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Motivations

•  Constructed	a	wide	exact	solu1on	space	that	contains	many	poten1ally	
interes1ng	solu1ons	(e.g.,		4D	HS	black-hole-like	solu1ons)	and	an	effec1ve	
scheme	for	superposing	fluctua1ons.	

•  However,	their	interpreta1on	requires	a	beGer	understanding	of	many	
problema1c	issues	related	with	the	huge	gauge	symmetry	of	the	nonlinear	HS	
theory,		leading	to	a	global	formula1on:		

	
Ø  enlarging	the	set	of	relevant	classical	observables	and	assess	their	physical	

meaning:	proper	HS/stringy	generaliza1on	of	geometry?	
Ø  understanding	how	to	impose	boundary	condi1ons	on	master	fields	on	NC	

space	;		
Ø  	dis1nguishing	small/large	gauge	transforma1ons.	
	

•  Part	of	the	difficul1es	arise	because	the	tools	that	are	most	convenient	in	
solving	full	eqs.	(gauge	func1ons	that	locally	trivialize	space1me,	classical	moduli	
encoded	in	twistor	space	elements,	...	)	blur	the	immediate	iden1fica1ons	of	
Fronsdal	fields	carrying	the	dof.	
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Motivations

•  The	above	problems	are	all	1ghtly	connected	to	formal,	founda1onal	aspects	of	
the	non-linear	theory:	

	
à What	are	criteria	that	select	admissible	class	of	func1ons/gauge	

transforma1ons/field	redefini1ons?			
	

This	is	at	the	core	of	the	problem	of	comparing	the	perturba1ve	expansion	of	the	
Vasiliev	equa1ons	and	the	“non-linear	Fronsdal”	approach.		
	
à As	the	theory	is	formulated	with	func1ons	of	NC	variables,	changes	of	

orderings	are	a	delicate	issue.	To	what	extent	can	one	consider	changes	of	
ordering	admissible?	Is	there	a	preferred	basis?		

Recent	progress	achieved	by	building	a	map	bridging	the	most	convenient	“gauge”	for	
solu1on-building	(in	which	black-hole-like	solu1ons	have	been	found)	to	the	“gauge”	in	
which	the	extrac1on	of	Fronsdal	fields	makes	sense.		
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Motivations

•  Assessing	the	status	of	HS	gravity	wrt	GR	and	stringy	comple1on:		
	

Find	and	study	the	analogues	of	problema1c	solu1ons	of	GR,	such	as	black	
holes	and	cosmologies,	and	see	if	the	coupling	with	HS	fields	solves	
singulari1es	already	at	the	classical	level.		
	

•  The	embedding	of	spin	2	inside	an	infinite-dimensional	mul1plet,	due	to	HS	symmetry,	
leads	to	a	HS-covariant	formula1on	where	all	spin-s	fields	are	packed	in	genera1ng	
func1ons	(master	fields)	valued	in	an	infinite-dimensional	algebra.			

•  The	resul1ng	pairing	between	space1me-coord.	and	fibre-coord.	dependence	maps	the	
curvature	singulari1es	of	an	infinite	mul1plet	of	space1me	fields	into	an	irregular	
behaviour	of	the	master	fields	wrt	NC	fibre	coordinate	à		a	more	treatable	problem.	
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Kinematics

§  Commu1ng	oscillators																																																																												à		sp(4,R)	quartets	

§  Star-product:		

§  Inner	kleinian	operator	κ:	

§  Master-fields	living	on	correspondence	space,	locally X x Z x Y :

gauge	fields	of	all	spins	+	auxiliary	
Weyl	tensors	and	their	deriva1ves	à	local	dof	

Z-space	connec1on,	no	extra	local	dof	
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§  Full	equa1ons:	

	
§  	Z-oscillators	à	auxiliary,	non-commuta1ve	coordinates.	Equa1ons	fix	the	evolu1on		

along	Z	in	such	a	way	that	it	gives	rise	to	consistent	interac1ons	to	all	orders	among		
physical	fields,	contained	in	the	(Z-independent)	ini1al	condi1ons	
	
	

§  1st	order	differen1al	eqs	impose	a	rela1on	between	space1me	and	twistor	space		
behaviour	of	their	solu1ons	à	the	physical	informa1on	can	be	encoded	to	a	great		
extent	in	the	twistor-space	dependence.	

4D bosonic Vasiliev equations

(Vasiliev, ‘92) 
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AdS vacuum solution

	
§  U(0)	is	a	flat	connec1on,	can	be	represented	via	a	gauge	func1on	L(x|Y)	=	AdS4	coset	

	element	
	
	
	
	

§  The	associated	adjoint	and	twisted-adjoint	covariant	deriva1ves	are	defined	as	
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§  Star1ng	from	the	ini1al	condi1ons	
(supplemented	with	Z-space	gauge	choices)	the	eqs	can	be	analyzed	in	an	expansion	in		
Φ|Z=0:	
	
	
	

§  The	eqs.	with	at	least	one	component	on	Z	can	be	integrated	to	give	the	Z-dependent		
fields	in	terms	of	non-linear	couplings	involving	the	original	dof	in	Φ|Z=0:		
	
	
	
	
	
	
	

Perturbative analysis
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§  The	eqs.	with	at	least	one	component	on	Z	can	be	integrated	in	terms	of	the	original		

dof	in	Φ|Z=0	(x,Y)	(with	no	cohomology	for	Z-space	1-forms)	
	

	

§  One	is	then	leh	with	the	field	equa1ons	on	X x Y :		
	

	
§  The	simplest	choice	corresponds	to	solving	the	Z-space	eqs.	with	qA*=qB*=	q0*	,	

resolving	the	gauge	ambiguity		by	imposing	the	Vasiliev	gauge	

Perturbative analysis
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§  Subs1tu1on	in	the	remaining	equa1ons	at	first	order	gives	Klein-Gordon,	Maxwell,		
linearized	Einstein	and	Fronsdal	eqs.	in	unfolded	form	à			
Central	On-Mass-Shell	Theorem	(COMST)	:		

	

	
	

§  The	twisted	adjoint	equa1on	already	contains	the	informa1on	on	the	free	
propaga1on	of	all	spin-s	fields	via	the	Bargmann-Wigner	eqs.	on	the	curvatures.		
The	first	equa1on	is	a	gluing	of	the	Weyl	module	to	the	gauge-field	module	(via	the		
Chevalley-Eilenberg	cocycle).	
	

§  Going	to	higher	orders	gets	increasingly	difficult	(and	there	is	no	clear	ra1onale,	in	the		
standard	perturba1on	theory,	that	selects	a	specific	gauge	choice).	

	

Perturbative analysis
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§  Inser1ng	in	the	pure	space1me	equa1ons	and	sekng	Z=0,	one	gets	
	

	

Moreover,	on-shell	the	infinitely	many	Z-contrac1ons	turn	into	an	infinite	expansion		
in	deriva1ves	of	arbitrarily	high	order	à	in	a	generic	frame,	one	has	a	non-local,		
Born-Infeld-like	tail	at	every	fixed	order	in	weak	fields.		
	
[This	depends	on	the	solu1on	scheme	for	the	Z-space	eqs.:	a	different	scheme,	connected	
to		this	one	by	a	non-local	field	redefini1on,	cuts	the	infinite	tail	to	the	quasi-local	
expansion	expected	via	Noether	procedure.			(Didenko,	Gelfond,	Korybut,	Vasiliev)	
Not	clear	how	to	extend	such	scheme	beyond	cubic	level.	]	
	

§  On	the	other	hand,	almost	all	exact	solu1ons	have	been	obtained	in	different		
gauges	and	following	the	opposite	route:		
working	in	the	full	(x,Y,Z)-space	in	order	to	take	advantage	of	the	simplicity	of	the	
	eqs.	and	of	the	huge	gauge	freedom	of	the	theory.		

Perturbative analysis
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§  Surprisingly,	construc1ng	exact	solu1ons	is	simpler	than	one	would	think!		

§  Working	in	the	full	(x,Y,Z)-space	enables	one	to	keep	into	account	all	non-lineari1es	
in	a	manageable,	algebraic	form,	and	use	to	one’s	advantage	the	formal	
Simpicity	of	the	equa1ons	
(The	difficulty	one	encounters,	however,	is	then	at	the	level	of	interpreta1on:	what	
is	an	admissible	gauge?	Proper	class	of	func1ons	of	NC	variables?	Physical	
Interpreta1on	of	the	solu1on?	Meaning	of	invariants?...)	
	

§  In	general,	one	can	use	all	the	tradi1onal	methods	employed	for	solving	complicated	
differen1al	equa1ons:	using	some	convenient	gauge,	imposing	symmetries,	using		
an	algebraically	special	Ansatz,	separa1ng	variables…		
	

§  Then	one	usually	selects	a	physical	subspace	of	the	possible	solu1ons	encoded	by		
the	ini1al	choices	via	physical	requirements/global	condi1ons:	finiteness	of		
inner	product,	finiteness	and	conserva1on	of	asympto1c	charges...	
	

Exact solutions
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Exact solutions: gauge function method

§   Solve	locally	all	equa1ons	with	at	least	one	space1me	component	via	some		
gauge	func1on	g	=	g(x,Y,Z).		

§  Then	solve	the	Z-space	constraints	to	determine	the	space1me	constants	Φ’	=	Φ’	(Y,Z)	
and	S’α=	S’α(Y,Z)	.	

§  Working	in	terms	of	primed	fields	à	U=0	gauge.		
Easier	to	build	solu1ons	in	U=0	gauge,	the	equa1ons	are	algebraic.	In	order	to	read		
any	space1me	feature	(correla1on	func1ons,	asympto1c	charges,…)		
change	gauge	and	reinstate	x-dep.	by	performing	the	star-products	with	g.		

§  Classical	moduli	in		Φ’	,	S’,	g.		
	

§  X x Y x Z-space	
							eqns:  

§  Y x Z-space	
							eqns:  

(Vasiliev,   
Sezgin-Sundell, 
C.I.-Sundell, 
Giombi-Yin…) 

§  Takes	maximum	advantage	from	the	fact	that	the	physics	is	to	a	large	extent	encoded	
in	twistor	space.	
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Exact solutions: gauge function method

§  Choosing	a	simple,	field-independent	gauge	func1on,	such	as	g	=	L,		the	gauge		
fields	seem	to	remain	trivial.		
However,	there	exists	a	family	of	gauge	transforma1ons	that	ac1vate	a	non-trivial		
Weyl	curvature	for	U(1)

|Z=0		and	keep	U(1)
|Z=0	analy1c	in	Y		

à			U(1)
|Z=0	can	be	iden1fied	as	a	genera1ng		func1on	for	Fronsdal	fields.	

	
[gauge	transforma1on	built	explicitly	at	the	first	order,	proposal	to	extend	to	all		
orders	via	imposing	ALAdS	boundary	condiRons]	(De	Filippi,	C.I.,	Sundell)	

	
§  The	behaviour	of	the	fields	in	(x,Y,Z)	depends	on	a	subtle	interplay	of	gauge	func1on	

	and	primed	fields.		
§  At	fixed	gauge	func1on,	it	is	the	twistor-space	behaviour	of	the	ini1al	Φ’		and	S’α	

that	determines	the	space1me	behaviour	of	the	fields.		
In	general,	both	the	local	data	(primed	fields,	fibre	elements)	and	the	choice	of		
gauge	func1on	(through	their	boundary		values)	are	moduli	of	the	solu1ons.		
	
à Restric1ons	on	physically	admissible	solu1ons	as	well	as	determining	the		

superselec1on	sectors	of	the	theory	(to	a	good	extent)	coincides	with	selec1ng		
classes	of	func1ons	in	twistor	space.		
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§  Solving	the	remaining	twistor-space	problem	can	be	simplified	by	imposing	symmetries.	
In	the	U=0	gauge,	this	can	be	done	directly	with	rigid	generators	ε’(Y,Z):	

§  In	par1cular,	the	AdS	Killing	vectors	

can	be	wriGen	in	terms	of	the	rigid	so(3,2)	isometry	generators	
	
	
	
	
	

§  The	Lorentz	subalgebra	is	special,	since	the	form	of	the	nonlinear	equa1ons	tells	us		
what	is	the	fully	non-linear	form	of	the	Lorentz	generators.		

Imposing symmetries in U=0 gauge



§  In	the	U=0	gauge,	imposing	Lorentz	sym	in	twistor	space:	

§  Solving	two	of	the	Z-space	constraints	further	fixes	the	form	of	the	SO(3,1)-invariant		
soluRon	to	be	the	simplest	deforma1on	of	the	AdS	vacuum,	
	
	
and	the	last	eqs.	become	
	
	
and	can	be	solved	via	the	Laplace-like	transform	

§   Choosing	the	AdS	gauge	func1on	L	to	rotate	Φ’	and	S’α,	the	final	result	is	a		
scalar	profile	over	a	conformally	rescaled	AdS-metric,			

(Sezgin-Sundell ’05) 

A Lorentz-invariant solution

(Prokushkin-Vasiliev ’99) 

(C.I.- J. Raeymaekers ’15) 
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A cosmological “interpretation”

	
§  In	coordinates	

the	solu1on	reads	
	
	
	
	

	
§  This	has	the	form	of	(the	con1nua1on	to	the	minkowskian	signature	of)	a	Coleman-De	

Luccia	instanton,	manifestly	O(3,1)-symmetric,	describing	a	bubble	of	true	vacuum	
inside	AdS,	subject	to	a	big	crunch	for	τ	=	π	(a	genuine	singularity	from	the	spin-2	point	
of	view).		

§  However,	this	descrip1on	is	only	valid	in	terms	of	ordinary	(i.e.,	spin-2)	geometry,	NOT	
			HS-invariant.	In	view	of	the	fast	AdS	asympto1cs	we	may	hope	that	the	corresponding	
boundary	descrip1on	will	not	be	heavily	altered.	



18 

§  Even	in	the	U=0	gauge,	imposing	symmetries	on	what	is	to	become	a	full	solu1on	
is	not	easy.	The	Lorentz-invariant	solu1on	is	special,	since	the	Lorentz	generators	are	
known	at	full	level.			

§  To	build	a	solu1on	with	symmetries	including	transla1on	generators	(such	as	solu1ons	
that	may	be	of	cosmological	interest)	one	can	only	impose	the	symmetry	condi1ons	
order	by	order	:	i.e.,	one	has	to	start	by	imposing	them	at	linear	level	via	the	(known)	
undeformed	generators,		
	
	
and	then	compute	the	nonlinear	correc1on	in	weak-field	expansion,	
	

	
	

where	the	Weyl	zero-form	to	the	second	order	can	be	computed	by	the	usual	
perturba1on	scheme.	And	so	on		à			increasingly	complicated	procedure.	

§  However,	a	different	Ansatz,	making	use	of	separa1on	of	the	non-commuta1ve	
	twistor-space	variables,	offers	a	beGer	chance.	

Imposing symmetries in U=0 gauge
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§  A	large	solu1on	space	of	interes1ng	solu1ons	(including	HS	black	holes,	HSbh	+		
massless	scalar,	FRW-like	solu1ons,…)	take	the	form	:			
	
	
	
	
	
	
	
	à	an	all-order	perturba1ve	expansion	in	star-powers	of	the	curvatures,	absorbing	
							all	the	Y-dependence,	with	separa1on	of	Y	and	Z	variables	and	V	holomorphic		
						in	z.		

§  Whereas	the	ordinary	perturba1ve	analysis	is	organized	in	powers	of	Φ★κ	and	normal		
order,	this	can	be	considered	an	expansion	in	Ψ	in		Weyl	order	(no	contrac1ons	
	between	Y	and	Z).	

§  The	different	solu1ons	are	singled	out	by	the	different	basis	func1ons	(or	distribu1ons)	
of	Y	variables	on	which	one	expands	C	(i.e.,	Ψ)	.		

§  The	expansion	in		Ψ	enables	one	to	solve	for	the	Z	dependence	in	a	universal	way.	
							

Factorized expansion in holomorphic gauge
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§  This	is	because	Φ’=C’(Y)		à	the	Z-dependence	in	the	source		term	is	universal	and		
given	by	κz	:	
	
	
	
First	order	in	Ψ:		
	
solved	by	a	distribu1onal	z-space	element	

§  Higher	orders:			

with	basis	spinors	u±α		(u+αu-α	=	1)	entering	as	to	achieve	an	integral	realiza1on	of	a		
delta	func1on	in	a	Gaussian	basis		(one	could	have	equally	well	used	a	plane	wave	basis,	in	which		
case	an	auxiliary	spinor,	the	momentum	associated	to	z,	would	have	played	that	role).	

à  

Factorized expansion in holomorphic gauge

à  
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Comments and observations

§  The	factorized	expansion	encodes	a	(formal)	solu1on	space	in	which	Φ’	is	first-order		
exact,	and	the	Z-dependence	is	solved	in	a	universal	way		
à gives	a	systema1c	procedure	to	non-linearly	deform	solu1ons	of	the	KG	and		

Bargmann-Wigner	eqs.	into	solu1ons	of	the	full	Vasiliev	eqs.		
	
This	also	facilitates	to	some	extent	their	physical	interpreta1on	as	well	as	the		
superposi1on	of	linearized	twisted-adjoint	sectors,	e.g.,	Ψ	=	Ψbh	+	Ψpart	.			

§  Actual	solu1ons	must	sa1sfy:		
1.  The	star-products	(Ψ)*k	must	be	finite	à	condi1ons	on	the	fiber	algebra	A(Y)	
2.  The	zero-form	charges	should	be	finite	(e.g.,	well-defined	inner	product)	
3.  Vα	should	be	at	least	real-analy1c	in	Z.		
	
In	the	case	that	all	Ψ*k		can	be	expanded	over	a	common	basis	of	func1ons,		
	one	can	actually	write	down	the	full	solu1on	in	closed	form	immediately.	
	

§  Further	constraints	placed	by	requiring	the	solu1on	to	correspond	to	an	asympto1c	
configura1on	of	Fronsdal	fields	(over	AdS)	à	anali1city	in	Y	and	Z	in	Vasiliev	gauge		
and	finiteness	of	asympto1c	charges.	
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§  Which	solu1ons	of	the	linearized	equa1ons	can	be	dressed	into	full	ones?	Which	
linear	sectors	can	simultaneously	be	dressed	into	full	sectors	of	the	moduli	space?	

§  Factorized	Ansatz	already	used	to	nonlinearly	deform	massless	scalar	modes		
+	spherically	symmetric	HS	black	holes.			
	

§  Massless	par1cle	modes	build	up	unitary	so(3,2)	LW	modules.	In	D=4	there	are	2,		
unitary	scalars,	dis1nguished	by	Neumann/Dirichlet	b.c.,	with	ground	states	
	
	
	

§  Type-D,	sta1c	scalar	consists	of	the	solu1on	singular	in	the	origin	
		Generaliza1on	to	arbitrary	spin:		type-D	spin-s	Weyl	tensors	of	the	form		
	
	

	
§  The	spin-2	element	coincides	with	the	full	AdS-Schwarzschild	Weyl	tensor.		
This	follows	from	the	Kerr-Schild	property	of		bhs	in	gravity:		they	solve	both	the		
linearized	and	the	nonlinear	eqs.	In	gravity,	the	above	are	local	hallmark	of	bhs.	

Particle and HS black-hole modes

(Didenko,  Vasiliev) 
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§  Massless	par1cle	modes	build	up	unitary	so(3,2)	LW	modules.		
Unfolded	Weyl	0-form	equa1ons,	i.e.,	reformula1on	of	the	Bargmann-Wigner	eqs.	via	
a	covariant	constancy	condi1on		on	the	twisted	adjoint	module,		
	
	
show	that	par1cle	modes	can	be	encoded	into	specific	algebraic	elements:		
operators	on	singleton	Fock	space,		non-polynomial	func1ons	of	Y	with	definite		
eigenvalues	under	the	Cartan	subalgebra	(E,J)	of	so(3,2),	
	
	
	

	
	

§  Modules	built	by	solving	LW	condi1ons	[L--r,Pn|m]π	=	0	and	then	ac1ng	with	L+r.	

§  This	offers	a	simple	way	of	solving	for	all	the	AdS-massless	par1cle	modes.	

Massless particle modes
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§  	For	example,	the	rota1onally-invariant	scalar	field	modes	are	encoded	by	projectors		
|n>	<n|	
	
	
	

§  Indeed,	using	the	simple	AdS	gauge	func1on	L	(L-gauge)	we	reconstruct	exactly	the		
Breitenlohner-Freedman	scalar	modes,	
	
	
	
	

§  For	instance,	the	LW	element	n=1	(Φ’	=	4e-4E)		gives	rise	to	the	ground	state	of	the		
D(1,0)	scalar,	as	expected:	
	

Massless scalar particle modes

(C.I., P. Sundell) 
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§  By	examining	the	nonlinear	correc1ons	we	will	find	out	that	there	exists	an	enveloping-	
algebra	realiza1ons	of	bh/type-D	modes,	too.	
	

§  The	Z-space	connec1on	(and	the	gauge	fields)	receive	non-linear	correc1ons	of	all		
orders.		In	the	U=0	gauge,	they	appear	as	powers	of	Ψ	=	Φ’	★ κy . 
à  Injec1ng	massless	par1cles	into	Φ’	results	in	the	appearance	of	the	twisted		
projectors	 P n ★ κy in	Ψ,		
	
	
	
and	all	non-linear	correc1ons	can	be	expanded	over	this	basis,		due	to	the		
generalized	projector	algebra	
	
	
	
	
	
	

																																																																													

Twisted projectors

⇒ 

à 



26 

		
§  Projectors	and	twisted	projectors	form	a	subalgebra	of	the	star-product	algebra.	The		

star-mul1plica1on	with	κy	induces	a	change	of	sign	of	the	E-eigenvalue,	so	the	twisted	
projectors	à	
	
	
and	correspond,	via	twisted-adjoint	ac1on,	to	states	with	zero	energy,	staRc	à     
soliton-like	solu1ons.		
	

§  Indeed,	dressing	with	the	gauge	func1on	the	space1me	behaviour	of	individual	fields		
shows	that	they	are	spherically-symmetric	HS	black	holes!	
If	Φ’(Y)	is		expanded	in	twisted	projectors, 
	

Twisted projectors and HSBH

Coeffs.	of	the	Y-expansion	à	 a	tower	of	
	type-D	Weyl	tensors	of	all	spins	(+	deriva1ves):	

(C.I., P. Sundell) 
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§  	Each	individual	Weyl	tensor	has	a	curvature	singularity	in	r=0.		At	the	master-field	
level,	this	converts	into	the	statement	that	in	the	r	à	0	limit	the	Weyl	zero-form		
becomes	a	delta	func1on	in	Y,	
	
	
	
	
	
	

§  HS	symmetry	forces	all	such	sta1c	solu1ons	to	appear	together	in	a	infinite-dim.		
mul1plet,	packed	into	the	Y	expansion	of	the	Weyl	zero-form.	At	this	level	the	space1me	
singulari1es	have	a	more	readable	meaning:		r	appears	as	the	parameter	of	a	delta		
sequence	in	Y,	so	effec1vely	unfolding	trades	the	space1me	singulari1es	for	a		
distribu1onal	behaviour	in	Y.	
	

§  This	is	a	more	tractable	problem:	a	delta	func1on	of	non-commuta1ve	variables	can	be	
	considered	smooth,	in	the	sense	that	it	is	well-behaved	under	star	product	(and	is	in	fact	
		part	of	the	associa1ve	algebra	that	governs	such	solu1ons).		

Twisted projectors and HSBH
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§  The	factorized	Ansatz	enables	one	to	impose	symmetries	involving	transla1ons		
directly	at	full	level.			
This	is	a	consequence	of	the	(star-)factoriza1on	(first-order	exact	Weyl	zero-form	and	
Z-dependece	solved	universally):			one	can	impose	symmetries	on	the	full	Φ’	via	
undeformed	generators,	and	the	same	generators	will	correspond	to	symmetries	of	Vα!	
	
	
	
	
	
à a	chance	to	look	for	domain-wall-like	and	FRW-like	solu1ons	within	the		

factorized	Ansatz,	and	possibly	to	study	fluctua1ons	over	them.	
	

§  Possible	to	embed	g6	symmetries	inside	so(3,2)	or		so(4,1)	in	different	ways:	
		

Solutions with 6 killing vectors
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§  Candidate	domain-wall	and	FRW	solu1ons	follow	from	imposing	

	
§  Can	solve	by	“Laplace”-transforming:		

	
à The	characteris1c	eq.	has	roots		

à  Laplace	transform:	
		

Solutions with 6 killing vectors
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§  Candidate	domain-wall	and	FRW	solu1ons:	
		

Solutions with 6 killing vectors

Type M
3

g

6

✏ �2 Condition on (↵,�) � := i↵
�� (⌘

+

, ⌘�) �0 , µ 2 C , ⌫, ⌫̃, ⌫± 2 R
for g

6

closure (modulo G
10

) ⌘± ⌘ �� ±
p

✏+ �2 P = LaPa , (��1P )† = ��1P

DW(dS)

+

dS
3

o(1, 3) +1 < 0 ↵2 � �2�2 > 0 , � 6= 0 � = 0 (1,�1) ⌫
+

e�4��1P + ⌫�e4�
�1P

FLRW
+

S3

o(4) �1 < 0 ��2�2 > ↵2 � = 0 (i,�i) µe�4i��1P + µ̄e4i�
�1P

FLRW
0

Eucl
3

iso(3) �1 < 0 ��2�2 = ↵2 > 0 � = 1 (�1,�1) (⌫ � 4⌫̃��1P )e4�
�1P

FLRW(dS)

� H
3

o(1, 3) �1 < 0 ↵2 > ��2�2 � > 1 ⌘� < �1 < ⌘
+

< 0 ⌫
+

e�4⌘
+

��1P + ⌫�e�4⌘���1P

I dS
3

, H
3

o(1, 3) ±1 6= 0 ↵2 > 0 , � = 0 � = 1 (0,1) ⌫

DW(AdS)

+

dS
3

o(1, 3) +1 > 0 ↵2 > �2�2 �i� > 1 0 < i⌘� < 1 < i⌘
+

⌫
+

e�4⌘
+

��1P + ⌫�e�4⌘���1P

DW
0

Mink
3

iso(1, 2) +1 > 0 �2�2 = ↵2 > 0 �i� = 1 (�i,�i) (⌫ � 4i⌫̃��1P )e4i�
�1P

DW� AdS
3

o(2, 2) +1 > 0 �2�2 > ↵2 � = 0 (1,�1) µe�4��1P + µ̄e4�
�1P

FLRW(AdS)

� H
3

o(1, 3) �1 > 0 ↵2 + �2�2 > 0, � 6= 0 � = 0 (i,�i) ⌫
+

e�4i��1P + ⌫�e4i�
�1P

Table 1: g

6

-invariant M
3

-foliations arising in the minimal bosonic models, with I standing for instantons, and FLRWk and DWk,

respectively, standing for FLRW-like solutions (✏ = �1) and domainwalls (✏ = +1) with foliates with curvatures of sign k = sign(✏↵2 �
�2�2). The embeddings of g

6

into the isometry algebra of the (A)dS
4

vacua are governed by a vector La with L2 = ✏ and two real

parameters ↵,� > 0. The last column contains the corresponding g

6

-invariant initial data for the Weyl zero-form. Two families of

foliations with k = �1 interpolate between the cases with k = 0 and the instantons.

20
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§  The	contour	integral	realiza1on	is	instrumental	in	having	finite	(F’)*k:	

	

following	from	the	star-product	rule	
	
	
	
aher	which	one	takes	the	contour	integra1on.	
	

§  From	this	product	rule	it	follows	that	g6-states	enlarge	the	par1cle+bh	algebra	with	the		
“fusion	rules”	
	
	
	
à  the	coupling	of	g6-modes	to	par1cles	and	bh	modes		generates	pt	and	bh	modes,		

which	then	generate	an	ideal,	i.e.,	cannot	generate	new	g6.		

Solutions with 6 killing vectors
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§  The	Weyl	zero-form	in	L-gauge	contains	only	a	scalar	field.	In	planar	coordinates,		

its	profile	is	
	
	

§  At	first	order	the	metric	remains	dS4	,	but	devia1ons	due	to	the	scalar	are	expected	at	
second	order	in	the	deforma1on	parameters.		
	

§  The	internal	connec1on	is		

Iso(3)-invariant solution
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•   The	construc1on	of	exact	solu1ons	to	the	Vasiliev	equa1ons	offers	many	insights	into		
several	open	ques1ons	and	challenges	related	to	HS	gravity.	
	

•  Many	peculiar	features	of	HS	gravity	are	at	work	in	this	study:	natural	theore1cal	lab	
to	test	some	of	our	expecta1ons,	and	to	get	inspira1on	for	new	ideas	(e.g.,	insis1ng		
on	encoding	space1me	physics	in	the	fibre	à	enlarging	the	class	of	func1ons		
of	oscillators,	looking	for	more	efficient	ways	of	solving	the	eqs.	à	studying	effects	
of	changing	ordering	prescrip1ons,	…	)	

•  Many	interes1ng	open	ques1ons	to	inves1gate:			

Ø  	HS	bhs	or	bh	microstates?	
Ø  proper	formula1on	of	boundary	value	problem?	
Ø  	mul1-soliton	solu1ons?		
Ø  HS	geometry	
Ø  …	

Conclusions and outlook


