.17)

The apparent advantage of this projector is that it involves a Gaussian function of oscillators

and therefore is convenient for actual calculations. Hence, we will use the expression (5.15)

in the computation of invariant bilinear form of the PM HS algebra. The trace defined with

(5.15) can be equally obtained starting from the definition (5.1) as we have demonstrated

for pℓ in Appendix A.

Bilinear form

Analogously to massless case [6], we consider now the invariant bilinear form of the algebra

given as a trace from star-product of generating functions of all PM generators:

B(W1,W2) = Tr(M(W1) ⋆M(W2)) = Tr
(
ey+·W1·y− ⋆ ey+·W2·y−

)
. (5.18)

We use (5.17) for the trace, hence consider first

1

G(2)(ρ,W )
= eρ y+· y− ⋆ ey+·W1·y− ⋆ ey+·W2·y−

∣∣
yα=0

, (5.19)
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that the expression

Pn =

∫ 1

0
dxx

1
2 (1− x)

d−2
2 −n e−2

√
x y+· y− (5.13)

is equivalent to Πn in the following sense:

(Πn ⋆ f)(0) = (d− 2n) (Pn ⋆ f)(0) . (5.14)

Here, one can see that the problematic factor d − 2n cancels out when working with the

Gaussian projector. Since ∆λ will be used only within the setting of (5.3), we can replace

Πn by (d− 2n)Pn in the formula of the projector. Evaluating the sum in (5.7), we obtain

new projector as

Dλ = Nλ

∫ 1

0
dxx

1
2 (1− x)

d−4
2 2F1

(
1 + λ , 1− λ ;

3

2
;

1

1− x

)
e−2

√
x y+· y− , (5.15)

with

Nλ =
(−1)λ−1 Γ(d+ 1)

2d−1 Γ(d2 − λ)Γ(d2 + λ)
. (5.16)

Let us emphasize again that this projector is equivalent to ∆λ since

Tr(f) = (∆λ ⋆ f) (0) = (Dλ ⋆ f) (0) , ∀ f ∈ h̃s(sod+2) . (5.17)

The apparent advantage of this projector is that it involves a Gaussian function of oscillators

and therefore is convenient for actual calculations. Hence, we will use the expression (5.15)

in the computation of invariant bilinear form of the PM HS algebra. The trace defined with

(5.15) can be equally obtained starting from the definition (5.1) as we have demonstrated

for pℓ in Appendix A.

Bilinear form

Analogously to massless case [6], we consider now the invariant bilinear form of the algebra

given as a trace from star-product of generating functions of all PM generators:

B(W1,W2) = Tr(M(W1) ⋆M(W2)) = Tr
(
ey+·W1·y− ⋆ ey+·W2·y−

)
. (5.18)

We use (5.17) for the trace, hence consider first

1

G(2)(ρ,W )
= eρ y+· y− ⋆ ey+·W1·y− ⋆ ey+·W2·y−

∣∣
yα=0

, (5.19)
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Type-Al HS Algebra
• Type-Al with l ≥d/2 

• has an ideal { (r,2n) | r>n+l-d/2 }


• Finite dim algebra as coset (ex. l-d/2=3)


• Endomorphism of 

the algebra develops an infinite-dimensional ideal corresponding to the generators M (r,2t)

with r− t > k . The coset algebra, denoted henceforth by fk , is finite dimensional one with

the generators M (r,2t) satisfying

r − t ≤ k . (6.7)

The Young diagram of M (r,2t) has r and r−2t boxes in the first and second row respectively,

so the total number is 2(r − t) . Therefore, the algebra fk consists of the generators whose

Young diagram contains no more than 2k boxes. This situation is very similar to the

one with massless HS algebras in three dimensions9, and five dimensions [6, 28] where

the corresponding HS algebras are the symmetries of symmetric tensor representations of

sl4 or, equivalently, (anti-)self-dual (spin-)tensors of so6 described by rectangular three-

row Young diagrams. For example, fk with k = 3 have (we omit the identity generator,

corresponding to Young diagram with no boxes)

{
,

}
,

{
, ,

}
,

{
, , ,

}
, (6.8)

where we have organized the generators in terms of the number of boxes. Regrouping the

same set according to spins, we get

{ }
,

{
,

}
,

{
,

}
,

{
,

}
,

{ }
,

{ }
. (6.9)

The dimension of f3 is
(
(d+1)(d+2)(d+6)

6

)2
. For generic integer value of k , the dimension of

fk is given again by a perfect square M2
k with

Mk =
(d+ 1)k−1(d+ 2k)

k!
. (6.10)

This suggests that the algebra fk is isomorphic to glMk
, an endomorphism of a sod+2

representation with dimension Mk . It turns out that this representation corresponds to

the finite-dimensional one-row sod+2 Young diagram with length k :

k . (6.11)

This can be verified by comparing the quadratic Casimir of (6.11) — given by k(k+ d) —

with that of (6.6) : the latter gives

C2(so(d+ 2)) = −
(d− 2λ)(d + 2λ)

4
= k(k + d) , (6.12)

9In fact, the three dimensional HS algebra hs[λ] can be interpreted as the partially-massless HS algebra

in (A)dS2, and allows for finite-dimensional truncations, interpreted as partially-massless algebras [26].
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Type-Al CHS Gravity
• Conformal fields of spin s and depth t=1, 3, … , 2l-1


• Gauge symmetry:


• Weyl tensor:


• Action:


• Special conformal fields: 1+s ≤ t ≤ s+(d-2)/2

As a side remark, one may observe that, the opposite sign in the last term on the right-

hand-side of (2.30) for d odd leads after summation over all spins to a relation between

characters which one can rewrite as

d odd: Dirichlet MHS⊕Neumann MHS = Higher-spin Algebra . (2.50)

This relation suggests that the linearized MHS theory on AdSd+1 spacetime of even di-

mension without imposing any boundary condition (i.e. considering both normalizable and

non-normalizable solutions) might also be somewhat “topological” in the sense that its

dynamical degrees of freedom reorganize into its asymptotic symmetries.

3 Extensions to Type-Aℓ and Type-Bℓ Theories

In the previous section, we have shown that the character of the type-A CHS theory

coincides with the character of the adjoint module of the type-A higher-spin algebra. In this

section, we provide more non-trivial evidences of this intriguing observation by generalizing

the result to the type-Aℓ and type-Bℓ theories.

3.1 Field theory of type-Aℓ theory

Let us introduce another class of conformal gauge fields which are cousins of the spin-s FT

field. They are described by totally-symmetric rank-s tensor h(t)s like the usual FT field,

but they have weaker gauge symmetry [31]

δξ,σh
(t)
s = ∂t ξs−t + η σs−2 , (3.1)

with ξs−t a rank-(s− t) symmetric tensor, η the Minkowski metric and σs−2 a rank-(s− 2)

symmetric tensor. The integer t takes value inside the range 1 ! t ! s, parameterizes these

class of fields and will be referred to as the depth (so that the usual FT field corresponds

to t = 1). As in the usual FT field case, we can define a gauge-invariant field-strength,

that is, a Weyl-like tensor as

C(t)

s,s−t+1 = P
s,s−t+1
T ∂s−t+1 h(t)

s ∼
so(1,d−1)

s
s− t+ 1

, (3.2)

which also has conformal weight ∆
C

(t)
s,s−t+1

= 2 . In even d dimensions, the action for the

depth-t and spin-s FT field is then given by

SFT(t) [h(t)
s ] = (−1)s−t+1

∫

Md

ddx C(t)

s,s−t+1"
d−4
2 C(t)

s,s−t+1 . (3.3)

After integrating by part, the action takes the form of

S
FT(t) [h(t)

s ] =

∫

Md

ddx h(t)
s P

s
TtT

"s−t+ d−2
2 h(t)

s , (3.4)

where Ps
TtT

is the t-ple transverse and traceless projector 16 which becomes local after

multiplying by the factor "s−t+1. The condition δξ,σh
(t)
s = 0 defines now the depth-t

conformal Killing tensors.

16Note that the condition of the t-ple transversality and tracelessness does not fix the projector uniquely.

We need to impose the locality condition on P
s
T
t
T
"s−t+1 to determine the action uniquely.
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Type-Al CHS Gravity
• Partially conserved currents (k=1,…,l )


• Not (partially-)conserved for t=2k-1≥s+1


• For l ≤d/4


• Basis for single trace operator with 𝛥=s+d-2k


An interacting theory of the depth-t FT fields can be obtained as an effective action,

similarly to the t = 1 case. We replace the free scalar action by its analog of order 2ℓ in

the derivatives and couple the system to the higher-spin sources h(t)
s via a set of currents

J (t)
s which are traceless and t-ple divergenceless:

η · J (t)
s ≈ 0 , (∂·)tJ (t)

s ≈ 0 . (3.5)

One can show that for a given free scalar action with a fixed ℓ, we can find currents of all

integers spin with t = 1, 3, . . . , 2ℓ− 1 [31, 93, 94]. These currents take the form

J (2k−1)
s = φ̄ ∂s !ℓ−k φ+ · · · , (k = 1, 2, . . . , ℓ) (3.6)

where the “. . . ” stands for additional terms ensuring (3.5), and it has the conformal weight

∆s,k = s+ d− 2k . (3.7)

The tensors J (t)
s with t > s do not satisfy any (partial-)conservation condition since (3.5)

is not defined in such case. Still, these tensors can be used as part of the basis operators

for the space of operators bilinear in the order-ℓ scalar singleton. When ℓ " d
4 , all these

operators are primary, and the space of operators with dimension s+ d− 2k and spin s is

spanned by the basis

{J (2k−1)
s ,! J (2k+1)

s , . . . ,!ℓ J (2k+2ℓ−1)
s } . (3.8)

Starting from the 2ℓ-derivative scalar field action in the background of higher-spin

fields of depths t = 1, 3, . . . , 2ℓ− 1,

S
[

φ; {h(2k−1)
s }s∈N , k∈{1,2,...,ℓ}

]

=

∫

Md

ddx
(

φ̄!ℓ φ+
∞
∑

s=0

ℓ
∑

k=1

J (2k−1)
s h(2k−1)

s

)

, (3.9)

and integrating out the scalar field φ, we obtain an effective action. Again, the logarith-

mically divergent part of the effective action is a local functional of higher-spin fields, and

for ℓ " d
4 , it has the structure

W (ℓ)

log

[

{h(2k−1)
s }s∈N , k∈{1,2,...,ℓ}

]

=
∞
∑

s=0

ℓ
∑

k=1

S(2k−1)
FT [h(2k−1)

s ] +O(h3) . (3.10)

The functional W (ℓ)

log can be regarded as an action of interacting higher-depth FT fields up

to the introduction of a dimensionless coupling constant κ : S(ℓ)
CHS = κW (ℓ)

log. This interacting

theory contains not only the higher-depth FT fields but also other non-gauge conformal

fields, referred to as special in [95]. We will refer to this class of fields as “special FT”

for the sake of uniformity in the terminology. They correspond to the fields of spin-s and

conformal weight ∆ = 1 − s + t with t # s + 1. Although they do not enjoy any gauge

symmetry, we will keep referring to the parameter t defining those fields as their depth. In

the quadratic part (3.10), the fields with 0 " s " 2 (ℓ − 1) and s+2
2 " k " ℓ correspond to

this class. The free Lagrangians of these fields still has 2(s− t) + d− 2 derivatives but do

not have any gauge symmetry. A trivial but important restriction to these fields is that the
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Type-Al CHS Gravity
• For l >d/4, “Extension”


• Degeneracy (both primary and descendent)


• New generator (neither primary nor descendent)


number of derivatives of their free Lagrangian cannot be negative. This gives a dimension

dependent upper bound for t, namely t ! s + d−2
2 , and hence k ! d+2s

4 . The latter bound

is irrelevant when it is not smaller than ℓ. The s = 0 case gives the lowest bound, and

hence the condition that this be not smaller than ℓ imposes ℓ ! d
4 . From the CFT point

of view, the bound implies that there is no operators with conformal weights lower than d
2 .

This bound can actually be relaxed without encountering an inconsistency due to a subtle

phenomenon discussed below. The origin of the quadratic Lagrangian in (3.10) is the local

contact terms hidden in the two point functions of J (2k−1)
s :

⟨J (2k−1)
s (x)J (2k−1)

s (0)⟩ ∝
ηs

|x|2s+2d−4k+ϵ
+ · · · −→

ϵ∼0

ρ∆s,k

ϵ

(

ηs "s+ d
2−2k + · · ·

)

δ(d)(x) , (3.11)

where ρ∆ = π
d
2 /[22∆−d Γ(∆ − d−2

2 )Γ(∆)]. One can note here that the contact terms are

absent for k > d+2s
4 .

This higher-depth CHS theory appears from the on-shell action of type-Aℓ MHS theory

in AdSd+1. Analogously to the usual FT/massless case, the depth-t FT fields in Md can

be related to the depth-t partially-massless field in AdSd+1:

S
PM(t) [Φ(t)

s = K(t) h(t)
s ] = logRS

FT(t) [h(t)
s ] + (regular or polynomially divergent terms).

(3.12)

Here, Φ(t)
s is the spin-s and depth-t partially-massless field and K(t) is the corresponding

boundary-to-bulk propagator. Both type-Aℓ theories (CHS gravity in Md and partially-

massless HS gravity in AdSd+1) have the same global symmetries: the type-Aℓ HS symme-

try algebra generated by higher-depth conformal Killing tensors.

When ℓ > d
4 , we face an interesting phenomenon referred to as extension on the CFT

side in [93]. Let us briefly review this extension hereafter. For ℓ > d
4 , the operator spectrum
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number of derivatives of their free Lagrangian cannot be negative. This gives a dimension
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2 , and hence k ! d+2s

4 . The latter bound

is irrelevant when it is not smaller than ℓ. The s = 0 case gives the lowest bound, and
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4 . From the CFT point
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This implies that the scalar field action in higher-spin background, where all currents

J (2k−1)
s with the condition (3.13) are replaced by J̃ (2k−1)

s will lead to the effective action

W (ℓ)

log containing the quadratic terms

h̃(2k−1)
s

(

!s+ d
2−2k + · · ·

)

h̃(2k−1)
s + h̃(2k−1)

s h(2k′−1)
s , (3.16)

where h̃(2k−1)
s are the source fields of the operators J̃ (2k−1)

s and we dropped numerical co-

efficients in each terms. This shows that the FT fields h(2k′−1)
s with k′ > d+2s

4 are in fact

Lagrange multipliers enforcing h̃(2k−1)
s ≈ 0 . Hence, both of h(2k′−1)

s and h̃(2k−1)
s with (3.13)

are absent in the on-shell spectrum. It is shown in [96] that the AdS counterpart of this

extension phenomenon is the mass term mixing between the fields Φ(2k−1)
s and Φ(2k′−1)

s .

s

∆

d−2

d−2ℓ

d
2

s

∆

d−2

d−2ℓ

d
2

J (2k′−1)
s

J̃ (2k−1)
s

Figure 1: The spectrum of bilinear operators, labeled by (∆, s) , of the order-ℓ scalar CFT

is depicted. The black solid circles and the blue empty circles designate respectively the

operators without conservation condition and with (partial-)conservation condition. The

number of the dotted lines is ℓ. The left diagram is the case with ℓ < d
4 , whereas the right

one with d
4 " ℓ < d

2 . The operators in the shaded region do not give rise to on-shell FT

fields.

Since the operators J (2k′−1)
s with (3.13) have conformal weights lower than d

2 , we can

think of deforming the U(N) free CFT with the double trace deformations of such operators:

∫

Md

ddx

(

φ̄a!ℓ φa +
∑

s,k′

gs,k J
(2k′−1)
s J (2k′−1)

s

)

. (3.17)

This will lead to an interacting CFT in IR, where a new class of operators J (2k′−1)
s having

the same conformal weight as J (2k−1)
s may arise. From the AdS point of view, the double-

trace deformation corresponds to changing the boundary conditions of the relevant fields.

It will be interesting to clarify how the “extension” phenomenon will affect the mechanism

of double-trace deformation/changing boundary conditions.

When ℓ # d
2 , the solution space of !ℓ φ ≈ 0 contains a conformally-invariant subspace.

Hence, we are lead to consider either the finite-dimensional quotient part, or the subspace

part. In fact, the quotient space corresponds to the space of harmonic polynomials with

maximum order ℓ− d
2 . The zero mode of the ℓ = 1 and d = 2 case is the familiar example.

– 18 –

Brust, Hinterbichler



Type-Al CHS Gravity
• For l >d/4, “Extension”


• Two point fn of current operators


• Quadratic Lagrangian of CHS Gravity


• Both fields are absent in the on-shell spectrum
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Type-Al CHS Gravity

• PF of linearized fields = PF of symmetry generators


• For l <d/4


• For d/4≤ l <d/2


Again the second line vanishes due to the property

χRacℓ
(q−1,x) = (−1)d+1χRacℓ

(q,x) , (3.22)

and in the third line we find the character corresponding to the module of the special FT

fields:

χD(1+t−s;(s))(q,x) = χV(1+t−s;(s))(q,x)− χV(s−t+d−1;(s))(q,x)

= χV(s−t+d−1;(s))(q
−1,x)− χV(s−t+d−1;(s))(q,x) . (3.23)

Here, we used again the property (2.24) for even d. The modules D(1 + t − s; (s)) with

t = s, s + 1, . . . arise from the “non-standard” BGG sequence of so(2, d), and they are

associated with the special FT fields. This module exists in fact only if s ! t − d
2 + 2,

which is the same condition that the special FT field action has positive derivatives. This

condition is satisfied if ℓ < d
4 , and we obtain

2ℓ−1
∑

t=1,3,...

[

t−1
∑

s=0

χD(1+t−s;(s)) +
∞
∑

s=t

χD(2;(s,s−t+1))

]

=
2ℓ−1
∑

t=1,3,...

∞
∑

s=t

χD(1−s;(s−t)) , (3.24)

which confirms again the observation (1.1) in the type-Aℓ cases with ℓ < d
4 .

Let us consider now the case ℓ ! d
4 where the third line of (3.21) contains terms with

s " t− d
2 + 1. For s = t− d

2 + 1, the term simply vanishes. For s " t− d
2 , it becomes

χV(s−t+d−1;(s))(q
−1,x)− χV(s−t+d−1;(s))(q,x) = −χD(s−t+d−1;(s))(q,x) , (3.25)

and cancels the characters χD(1+t−s;(s)) with t− d
2 +2 " s " t−d+1

2 + ℓ if ℓ < d
2 . In the end,

for d
4 " ℓ < d

2 we find

2ℓ−1
∑

t=1,3,...

⎡

⎢

⎣

t−1
∑

s=max{0, t−d+3
2

+ℓ}

χD(1+t−s;(s)) +
∞
∑

s=t

χD(2;(s,s−t+1))

⎤

⎥

⎦

=
2ℓ−1
∑

t=1,3,...

∞
∑

s=t

χD(1−s;(s−t)) .

(3.26)

The left-hand-side of the equality is precisely the linearized on-shell spectrum of type-Aℓ

theory for d
4 " ℓ < d

2 , and therefore confirms once again (1.1).

Going off-shell.

The character of the off-shell depth-t FT field with 1 " t " s is related to that of the

on-shell one through

χS(1+t−s;(s)) = χD(2;(s,s−t+1)) + χD(s+d−t−1;(s)) , (3.27)

whereas that of the special FT field modules S(1+ t− s; (s)) = V(1+ t− s; (s)) with t ! s

satisfy

χS(1+t−s;(s)) = χD(1+t−s;(s)) + χV(s+d−t−1;(s)) . (3.28)

Using (3.27) and (3.28), one can check that the relation (2.42) holds for any value of ℓ, i.e.

both of ℓ < d
4 and d

4 ≤ ℓ < d
2 cases.
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Type-Al CHS Gravity

• A few more remarks


•  l ≥d/2


• Type-Bl 

• Double trace deformation


This implies that the scalar field action in higher-spin background, where all currents

J (2k−1)
s with the condition (3.13) are replaced by J̃ (2k−1)

s will lead to the effective action

W (ℓ)

log containing the quadratic terms

h̃(2k−1)
s

(

!s+ d
2−2k + · · ·

)

h̃(2k−1)
s + h̃(2k−1)

s h(2k′−1)
s , (3.16)

where h̃(2k−1)
s are the source fields of the operators J̃ (2k−1)

s and we dropped numerical co-

efficients in each terms. This shows that the FT fields h(2k′−1)
s with k′ > d+2s

4 are in fact

Lagrange multipliers enforcing h̃(2k−1)
s ≈ 0 . Hence, both of h(2k′−1)

s and h̃(2k−1)
s with (3.13)

are absent in the on-shell spectrum. It is shown in [96] that the AdS counterpart of this

extension phenomenon is the mass term mixing between the fields Φ(2k−1)
s and Φ(2k′−1)

s .
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Figure 1: The spectrum of bilinear operators, labeled by (∆, s) , of the order-ℓ scalar CFT

is depicted. The black solid circles and the blue empty circles designate respectively the

operators without conservation condition and with (partial-)conservation condition. The

number of the dotted lines is ℓ. The left diagram is the case with ℓ < d
4 , whereas the right

one with d
4 " ℓ < d

2 . The operators in the shaded region do not give rise to on-shell FT

fields.

Since the operators J (2k′−1)
s with (3.13) have conformal weights lower than d

2 , we can

think of deforming the U(N) free CFT with the double trace deformations of such operators:

∫

Md

ddx

(

φ̄a!ℓ φa +
∑

s,k′

gs,k J
(2k′−1)
s J (2k′−1)

s

)

. (3.17)

This will lead to an interacting CFT in IR, where a new class of operators J (2k′−1)
s having

the same conformal weight as J (2k−1)
s may arise. From the AdS point of view, the double-

trace deformation corresponds to changing the boundary conditions of the relevant fields.

It will be interesting to clarify how the “extension” phenomenon will affect the mechanism

of double-trace deformation/changing boundary conditions.

When ℓ # d
2 , the solution space of !ℓ φ ≈ 0 contains a conformally-invariant subspace.

Hence, we are lead to consider either the finite-dimensional quotient part, or the subspace

part. In fact, the quotient space corresponds to the space of harmonic polynomials with

maximum order ℓ− d
2 . The zero mode of the ℓ = 1 and d = 2 case is the familiar example.
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Branching Rule



Branching Rule
• Decomposition of CHS field into PM fields


• Around AdS background


• Bach flat background


• Higher depth CHS fields


i.e. partially massless fields of different spins (as well as different depth) appear. Notice

that this is in accordance with the factorization of the partition function of maximal depth

FT fields derived in [66]. In higher dimensions (d = 2r ! 6) the branching rule also involves

more modules (as in the t = 1 case), namely

D
(

2; (s, s − t+ 1)
)

so(2,d)

↓
so(2,d−1)

s
⊕

σ=s−t+1

σ
⊕

τ=σ−s+t

D
(

2; (σ,σ − τ + 1)
)

⊕D
(

σ + d− τ − 2; (σ)
)

⊕
s

⊕

σ=s−t+1

d−5
⊕

n=0

D
(

d− 3− n; (σ)
)

(C.29)

∼=
s

⊕

σ=s−t+1

σ+ d−4
2

⊕

τ=σ−s+t

S
(

1 + τ − σ; (σ)
)

⊕D
(

σ + d− τ − 2; (σ)
)

Notice that this branching rule contains 2 t (s − t + d−2
2 ) modules whereas the kinetic

operator for the FT field contains s − t + d−2
2 factors (see e.g. [41]). The kernel of each

factor operator, labelled by k ranging from 0 to s − t + d−4
2 , corresponds to the module

⊕s
σ=s−t+1 S

(

1+ t+k−s; (σ)
)

⊕D
(

s+d− t−k−2; (σ)
)

. For instance, the d = 4 maximal-

depth (s = t) FT fields have two-derivative kinetic operators but their spectrum is made of

maximal-depth PM fields of spin 1 to s (see Section of 3.4 of [116] for the concrete example

of s = t = 2 case).

D A primer on nonlinear CHS gravity

The nonlinear action of type-A CHS gravity is defined as the logarithmically divergent

part of the effective action of a conformal scalar field in the background of all shadow fields

[27, 28]. As such, it remains a somewhat formal definition which becomes concrete only

once it is computed perturbatively in the weak field expansion around the conformally-flat

vacuum solution.

Formal operator approach. The tower of shadow fields hs(x) is conveniently packed

in a generating function over phase space: h(x, p) =
∑

s h
µ1···µs(x) pµ1 · · · pµs . Using Weyl

calculus, the latter can be interpreted as the symbol of a Hermitian differential operator

Ĥ(x̂, p̂) =
∑

s h
µ1···µs(x) p̂µ1 · · · p̂µs + · · · and the CHS action is the Seeley-DeWitt coeffi-

cient a d
2
[Ĝ] of the operator Ĝ = p̂2 + Ĥ. The weak field expansion of the latter coefficient

can be computed via standard techniques in quantum mechanics [28, 29]. Several qualita-

tive features of nonlinear CHS gravity are more easily understood within what Segal called

the “formal operator approach” (which will be shortened here to “formal approach” for

brevity) which consists in writing all formulae in terms of operators rather than their sym-

bols and treating these operators as large n×n matrices. This formalism is very useful for

elucidating the structure of the theory but its field-theoretical interpretation is sometimes

fragile. Only the perturbative formulation with symbols admitting power series expansion

in momenta admits a clear interpretation as a local field theory. From the point of view
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Why CHS Gravity is 
interesting?



Why CHSG is interesting?

• Relation to HS Gravity


• Conformal spin s field around AdS: partially massless 
spin s and depth 1, 2, … ,s+(d-4)/2


• Reduction to d-dim (not (d+1)-dim) HS Gravity?


• Maybe, HSG with Type-A1/2 HSA(2,d)



Why CHS Gravity is 
interesting?

• Action principle as Weyl anomaly of free CFT


• Metric formulation (and also unfolded and twistor 
formulation)


• All interaction vertices are local



Why CHS Gravity is 
interesting?

• Very special scattering amplitudes


• Zero scattering of external conformal scalars 


• Zero scattering of conformal spin 1 and 2  


• Very special partition function


• Zero Casimir energy and a-anomaly


• Linearized spectrum = Symmetry Algebra


