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Large-N limit

The large-N limit is a precious tool for accessing non-perturbative phenomena in QFT

Typical case: consider a theory with fields transforming in a representation
of a compact Lie group (e.g. O(N) or U(N)),
and an action invariant under the (global) group transformations

General idea: choose a rescaling of the couplings with N such that

1 the large-N limit of the theory exists and it is non-trivial;

2 only a subset of the Feynman diagrams survives in the limit.
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Large-N limit of vectors

e.g. fields in the fundamental representation of O(N) (“O(N) model”)

Large N : Cactus diagrams

→ Closed Schwinger-Dyson equation for 2-point function
= mass gap equation (no anomalous dimension)
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Large-N limit of matrices

e.g. fields in the adjoint representation of U(N) (Hermitian matrix model)

⇒ genus expansion:

lnZ =
∑
g≥0

N2−2gFg(λ) ∼ N2 + +O(N−2)

Large-N limit: planar diagrams

→ No closed Schwinger-Dyson equation; still very difficult

In zero dimension there are many techniques for solving matrix models,
but they typically become very hard in higher dimensions
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Large-N limit of tensors

e.g. fields in the fundamental representation of O(N)3

A new type of large-N limit: the melonic limit of tensor-valued field theories

More complicated than the vector case, but simpler than the matrix case

It is a recent discovery [2010-on: Gurau, Rivasseau, Bonzom, Carrozza, Tanasa, . . . ]
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Melonic revival

Recently, the melonic limit has been rediscovered in the context of AdS/CFT :

In the SYK model and in models of tensor quantum mechanics, the melonic limit leads to
interesting features for a holographic description of extremal black holes

However, SYK and tensor models have important differences

This talk:
In the SYK model, a bilocal action formulation plays a key role, but an analog formulation was
missing for its tensorial cousins

⇒ Introduce the two-particle irreducible (2PI) effective action for tensor models
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Overview

SYK model

Tensor models in d = 1

2PI effective action

7 / 29



SYK model



The Sachdev-Ye-Kitaev (SYK) model

A model of N Majorana fermions in d = 1: [Sachdev,Ye (1992); Kitaev (2015)]

SSYK[ψ] =

∫
dt

1

2

N∑
a=1

ψa∂tψa +
iq/2

q!

∑
a1,...,aq

Ja1...aqψa1 . . . ψaq


where Ja1...aq is a random tensorial coupling (⇒ no O(N) invariance),
with Gaussian distribution:

P [Ja1...aq ] ∝ exp

{
−
Nq−1(Ja1...aq )2

2(q − 1)!J2

}

Randomness ⇒ quenched average of intensive quantities,
e.g. the free energy:

F = −
1

N
lnZ = −

1

N

∫ ∏
a1<a2<...<aq

[dJa1...aq ]P [Ja1...aq ] ln

∫
[dψ]e−SSYK[ψ]

Quenched average can be represented with new lines in connected fermionic graphs
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Quenched average can be represented with new lines in connected fermionic graphs

At large-N , after the quenched average on Ja1...aq , the leading-order diagrams are melonic
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Conformal limit

Because of the melonic dominance, the large-N Schwinger-Dyson equations form a closed
equation for the 2-point function, e.g. for q = 4:

G(ω) = (−iω − Σ(ω))−1

G = + + + ...

Σ(ω) = J2

∫
dω1dω2

(2π)2
G(ω1)G(ω2)G(ω − ω1 − ω2)

G

G

G

=

1

G(ω)
=

In the UV limit ω →∞ the self energy Σ(ω) can be neglected: the theory is asymptotically
free

In the IR limit ω → 0 the free inverse propagator (“−iω”) can be neglected and one
obtains a conformal invariant solution:

G(ω) ∼ ω2∆−1 , ∆ = 1/q

The Schwinger-Dyson equations are the field equations for an effective bilocal action
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Replica trick

1 A standard method for dealing with quenched average: replica trick, i.e.

lnZ = lim
n→0

∂nZn

= lim
n→0

∂n

∫ ∏
a1<a2<...<aq

[dJa1...aq ]P [Ja1...aq ]

∫ n∏
α=1

[dψα]e−SSYK[ψα]

= lim
n→0

∂n

∫ ( n∏
α=1

[dψα]

)
e
− 1

2

∑
α

∫
t ψ

α
a ∂tψ

α
a+ iq J2

2qNq−1

∑
α,β

∫
t ψ

α
a1
...ψαaq

∫
t′ ψ

β
a1
...ψβaq

2 Introduce bilocal variables: insert

1 =

∫ 1...n∏
αβ

[dGαβ ]δ

(
NGαβ(t, t′)−

∑
a

ψαa (t)ψβa (t′)

)

=

∫ 1...n∏
αβ

[dGαβ ][dΣαβ ] e
− 1

2

∫
t,t′ Σαβ(t,t′)

(
NGαβ(t,t′)−

∑
a ψ

α
a (t)ψβa (t′)

)

inside functional integral, use the constraint in the interaction part (∼ Gq),
and integrate out the fermions (now Gaussian)
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Bilocal effective action

Zn =

∫ 1...n∏
αβ

[dGαβ ][dΣαβ ]

 e−NSeff [G,Σ]

where

Seff [G,Σ] = −
1

2
T̂r ln(∂t − Σ) +

1

2

1...n∑
αβ

∫
t,t′

(
Σαβ(t, t′)Gαβ(t, t′)−

J2

q
(Gαβ(t, t′))q

)
N -dependence factors in front of the action: large-N limit is given by saddle-point
approximation

For SYK there is no replica symmetry breaking at large N (TRSB ∼ e−
√
N )

[Georges, Parcollet, Sachdev - 2001], hence we can use a replica-symmetric and diagonal ansatz:

Gαβ(t, t′) = δαβG(t, t′) +
1

N1/2
gαβ(t, t′)

with G(t, t′) solving the saddle point equation (= Schwinger-Dyson equation)

At leading and subleading order in 1
N

, n = 0 coincides with n = 1 (quenched = annealed)

Leading order result:

lnZLO = N

(
1

2
Tr[lnG−1] +

1

2
Tr[∂tG(t, t′)] +

J2

2q

∫
t,t′

G(t, t′)q
)

again conformal invariant in the IR
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Bilocality and holography

SYK has attracted attention because the CFT1 is expected to have an AdS2 dual,
and thus describe the microscopics of near extremal black holes

Bilocal action formulation is a useful tool in the construction of the holographic dual:
bilocality ∼ extra dimensions

Basic idea: 2d coordinates ⇒ d+ 1 coordinates + spin [Das, Jevicki - ’03]

In SYK: [Jevicki, Suzuki, Yoon - ’16]

d = 1 ⇒ no spin

t =
1

2
(t1 + t2) , z =

1

2
(t1 − t2)

g(t1, t2) ⇒ φ(t, z)

From the quadratic fluctuations around saddle point:

Seff ∼
1

2

∑
n

∫
d2x
√
−g[−gµν∂µφn∂νφn − hn(1− hn)φ2

n]

⇒ the bilocal field packs a sequence of AdS2 scalars, with growing mass

hn ' 2∆ + 2n+ 1 : conformal dimension of ψa∂
2n+1
t ψa
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Bilocal action and Jackiw-Teitelboim gravity

Bilocal action has also played an important role in identifying the gravitational part of the bulk
dual: [Kitaev - ’15; Maldacena,Stanford - ’16]

Fluctuations gαβ(t, t′) around saddle point have an exact zero mode in the IR/conformal
limit:

lnZNLO = −
1

2
Tr[ln(I− − K̃I−)]

with the ladder kernel:

K̃(t1, t2; t3, t4) = −J2(q − 1)|G(t1, t2)|
q−2
2 G(t1, t3)G(t2, t4) |G(t3, t4)|

q−2
2

Zero mode: K̃ = 1 eigenmode

⇒ non-conformal corrections lead to an effective action for the zero mode,
a.k.a. the Schwarzian action

SSch = −N
α

J

∫
dτ

(
f ′′′

f ′
−

3

2

(
f ′′

f ′

)2
)

Effective action for pseudo-Golstone modes of reprametrization invariance (τ → f(τ))
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Bilocal action and Jackiw-Teitelboim gravity

Bilocal action has also played an important role in identifying the gravitational part of the bulk
dual: [Kitaev - ’15; Maldacena,Stanford - ’16]

Jackiw-Teitelboim gravity

SJT = −
1

16πG

[∫
M
d2x
√
g(R− 2Λ)φ+ 2

∫
∂M

dtφK

]
has similar phenomenon: singularity at conformal AdS boundary
→ cut out near-boundary region
→ Schwarzian action from on-shell evaluation of the boundary action

⇒ Same pattern of symmetry breaking, controlled by the same effective action
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Tensor models in d = 1



Tensor models

The same melonic limit, and hence conformal symmetry in the IR, can be obtained without
disorder, but replacing vectors with tensors
[Witten - ’16]

Three types of models:

Colored tensor models: with q distinguished fields with q − 1 distinguished indices
⇒ symmetry group: O(N)q(q−1)/2

[Gurau - ’10]

Uncolored tensor models: with only one field with q − 1 distinguished indices
⇒ symmetry group: O(N)q−1

[Bonzom, Gurau, Rivasseau - ’12 (U(N)); Carrozza, Tanasa - ’15 (O(N))]

Symmetric tensor models: with only one field with q − 1 indices, in an irreducible
representation of O(N) (e.g. symmetric-traceless, antisymmetric, etc.)
[Klebanov,Tarnopolsky - ’17; DB, Carrozza, Gurau, Kolanowski - ’17]
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Gurau-Witten model [Gurau - ’10; Witten - ’16]

d = 1 fermionic generalization of colored tensor model

Fields: q Majorana fermions in fundamental representation of O(N)q−1;
field c (= 1, . . . , q) has an index c1(6= c) transforming with the same group element as the index
c of field c1
⇒ symmetry group: O(N)q(q−1)/2

SGW[ψ] =
1

2

q∑
c=1

∫
t
ψ

(c)
ac (t)∂tψ

(c)
ac (t)

+
iq/2 λ

N(q−1)(q−2)/4

∫
t

q∏
c=1

ψ
(c)
ac (t)

∏
c1<c2

δac1c2a
c2
c1

where ac = (acc1 |c1 ∈ {1, . . . , q}\{c})

24
32

1 4

3412

23

14

13
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CTKT model [Carrozza,Tanasa - ’15; Klebanov,Tarnopolsky - ’17]

d = 1 fermionic generalization of uncolored tensor model

Field: Majorana fermion in fundamental representation of O(N)q−1.

SCTKT[ψ] =

∫
t

(
1

2
ψabc(t)∂tψabc(t) +

λ

4N3/2
ψa1a2a3 (t)ψa1b2b3 (t)ψb1a2b3 (t)ψb1b2a3 (t)

)
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Feynman graphs

Perturbative expansion:

Represent Wick contraction of two tensors by dashed line, e.g.:

2 1

1 2

3

1 2

2 1

3
` `

Ordinary Feynman diagrams, tracking only ordinary spacetime/momentum integrals are
obtained by shrinking interaction bubbles to a point:

The leading order in 1/N is given by melonic diagrams

⇒ same Schwinger-Dyson equation as in SYK
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Tensor models vs SYK

Advantages of tensor models:

No quenched disorder, which is unnatural for AdS/CFT

In SYK the O(N) symmetry only emerges after quenching;
in tensor models it is there from the beginning, so it can be gauged:

⇒ Gauging gets rid of the non-singlet states,
which are an obstacle in the search for the gravity dual

Subleading corrections better understood (several years of results from tensor models
and no tricky issues with replica limit)

Important differences:

In non-gauged version, global symmetry becomes almost local in IR: new soft modes
besides the Schwarzian mode [Minwalla et al. - ’17; DB, Gurau - ’18]

Many more invariants (singlets) in tensor models: complicated bulk dual

No collective field formulation
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2PI effective action for tensor models
JHEP 05 (2018) 156 [arXiv:1802.05500], with R. Gurau



2PI effective action – general definition [Cornwall, Jackiw, Tomboulis - ’74]

Define the generating functional:

W[j, k] = ln

∫
[dϕ] exp

{
− S[ϕ] + jaϕa +

1

2
ϕakabϕb

}
The 2PI effective action is the double Legendre transform with respect to the sources:

Γ[φ,G] = −W[J,K] + Jaφa +
1

2
φaKabφb +

1

2
Tr[GK]

with J, and K such that:

δW

δja
[J,K] = 〈ϕa〉J,K = φa

δW

δkab
[J,K] =

1

2
〈ϕaϕb〉J,K =

1

2
(Gab + φaφb)

and

δΓ

δφa
[φ,G] = Ja[φ,G] + Kab[φ,G]φb

δΓ

δGab
[φ,G] =

1

2
Kba[φ,G]

J = K = 0 ⇒ φ = 〈ϕ〉, G = 2〈ϕϕ〉c
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2PI effective action – loop expansion [Cornwall, Jackiw, Tomboulis - ’74]

It is not hard to prove that

Γ[φ,G] = S[φ]︸︷︷︸
tree level

+
1

2
Tr[lnG−1] +

1

2
Tr[Sφφ[φ]G]︸ ︷︷ ︸

one loop

+ Γ2[φ,G]︸ ︷︷ ︸
two or more loops

with the following Feynman rules:

vertices: Sint[φ, ϕ] = S[φ+ ϕ]starting at cubic order in ϕ

propagator: G(x, y)

Γ2[φ,G] is given by the sum of all the (n ≥ 2)-loops two-particle irreducible vacuum graphs

Hint:

δΓ

δGab
= 0 ⇒ G−1 = Sφφ[φ] + 2

δΓ2

δG
= G−1

0 − Σ

20 / 29



2PI effective action – loop expansion [Cornwall, Jackiw, Tomboulis - ’74]

It is not hard to prove that

Γ[φ,G] = S[φ]︸︷︷︸
tree level

+
1

2
Tr[lnG−1] +

1

2
Tr[Sφφ[φ]G]︸ ︷︷ ︸

one loop

+ Γ2[φ,G]︸ ︷︷ ︸
two or more loops

with the following Feynman rules:

vertices: Sint[φ, ϕ] = S[φ+ ϕ]starting at cubic order in ϕ

propagator: G(x, y)

Γ2[φ,G] is given by the sum of all the (n ≥ 2)-loops two-particle irreducible vacuum graphs

Hint:

δΓ

δGab
= 0 ⇒ G−1 = Sφφ[φ] + 2

δΓ2

δG
= G−1

0 − Σ

20 / 29



Large-N limit of the 2PI effective action
– vector O(N) model –

S[ϕ] =
1

2

∫
x,y

ϕa(x)C−1(x, y)ϕa(y) +
λ

4!N

∫
x
(ϕa(x)ϕa(x))2

vertex (φ = 0) :
ba

a b

2PI vacuum graphs: ︸ ︷︷ ︸
∼N

...+ + + +

︸ ︷︷ ︸
∼1

+O

(
1

N

)

Γ2[φ,G] = N
λ

4!

∫
x
G(x, x)2 +

1

2
Tr[ln(1 +

λ

6
G(x, y)2)] +O

(
1

N

)
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Large-N limit of the 2PI effective action
– vector O(N) model –

S[ϕ] =
1

2

∫
x,y

ϕa(x)C−1(x, y)ϕa(y) +
λ

4!N

∫
x
(ϕa(x)ϕa(x))2

Loop structure of 1/N expansion: from same trick as in SYK

Z =

∫
[dϕ] e−S[ϕ]

=

∫
[dϕ][dG̃][dΣ̃] e

−S[ϕ]− 1
2

∫
x,y Σ̃(x,y)(NG̃(x,y)−

∑
a ϕa(x)ϕa(y))

=

∫
[dG̃][dΣ̃] e−N{

1
2

Tr[(C−1−Σ̃)G̃]+ 1
2

Tr[ln(Σ̃)]+ λ
4!

∫
x G̃(x,x)2}

≡
∫

[dG̃][dΣ̃] e−NSeff [G̃,Σ̃]
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Large-N limit of the 2PI effective action
– GW model –

SGW[ψ] =
1

2

q∑
c=1

∫
t
ψ

(c)
ac (t)∂tψ

(c)
ac (t) +

iq/2 λ

N(q−1)(q−2)/4

∫
t

q∏
c=1

ψ
(c)
ac (t)

∏
c1<c2

δac1c2ac2c1

Introduce a bilocal source for each color and perform the double Legendre transform:

Γ[Ψ
(c)
ac (t), G

(c)
acbc

(t, t′)] = SGW[Ψ(c)] +
1

2

q∑
c=1

Tr[ln(G(c))]−
1

2

q∑
c=1

Tr[(G
(c)
0 )−1G(c)]

+ Γ2[Ψ(c), G(c)]

with

〈ψ(c)
ac (t)〉 = Ψ(c)

ac
(t)

〈Ψ(c)
ac (t)Ψ

(c)
bc

(t′)〉 =
1

2

(
G

(c)
acbc

(t, t′) + Ψ(c)
ac

(t)Ψ
(c)
bc

(t′)
)

In the symmetric phase

Ψ(c)
ac

(t) = 0, G
(c)
acbc

(t, t′) = G(t, t′)
∏
c′ 6=c

δac
c′ b

c
c′

⇒ each trace on a color index counts as a factor N
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Leading-order 2PI effective action for GW model

Large N :

Counting traces = counting faces in stranded graph ⇒ leading order is given by melons

There is only one melon graph which is also 2PI: the fundamental melon

ΓLO
2 [Ψ(c) = 0, G(c) = G] = −

λ2

2N(q−1)(q−2)/2

∫
t,t′

q∏
c=1

G
(c)
acbc

(t, t′)
∏
c1<c2

δac1c2a
c2
c1
δbc1c2 b

c2
c1

= −
λ2Nq−1

2

∫
t,t′

G(t, t′)q

⇒ Same result as in the SYK model
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Leading-order 2PI effective action for CTKT model

For the CTKT model we obtain a similar result:

Γ[0, G] = −
1

2
Tr[lnG−1

a1a2a3b1b2b3
]−

1

2
Tr[∂tGa1a2a3b1b2b3 (t, t′)] + Γ

(3)
2 [G]

with

Γ
(3)
2 [G] =

=
−λ2

8N3

∫
t,t′

Ga1a2a3b1b2b3 (t, t′)Ga1a′2a
′
3b1b

′
2b
′
3
(t, t′)Ga′1a2a

′
3b
′
1b2b

′
3
(t, t′)Ga′1a

′
2a3b

′
1b
′
2b3

(t, t′)

= −
1

8
λ2N3

∫
t,t′

G(t, t′)4

In the IR limit, global O(N)q−1 symmetry becomes a local symmetry: new zero modes

As in the case of the Schwarzian action, reintroducing the derivative term leads to an effective
action for the soft modes; this time a non-linear sigma model (Vc ∈ O(N)):

Seff = −
α

2
Nq−2

∫
t

q−1∑
c=1

Tr
[(
V −1
c ∂tVc

)2]
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Next three subleading orders for GW model

Leading order is ∼ Nq−1, while subleading orders start at ∼ N2:

Γ2[G] = Γ
(q−1)
2 [G] + Γ

(2)
2 [G] + Γ

(1)
2 [G] + Γ

(0)
2 [G] ,

Subleading diagrams are an infinite family of ladders:

n n

where colors and twist lead to different scalings with N : [Bonzom, Lionni, Tanasa - 2017]

Order N2 ⇒ rails: alternating colors without twist
Order N ⇒ rails: alternating colors with twist
Order 1 ⇒ rails: non-alternating colors with or without twist

25 / 29



Resummation of subleading contributions for GW model

Subleading diagrams can be resummed:

Γ
(2)
2 [G] = N2 1

4

(q
2

)
Tr

[
I= ln

(
1− λ4K̂2

)]
Γ

(1)
2 [G] = N

1

4

(q
2

)
Tr

[
(−I×) ln

(
1− λ4K̂2

)]
Γ

(0)
2 [G] =

1

2
Tr

[
I− ln

(
1− (q − 1)λ2K̂

)]
+
q − 1

2
Tr

[
I− ln

(
1 + λ2K̂

)]
−

1

2

(q
2

)
Tr

[
I− ln

(
1− λ4K̂2

)]

where K̂ is a ladder kernel, and I± = (I= ± I×)/2 are projectors on (anti-)symmetric bilocal
functions
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Free energy

Putting all together we have the free energy (for q > 4):

− lnZ = Γ[0, G] =Nq−1 q

2
Tr[ln(G(0))]−Nq−1 q

2
Tr[∂tG

(0)]−Nq−1 λ
2

2

∫
t,t′

G(0)(t, t′)q

+

[
N(N − 1)

2

(q
2

)]1

2
Tr

[
ln

(
1− λ4[K̂(0)

]2I+

)]
+

[(
N(N − 1)

2
+ (N − 1)

)(q
2

)]1

2
Tr

[
ln

(
1− λ4[K̂(0)

]2I−

)]
+ (q − 1)

1

2
Tr

[
ln

(
1 + λ2[K̂(0)

]I−

)]
+

1

2
Tr

[
ln

(
1− (q − 1)λ2[K̂(0)

]I−

)]

where G(0) and K̂(0)
are the leading-order on-shell two-point function and its ladder kernel

(subleading corrections to G(0) contribute the free energy at order N5−q)

We have rearranged subleading contributions to highlight a peculiar structure...
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Interpretation in terms of an auxiliary theory

The trace-log terms can be interpreted as the one loop correction to the leading-order action

Nq−1 q

2
Tr[ln(G)]−Nq−1 q

2
Tr[∂tG]−Nq−1 λ

2

2

∫
t,t′

G(t, t′)q

Hint:
Expanding around the saddle point

G
(c)
acbc

(t, t′) = G(0)(t, t′)δacbc + g
(c)
acbc

(t, t′)

the one loop correction gives the det(I− λ2K)−1/2, where the operator K is a matrix in color
space built out of kernels K(c1c2), such as

21 34

14

24

32

31
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Interpretation in terms of an auxiliary theory

The trace-log terms can be interpreted as the one loop correction to the leading-order action

Nq−1 q

2
Tr[ln(G)]−Nq−1 q

2
Tr[∂tG]−Nq−1 λ

2

2

∫
t,t′

G(t, t′)q

⇒ fluctuations decompose into symmetric traceless matrices, antisymmetric matrices and scalars:

g
(c)
acbc

(t, t′) = g(c)(t, t′)
∏
i 6=c

δaci b
c
i

+
∑
i 6=c

g
(ci)
aci b

c
i
(t, t′)

∏
j 6=i,c

δacjb
c
j

+ ĝ
(c)
acbc

(t, t′)

and g
(ci)
acibci

(t, t′) decomposed in symmetric traceless and antisymmetric parts

Taking into account the matrix structure of K, we find exactly the free energy above
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Conclusions and outlook



Conclusions and outlook

The SYK model has brought the melonic limit of tensor models under the spotlight

Tensor models offer a number of advantages over the SYK model
(in particular because of no disorder)

They also present some differences and extra challenges
(new light modes, many more invariants, ...)

We advocated the use of the 2PI formalism to bypass the lack of a bilocal reformulation of
the path integral, showing that it reproduces the bilocal effective action of SYK

Large-N of colored tensor model: only one 2PI diagram at leading order; infinite but
summable families of 2PI diagrams at first three subleading orders

Surprisingly, the 1/N expansion of the 2PI effective action of the colored tensor model
suggests the existence of an effective bilocal reformulation, at least up to order N0

Many open directions and questions, in particular concerning the holographic interpretation
of tensor models
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