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Large-N limit

The large-N limit is a precious tool for accessing non-perturbative phenomena in QFT J

Typical case: consider a theory with fields transforming in a representation
of a compact Lie group (e.g. O(N) or U(N)),
and an action invariant under the (global) group transformations

General idea: choose a rescaling of the couplings with N such that

@ the large-N limit of the theory exists and it is non-trivial;

@ only a subset of the Feynman diagrams survives in the limit.
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Large- N limit of vectors

e.g. fields in the fundamental representation of O(N) (“O(NN) model™)

@ Large N: Cactus diagrams

— Closed Schwinger-Dyson equation for 2-point function
= mass gap equation (no anomalous dimension)
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Large- N limit of matrices

e.g. fields in the adjoint representation of U(N) (Hermitian matrix model)

=> genus expansion:

InZ =3 N?*29F,()\) ~ N?
920

@ Large-N limit: planar diagrams
— No closed Schwinger-Dyson equation; still very difficult

In zero dimension there are many techniques for solving matrix models,
but they typically become very hard in higher dimensions
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Large- N limit of tensors

e.g. fields in the fundamental representation of O(N)3

A new type of large-N limit: the melonic limit of tensor-valued field theories

More complicated than the vector case, but simpler than the matrix case

It is a recent discovery [2010-on: Gurau, Rivasseau, Bonzom, Carrozza, Tanasa, ...]
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Melonic revival

Recently, the melonic limit has been rediscovered in the context of AdS/CFT:

@ In the SYK model and in models of tensor quantum mechanics, the melonic limit leads to
interesting features for a holographic description of extremal black holes

@ However, SYK and tensor models have important differences

This talk:

In the SYK model, a bilocal action formulation plays a key role, but an analog formulation was
missing for its tensorial cousins

= Introduce the two-particle irreducible (2PI) effective action for tensor models
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Overview

@ SYK model
@ Tensor models in d =1

@ 2P| effective action
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SYK model



The Sachdev-Ye-Kitaev (SYK) model

A model of N Majorana fermions in d = 1: [Sachdev,Ye (1992); Kitaev (2015)]

SSYK[ / ( Z waaﬂpa ] Z Jal aqwal e waq>

ag,..

where Jg, ...a, is a random tensorial coupling (= no O(N) mvarlance),

with Gaussian distribution:
NI (o, ay)?
e e =
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The Sachdev-Ye-Kitaev (SYK) model

A model of N Majorana fermions in d = 1: [Sachdev,Ye (1992); Kitaev (2015)]

Ssvilv] = [ at (Zwaaﬂpa r Y ww)

ag,..

where Jg, ...a, is a random tensorial coupling (= no O(N) mvarlance),
with Gaussian distribution:

PlJay ;] “GXP{‘ 2(q— 1)1

Randomness = quenched average of intensive quantities,
e.g. the free energy:

FooaiZ=—t [ [] o, Plar.ag)in [ ldvleSovels

a;<az<...<aq

NT1(Jay . a,)? }
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The Sachdev-Ye-Kitaev (SYK) model

A model of N Majorana fermions in d = 1: [Sachdev,Ye (1992); Kitaev (2015)]

Ssvk([¢] = / Zwaaﬂpa _ Z Jay..agay -+ Yaq

ag,..

where Jg, ...a, is a random tensorial coupling (= no O(N) mvarlance),
with Gaussian distribution:

2(q — 1)1J2

Randomness = quenched average of intensive quantities,
e.g. the free energy:

FooaiZ=—t [ [] o, Plar.ag)in [ ldvleSovels

a;<az<...<aq

NI—1(J, 2
P[Jal...aq} ocexp{— ( almaq) }

Quenched average can be represented with new lines in connected fermionic graphs
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The Sachdev-Ye-Kitaev (SYK) model

A model of N Majorana fermions in d = 1: [Sachdev,Ye (1992); Kitaev (2015)]

Ssvk([¢] = / Zwaaﬂpa _ Z Jay..agay -+ Yaq

ag,..

where Jg, ...a, is a random tensorial coupling (= no O(N) mvarlance),
with Gaussian distribution:

Na-1(, 2
P[Jal...aq} o exp {_(“1“‘1)}

2(q — 1)1J2

Randomness = quenched average of intensive quantities,
e.g. the free energy:

FooaiZ=—t [ [] o, Plar.ag)in [ ldvleSovels

a;<az<...<aq

Quenched average can be represented with new lines in connected fermionic graphs

At large- N, after the quenched average on Jay...aq: the leading-order diagrams are melonic J
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Conformal limit

Because of the melonic dominance, the large-N Schwinger-Dyson equations form a closed
equation for the 2-point function, e.g. for ¢ = 4:

G(w) = (~iw - B(w)) ™!

—@—=+++—0—.—0—.—0— PR

S(w)=J? / dz;;d)(f G(w1)G(w2)G(w — w1 — w2)
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Conformal limit

Because of the melonic dominance, the large-N Schwinger-Dyson equations form a closed
equation for the 2-point function, e.g. for ¢ = 4:

1 . dwidws
@ = —iw — J2/ on)? G(w1)G(w2)G(w — w1 — wa)
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Conformal limit

Because of the melonic dominance, the large-N Schwinger-Dyson equations form a closed
equation for the 2-point function, e.g. for ¢ = 4:

@ In the UV limit w — oo the self energy ¥(w) can be neglected: the theory is asymptotically
free

9/29



Conformal limit

Because of the melonic dominance, the large-N Schwinger-Dyson equations form a closed
equation for the 2-point function, e.g. for ¢ = 4:

ﬁ = >ig — J? / %G(w1)G(UJ2)G(W w1 —wn)

@ In the UV limit w — oo the self energy ¥(w) can be neglected: the theory is asymptotically
free

@ In the IR limit w — O the free inverse propagator (“—iw") can be neglected and one
obtains a conformal invariant solution:

G)~w® 1 A=1/q
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Conformal limit

Because of the melonic dominance, the large-N Schwinger-Dyson equations form a closed
equation for the 2-point function, e.g. for ¢ = 4:

1 . dw1dwa
@ = —iw—J? / WG(wl)G(wg)G(w — w1 —w3)

@ In the UV limit w — oo the self energy ¥(w) can be neglected: the theory is asymptotically
free

@ In the IR limit w — O the free inverse propagator (“—iw") can be neglected and one
obtains a conformal invariant solution:

G)~w® 1 A=1/q

@ The Schwinger-Dyson equations are the field equations for an effective bilocal action
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Replica trick

@ A standard method for dealing with quenched average: replica trick, i.e.

InZ = lim 0, 2"

n—0

:leigban/ 1T (e ag)Pla;... /H[dw“ .—Ssvk 1]

a1<a2<...<aq

ag, pay 112 o o
— lim 8, HW 1) e % Ta f ROt g T o i vy fur vl
n—0

a=1
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Replica trick

@ A standard method for dealing with quenched average: replica trick, i.e.

InZ = lim 0, 2"

n—0

—limo [ T ey o PUa /H[dw JeSsvilv*]

a1<az<...<aq

ag, pay 112 o o
— lim 8, HW 1) e % Ta f ROt g T o i vy fur vl
n—0

a=1

@ Introduce bilocal variables: insert

1..n
1:/ [T lac?1s (NGD‘B(M’)—Z¢3(t)w§(t’)>
apf a
:/lﬁn[dG&ﬁ”dzaﬁ]e—%fm/ 20 (1) (NG (1.1) =5, w8 (v (1))

inside functional integral, use the constraint in the interaction part (~ G?%),
and integrate out the fermions (now Gaussian)
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Bilocal effective action

zn :/ dGO‘B [d2P] | e~ NSettlG:3
where

S |G, X] = ——Trln(at )+ - Z /tt, (Eaﬁ (t,t)GB (¢, t') — {; (Gaﬁ(t,t/))q)

@ N-dependence factors in front of the action: large-N limit is given by saddle-point
approximation

@ For SYK there is no replica symmetry breaking at large N (Trsp ~ e*‘/ﬁ)
[Georges, Parcollet, Sachdev - 2001], hence we can use a replica-symmetric and diagonal ansatz:

GB(t,t') = 6°PG(t,t) + B, t')

1
Ni/29
with G(t,t’) solving the saddle point equation (= Schwinger-Dyson equation)

@ At leading and subleading order in n = 0 coincides with n = 1 (quenched = annealed)

1
N
Leading order result:

_ 1 1 2
InZpo=N (7Tr[an71] + —Tr[0:G(t, )] + ‘L/ Q(t,t’)q)
2 2 2q Ji,ut
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Bilocal effective action

zn :/ dGO‘B [d2P] | e~ NSettlG:3
where

S |G, X] = ——Trln(at )+ - Z /tt, (Eaﬁ (t,t)GB (¢, t') — {; (Gaﬁ(t,t/))q)

@ N-dependence factors in front of the action: large-N limit is given by saddle-point
approximation

@ For SYK there is no replica symmetry breaking at large N (Trsp ~ e*‘/ﬁ)
[Georges, Parcollet, Sachdev - 2001], hence we can use a replica-symmetric and diagonal ansatz:

GB(t,t') = 6°PG(t,t) + B, t')

1
Ni/29
with G(t,t’) solving the saddle point equation (= Schwinger-Dyson equation)

@ At leading and subleading order in n = 0 coincides with n = 1 (quenched = annealed)

1
N

Leading order result:

_ 1 2
mZro=N (fTr[an*I} +M+ z / Q(t,t')Q)
2 2q t,t!

again conformal invariant in the IR
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Bilocality and holography

SYK has attracted attention because the C' F'T] is expected to have an AdSs dual,
and thus describe the microscopics of near extremal black holes

Bilocal action formulation is a useful tool in the construction of the holographic dual:
bilocality ~ extra dimensions J

Basic idea: 2d coordinates = d + 1 coordinates + spin [Das, Jevicki - '03]

In SYK: [Jevicki, Suzuki, Yoon - '16]
d =1 = no spin

t= %(tl +to), z= %(tl —t2)
g(ti,t2) = ¢, 2)
From the quadratic fluctuations around saddle point:
Seoff ~ %Z/dzx\/jg[—g”'/awﬁnau(ﬁn — hn(1 = hp)$7]
n
=> the bilocal field packs a sequence of AdS> scalars, with growing mass

hn ~2A +2n+1: conformal dimension of ¢a33n+1wu
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Bilocal action and Jackiw-Teitelboim gravity

Bilocal action has also played an important role in identifying the gravitational part of the bulk
dual: [Kitaev - '15; Maldacena,Stanford - '16]

@ Fluctuations g®#(t,t') around saddle point have an exact zero mode in the IR/conformal
limit: 1
InZypo = fiTr[ln(I_ — KI-)]
with the ladder kernel:
q—2

~ —2
R(t1,ta;ts,ts) = —J%(q — 1)|G(t1,t2)| T G(t1,t3)Gta, ta) |G(ts, ta)| T

Zero mode: K =1 eigenmode

= non-conformal corrections lead to an effective action for the zero mode,
a.k.a. the Schwarzian action

_ « f/// 3 f” 2
s = =N [ ar <f’ -3(%) )

Effective action for pseudo-Golstone modes of reprametrization invariance (1 — f(7))
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Bilocal action and Jackiw-Teitelboim gravity

Bilocal action has also played an important role in identifying the gravitational part of the bulk
dual: [Kitaev - '15; Maldacena,Stanford - '16]

@ Jackiw-Teitelboim gravity

— 2
Syr = — IGG[/dx\f(R 2A¢+2/ dtd)K}

has similar phenomenon: singularity at conformal AdS boundary
— cut out near-boundary region
— Schwarzian action from on-shell evaluation of the boundary action

=- Same pattern of symmetry breaking, controlled by the same effective action
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Tensor models in d = 1



Tensor models

The same melonic limit, and hence conformal symmetry in the IR, can be obtained without
disorder, but replacing vectors with tensors
[Witten - '16]

Three types of models:

@ Colored tensor models: with ¢ distinguished fields with ¢ — 1 distinguished indices
= symmetry group: O(N)4(a—1)/2
[Gurau - '10]

@ Uncolored tensor models: with only one field with ¢ — 1 distinguished indices
= symmetry group: O(N)4~1
[Bonzom, Gurau, Rivasseau - '12 (U(N)); Carrozza, Tanasa - '15 (O(N))]

@ Symmetric tensor models: with only one field with ¢ — 1 indices, in an irreducible

representation of O(N) (e.g. symmetric-traceless, antisymmetric, etc.)
[K\ebanov,Tarnopolsky - '17; DB, Carrozza, Gurau, Kolanowski - '17]
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GuraU—Wltten mOdEI [Gurau - '10; Witten - '16]

d = 1 fermionic generalization of colored tensor model

Fields: ¢ Majorana fermions in fundamental representation of O(N)7—1;

field ¢ (= 1,...,q) has an index c1(# ¢) transforming with the same group element as the index
c of field ¢

= symmetry group: O(N)2(¢—1)/2

Sawlv] = Z / ¥ ()0 (1)

i1/2 \

©
+t N@ D@ /Hw ) T daass

c1<c2

where ac = (ag, |e1 € {1,...,q}\{c})

2 3
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CTKT m0d6| [Carrozza, Tanasa - '15; Klebanov, Tarnopolsky - '17]

d = 1 fermionic generalization of uncolored tensor model

Field: Majorana fermion in fundamental representation of O(N)?—1.

Scrkr[Y] = /t (%wabc(t)atwabc(t) + Yayazas (E)Wa;bobs (O)WVbyazbs (1) WVb1bras (t))

AN3/2

XX
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Feynman graphs

Perturbative expansion:

@ Represent Wick contraction of two tensors by dashed line, e.g.:

@ Ordinary Feynman diagrams, tracking only ordinary spacetime/momentum integrals are
obtained by shrinking interaction bubbles to a point:

@ The leading order in 1/N is given by melonic diagrams
= same Schwinger-Dyson equation as in SYK
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Tensor models vs SYK

Advantages of tensor models:
@ No quenched disorder, which is unnatural for AdS/CFT

@ In SYK the O(N) symmetry only emerges after quenching;
in tensor models it is there from the beginning, so it can be gauged:

= Gauging gets rid of the non-singlet states,
which are an obstacle in the search for the gravity dual

@ Subleading corrections better understood (several years of results from tensor models
and no tricky issues with replica limit)

Important differences:

@ In non-gauged version, global symmetry becomes almost local in IR: new soft modes
besides the Schwarzian mode [Minwalla et al. - '17; DB, Gurau - '18]

@ Many more invariants (singlets) in tensor models: complicated bulk dual

@ No collective field formulation
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2P| effective action for tensor models

JHEP 05 (2018) 156 [arXiv:1802.05500], with R. Gurau



2P| efFeCthe aCtlon - general deflnitlon [Cornwall, Jackiw, Tomboulis - '74]

Define the generating functional:

A A 1
W), k] = ln/[dsO] exp{ — S[¢] + japa + 5%’6@%}

The 2PI effective action is the double Legendre transform with respect to the sources:

D(p, G) = ~WII, K] + Jaga + 5 0aKandy + 5 THOK]

with J, and K such that:

W
T[J’K] = <¢a>J7K = ¢a
Ja

W 1 1
SFan J,K] = 5<<Pa4pb>J,K =3 (Gab + ¢adp)
and
or
Mj[‘ﬁa G] = Ja[(z)v G] + Kab [d)y G}d’b
or 1
@W), Gl = 5Kba[¢» G|
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2P| effeCtlve aCtlon - |OOp eXpanSIon [Cornwall, Jackiw, Tomboulis -

It is not hard to prove that

ris.Gl = Sig +%

Tefln G~ Y] + %mswﬂc] + T2l¢,0]

tree level

with the following Feynman rules:

vertices:

propagator:

two or more loops
one loop

Sint[¢, 0] = Sl + @]starting at cubic order in ¢
G(z,y)

'74]
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2P1 effective action — loop expansion  [comuall, ackiv, Tomboulis - 74]
It is not hard to prove that

ris.6l= Sl +%Tr[lnG_1]+%Tr[S¢¢[¢>}G]+ oo, Gl

tree level two or more loops
one loop

with the following Feynman rules:

vertices: Sint [d)» QD] = S[¢ + Lp]starting at cubic order in ¢
propagator: G(z,y)

I'2[¢, G] is given by the sum of all the (n > 2)-loops two-particle irreducible vacuum graphs J

Hint:

6T _ 6T .
=0 = Gl=s8 2= =G;' -3
6Gab vol¢l + 255 0
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Large- N limit of the 2Pl effective action
— vector O(N) model —

Slel =5 [ ee@C M@ )ea®) + v [ (eal@)pa(@)?
Y . T

vertex (¢ =0) : ><

2Pl vacuum graphs: 99 @ + QO + 08 + Ogo + ot O (%)

~N

~1

Talé, G] = N% / Gz, 2)% + %Tr[ln(l + %G(x,y)%] +0 (%)
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Large- N limit of the 2Pl effective action

— vector O(N) model —

Sl =5 [ @0 @uee) + i [ (Cel@pala)?
T,y

41N

Loop structure of 1/N expansion: from same trick as in SYK

7 = /[dso] e~ Sl¥]
_ /[dw] [dG][dS] e =S¥~ 3 Joy S@n)(NG(e0) =54 va(@)pa(v)

_ /[d@] (5] e~ N{ATUCT =G+ A T (EN+ 3 [, Gla)?)

= / [dG)[dS] e~ NSert (G
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Large- N limit of the 2Pl effective action
— GW model -

© (0l ( i1/2 ©
SGW[w] Z/d) ) N(q 1) (q—2)/4 Hwac (t H 5ar1r2a<‘2r1

c1<co

Introduce a bilocal source for each color and perform the double Legendre transform:

Tl (1), Gy (1)) =Saw[¥©] + = ZTr[ln G ZTr (GGl

c=1
+ Ty [@(6)7 G(C)]
with
W 1) = w( t)
(D (e () = (G@ (8.1 + 2O 0w (1)

~acbe
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Large- N limit of the 2Pl effective action
— GW model -

. /2
© ()9 ( 1977 X (e)
Sawly] = / % )+~ / | [5620 T ocpcsnc

c1<co
Introduce a bilocal source for each color and perform the double Legendre transform:

LW (1), GOy (1)) =Saw[¥(] + = ZTr[ln (G©)] ZTr (G tat)

c=1
+ D[, 6]
with
W 1) = W( t)
(D (e () = (G“)bc (8.1 + 2O 0w (1)

“ac

In the symmetric phase
v =0, G2 (t.¢) = G(t,¢) T] dacue,
@@

= each trace on a color index counts as a factor N
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Leading-order 2PI effective action for GW model

Large N:

Counting traces = counting faces in stranded graph = leading order is given by melons

There is only one melon graph which is also 2PI: the fundamental melon

LO c c
1"2 [\Ij( ) — 0, G( ) — G] = 2N(q 1)(q SN(=D@=2)/2 /t/ H acb (t t H 5acl 2(5 clbcz

cy1<cz

>\2qu1
= G(t,t')?
2 bt

= Same result as in the SYK model
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Leading-order 2PI effective action for CTKT model

For the CTKT model we obtain a similar result:

1 _ 1 3
F[O’ G] - 7§Tr[lnGa11a2a3b1bzb3] o iTr[atGal‘QaSbl%ba (tth)} + Fg )[G}
with
3
rV[6] =
-\ ’ ’ / /
=33 /tt, Garazasbibabs (6 1)Gayaralbybybs (6 1)Gatagalb) bavy (1) Gat afagbl by bs (B 1)

1
= —§A2N3 G(t,t")*

t,t!
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Leading-order 2PI effective action for CTKT model

For the CTKT model we obtain a similar result:

1 1 3
r0,G] = _iTr[lnGa1a2a3b1b2b3} — =Tr[o 2a3 (@, t/)] + F(Q )[G]
with
3
r{V(c] =
_)\2 , , ) )
= e » Gayazasbybabs (Bt )Galaéaéblbébg (t,t )Ga,la2a,3b/1b2bé (t,t )Ga’la’zagb’lbébg, (t,t")

1
= ——A\2N3 G(t,t')*
8 ¢

In the IR limit, global O(N)9~! symmetry becomes a local symmetry: new zero modes

24 /29



Leading-order 2PI effective action for CTKT model

For the CTKT model we obtain a similar result:

1 1 1 - 3
F[O’ G] - 7§T&4[1nGa1a2a3b1b2b3] o iTr[()tGawza:;blbﬂ:s <t’7 t/)] + Fé )[G}
with
3
rV[6] =
-\ ’ ’ / /
=33 /tt, Garazasbibabs (6 1)Gayaralbybybs (6 1)Gatagalb) bavy (1) Gat afagbl by bs (B 1)

1
= —§A2N3 G(t,t")*

t,t!

In the IR limit, global O(N)?~! symmetry becomes a local symmetry: new zero modes

As in the case of the Schwarzian action, reintroducing the derivative term leads to an effective
action for the soft modes; this time a non-linear sigma model (V. € O(N)):

qg—1
Sett = —%NCH /tz Tr [(V;latvc)Q]
c=1
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Next three subleading orders for GW model

Leading order is ~ N9~1, while subleading orders start at ~ N?2:

I5[G] =I5 V(6] + T8 [6] + 5V [6] + T [a]

Subleading diagrams are an infinite family of ladders:

L0 L0

where colors and twist lead to different scalings with N: [Bonzom, Lionni, Tanasa - 2017]

Order N2 = rails: alternating colors without twist
Order N = rails: alternating colors with twist
Order 1 = rails: non-alternating colors with or without twist
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Resummation of subleading contributions for GW model

Subleading diagrams can be resummed:

r®(c) = N% (D) [1: In (1 - A%ZN
O e )
S S B R)
[ (o) Gl ()]

where K is a ladder kernel, and I+ = (I= 4 IX)/2 are projectors on (anti-)symmetric bilocal
functions

+
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Free energy

Putting all together we have the free energy (for ¢ > 4):

2
~InZ =T[0,G] =N*~" I Telin(G©)] - N I T[0,G () — N1 [ GO

2 Jow
+ [N(Nf_l) (3)] éTr[ln (1 - ,\4[@0)]2@)}
+ [(LNQ_ Dywv- 1)) (g)} %ﬁ[ln (1 - /\4[K(O)]2I_)}

+(g— 1)%Tr[ln (1 + ,\Q[E(O)]L)] + %Tr[ln (1 —(q— 1),\2[@0)}1,)]

where Q(()) and K(@ are the leading-order on-shell two-point function and its ladder kernel
(subleading corrections to GO contribute the free energy at order N5~7)

We have rearranged subleading contributions to highlight a peculiar structure...
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Interpretation in terms of an auxiliary theory

The trace-log terms can be interpreted as the one loop correction to the leading-order action

2
qulngr[ln(g)] - N‘?*l%Tr[atG} = N‘Fl% G(t, 1)1
t,t!

Hint:
Expanding around the saddle point

Gilcc)bc (t, t’) — Q(()) (t, t’)&acbc + g;‘i)bc (t, t/)

the one loop correction gives the det(I — )\QK)*l/Q, where the operator K is a matrix in color

space built out of kernels K(¢1¢2) | such as
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Interpretation in terms of an auxiliary theory

The trace-log terms can be interpreted as the one loop correction to the leading-order action

2
Ne-1 gmm(c)] - Nq—lgmatc} - Nq—l’\? G(t, ')
t,t!

= fluctuations decompose into symmetric traceless matrices, antisymmetric matrices and scalars:
oo (1) = 99 (0. 4) T Sagee + D 985 (1) T Bases + iy, (1)
i#c i#c Jj#i,c

and g(cw (t,t’) decomposed in symmetric traceless and antisymmetric parts

Taking into account the matrix structure of K, we find exactly the free energy above
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Conclusions and outlook



Conclusions and outlook

@ The SYK model has brought the melonic limit of tensor models under the spotlight

@ Tensor models offer a number of advantages over the SYK model
(in particular because of no disorder)

@ They also present some differences and extra challenges
(new light modes, many more invariants, ...)

@ We advocated the use of the 2P| formalism to bypass the lack of a bilocal reformulation of
the path integral, showing that it reproduces the bilocal effective action of SYK

@ Large-N of colored tensor model: only one 2P| diagram at leading order; infinite but
summable families of 2Pl diagrams at first three subleading orders

@ Surprisingly, the 1/N expansion of the 2Pl effective action of the colored tensor model
suggests the existence of an effective bilocal reformulation, at least up to order N©

@ Many open directions and questions, in particular concerning the holographic interpretation
of tensor models
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