Bilocal effective action for tensor models

Dario Benedetti

Laboratoire de Physique Théorique Université Paris-Sud, Orsay, France

- universite

PARIS
SU
$\underset{\text { AARIS-SACLAY }}{\text { univer }}$

March 18, 2019 - ESI, Vienna

Large- N limit

The large- N limit is a precious tool for accessing non-perturbative phenomena in QFT

Typical case: consider a theory with fields transforming in a representation of a compact Lie group (e.g. $O(N)$ or $U(N)$), and an action invariant under the (global) group transformations

General idea: choose a rescaling of the couplings with N such that
(1) the large- N limit of the theory exists and it is non-trivial;
(2) only a subset of the Feynman diagrams survives in the limit.

Large- N limit of vectors

e.g. fields in the fundamental representation of $O(N)$ (" $O(N)$ model")

- Large N : Cactus diagrams

\rightarrow Closed Schwinger-Dyson equation for 2-point function $=$ mass gap equation (no anomalous dimension)

Large- N limit of matrices

e.g. fields in the adjoint representation of $U(N)$ (Hermitian matrix model)
\Rightarrow genus expansion:

- Large- N limit: planar diagrams
\rightarrow No closed Schwinger-Dyson equation; still very difficult
In zero dimension there are many techniques for solving matrix models, but they typically become very hard in higher dimensions

Large- N limit of tensors

e.g. fields in the fundamental representation of $O(N)^{3}$

A new type of large- N limit: the melonic limit of tensor-valued field theories

More complicated than the vector case, but simpler than the matrix case
It is a recent discovery [2010-on: Gurau, Rivasseau, Bonzom, Carrozza, Tanasa, ...]

Large- N limit of tensors

e.g. fields in the fundamental representation of $O(N)^{3}$

A new type of large- N limit: the melonic limit of tensor-valued field theories

More complicated than the vector case, but simpler than the matrix case
It is a recent discovery [2010-on: Gurau, Rivasseau, Bonzom, Carrozza, Tanasa, ...]

Large- N limit of tensors

e.g. fields in the fundamental representation of $O(N)^{3}$

A new type of large- N limit: the melonic limit of tensor-valued field theories

More complicated than the vector case, but simpler than the matrix case
It is a recent discovery [2010-on: Gurau, Rivasseau, Bonzom, Carrozza, Tanasa, ...]

Melonic revival

Recently, the melonic limit has been rediscovered in the context of $\operatorname{AdS} / C F T$:

- In the SYK model and in models of tensor quantum mechanics, the melonic limit leads to interesting features for a holographic description of extremal black holes
- However, SYK and tensor models have important differences

This talk:

In the SYK model, a bilocal action formulation plays a key role, but an analog formulation was missing for its tensorial cousins
\Rightarrow Introduce the two-particle irreducible (2PI) effective action for tensor models

Overview

- SYK model
- Tensor models in $d=1$
- 2PI effective action

SYK model

The Sachdev-Ye-Kitaev (SYK) model

A model of N Majorana fermions in $d=1$: [Sachdev, Ye (1992); Kitaev (2015)]

$$
\mathbf{S}_{\mathrm{SYK}}[\psi]=\int d t\left(\frac{1}{2} \sum_{a=1}^{N} \psi_{a} \partial_{t} \psi_{a}+\frac{\mathrm{i}^{q / 2}}{q!} \sum_{a_{1}, \ldots, a_{q}} J_{a_{1} \ldots a_{q}} \psi_{a_{1}} \ldots \psi_{a_{q}}\right)
$$

where $J_{a_{1} \ldots a_{q}}$ is a random tensorial coupling (\Rightarrow no $O(N)$ invariance), with Gaussian distribution:

$$
P\left[J_{a_{1} \ldots a_{q}}\right] \propto \exp \left\{-\frac{N^{q-1}\left(J_{a_{1} \ldots a_{q}}\right)^{2}}{2(q-1)!J^{2}}\right\}
$$

The Sachdev-Ye-Kitaev (SYK) model

A model of N Majorana fermions in $d=1$: [Sachdev, Ye (1992); Kitaev (2015)]

$$
\mathbf{S}_{\mathrm{SYK}}[\psi]=\int d t\left(\frac{1}{2} \sum_{a=1}^{N} \psi_{a} \partial_{t} \psi_{a}+\frac{\mathrm{i}^{q / 2}}{q!} \sum_{a_{1}, \ldots, a_{q}} J_{a_{1} \ldots a_{q}} \psi_{a_{1}} \ldots \psi_{a_{q}}\right)
$$

where $J_{a_{1} \ldots a_{q}}$ is a random tensorial coupling (\Rightarrow no $O(N)$ invariance), with Gaussian distribution:

$$
P\left[J_{a_{1} \ldots a_{q}}\right] \propto \exp \left\{-\frac{N^{q-1}\left(J_{a_{1} \ldots a_{q}}\right)^{2}}{2(q-1)!J^{2}}\right\}
$$

Randomness \Rightarrow quenched average of intensive quantities, e.g. the free energy:

$$
\bar{F}=-\frac{1}{N} \overline{\ln Z}=-\frac{1}{N} \int \prod_{a_{1}<a_{2}<\ldots<a_{q}}\left[d J_{a_{1} \ldots a_{q}}\right] P\left[J_{a_{1} \ldots a_{q}}\right] \ln \int[d \psi] e^{-\mathbf{S}_{\mathrm{SYK}}[\psi]}
$$

The Sachdev-Ye-Kitaev (SYK) model

A model of N Majorana fermions in $d=1$: [Sachdev, Ye (1992); Kitaev (2015)]

$$
\mathbf{S}_{\mathrm{SYK}}[\psi]=\int d t\left(\frac{1}{2} \sum_{a=1}^{N} \psi_{a} \partial_{t} \psi_{a}+\frac{\mathrm{i}^{q / 2}}{q!} \sum_{a_{1}, \ldots, a_{q}} J_{a_{1} \ldots a_{q}} \psi_{a_{1}} \ldots \psi_{a_{q}}\right)
$$

where $J_{a_{1} \ldots a_{q}}$ is a random tensorial coupling (\Rightarrow no $O(N)$ invariance), with Gaussian distribution:

$$
P\left[J_{a_{1} \ldots a_{q}}\right] \propto \exp \left\{-\frac{N^{q-1}\left(J_{a_{1} \ldots a_{q}}\right)^{2}}{2(q-1)!J^{2}}\right\}
$$

Randomness \Rightarrow quenched average of intensive quantities, e.g. the free energy:

$$
\bar{F}=-\frac{1}{N} \overline{\ln Z}=-\frac{1}{N} \int \prod_{a_{1}<a_{2}<\ldots<a_{q}}\left[d J_{a_{1} \ldots a_{q}}\right] P\left[J_{a_{1} \ldots a_{q}}\right] \ln \int[d \psi] e^{-\mathbf{S}_{\mathrm{SYK}}[\psi]}
$$

Quenched average can be represented with new lines in connected fermionic graphs

The Sachdev-Ye-Kitaev (SYK) model

A model of N Majorana fermions in $d=1$: [Sachdev, Ye (1992); Kitaev (2015)]

$$
\mathbf{S}_{\mathrm{SYK}}[\psi]=\int d t\left(\frac{1}{2} \sum_{a=1}^{N} \psi_{a} \partial_{t} \psi_{a}+\frac{\mathrm{i}^{q / 2}}{q!} \sum_{a_{1}, \ldots, a_{q}} J_{a_{1} \ldots a_{q}} \psi_{a_{1}} \ldots \psi_{a_{q}}\right)
$$

where $J_{a_{1} \ldots a_{q}}$ is a random tensorial coupling (\Rightarrow no $O(N)$ invariance), with Gaussian distribution:

$$
P\left[J_{a_{1} \ldots a_{q}}\right] \propto \exp \left\{-\frac{N^{q-1}\left(J_{a_{1} \ldots a_{q}}\right)^{2}}{2(q-1)!J^{2}}\right\}
$$

Randomness \Rightarrow quenched average of intensive quantities, e.g. the free energy:

$$
\bar{F}=-\frac{1}{N} \overline{\ln Z}=-\frac{1}{N} \int \prod_{a_{1}<a_{2}<\ldots<a_{q}}\left[d J_{a_{1} \ldots a_{q}}\right] P\left[J_{a_{1} \ldots a_{q}}\right] \ln \int[d \psi] e^{-\mathbf{S}_{\mathrm{SYK}}[\psi]}
$$

Quenched average can be represented with new lines in connected fermionic graphs

At large- N, after the quenched average on $J_{a_{1} \ldots a_{q}}$, the leading-order diagrams are melonic

Conformal limit

Because of the melonic dominance, the large- N Schwinger-Dyson equations form a closed equation for the 2-point function, e.g. for $q=4$:

$$
G(\omega)=(-i \omega-\Sigma(\omega))^{-1}
$$

$$
\Sigma(\omega)=J^{2} \int \frac{d \omega_{1} d \omega_{2}}{(2 \pi)^{2}} G\left(\omega_{1}\right) G\left(\omega_{2}\right) G\left(\omega-\omega_{1}-\omega_{2}\right)
$$

Conformal limit

Because of the melonic dominance, the large- N Schwinger-Dyson equations form a closed equation for the 2-point function, e.g. for $q=4$:

$$
\frac{1}{G(\omega)}=-i \omega-J^{2} \int \frac{d \omega_{1} d \omega_{2}}{(2 \pi)^{2}} G\left(\omega_{1}\right) G\left(\omega_{2}\right) G\left(\omega-\omega_{1}-\omega_{2}\right)
$$

Conformal limit

Because of the melonic dominance, the large- N Schwinger-Dyson equations form a closed equation for the 2-point function, e.g. for $q=4$:

$$
\frac{1}{G(\omega)}=-i \omega-\overline{J^{2} \int \frac{d \omega_{1} d \omega_{2}}{(2 \pi)^{2}} G\left(\omega_{1}\right) G\left(\omega_{2}\right) G\left(\omega-\omega_{1}-\omega_{2}\right)}
$$

- In the UV limit $\omega \rightarrow \infty$ the self energy $\Sigma(\omega)$ can be neglected: the theory is asymptotically free

Conformal limit

Because of the melonic dominance, the large- N Schwinger-Dyson equations form a closed equation for the 2-point function, e.g. for $q=4$:

$$
\frac{1}{G(\omega)}=>i \omega-J^{2} \int \frac{d \omega_{1} d \omega_{2}}{(2 \pi)^{2}} G\left(\omega_{1}\right) G\left(\omega_{2}\right) G\left(\omega-\omega_{1}-\omega_{2}\right)
$$

- In the UV limit $\omega \rightarrow \infty$ the self energy $\Sigma(\omega)$ can be neglected: the theory is asymptotically free
- In the IR limit $\omega \rightarrow 0$ the free inverse propagator (" $-i \omega$ ") can be neglected and one obtains a conformal invariant solution:

$$
G(\omega) \sim \omega^{2 \Delta-1}, \quad \Delta=1 / q
$$

Conformal limit

Because of the melonic dominance, the large- N Schwinger-Dyson equations form a closed equation for the 2-point function, e.g. for $q=4$:

$$
\frac{1}{G(\omega)}=-i \omega-J^{2} \int \frac{d \omega_{1} d \omega_{2}}{(2 \pi)^{2}} G\left(\omega_{1}\right) G\left(\omega_{2}\right) G\left(\omega-\omega_{1}-\omega_{2}\right)
$$

- In the UV limit $\omega \rightarrow \infty$ the self energy $\Sigma(\omega)$ can be neglected: the theory is asymptotically free
- In the IR limit $\omega \rightarrow 0$ the free inverse propagator (" $-i \omega$ ") can be neglected and one obtains a conformal invariant solution:

$$
G(\omega) \sim \omega^{2 \Delta-1}, \quad \Delta=1 / q
$$

- The Schwinger-Dyson equations are the field equations for an effective bilocal action

Replica trick

(1) A standard method for dealing with quenched average: replica trick, i.e.

$$
\begin{aligned}
\overline{\ln Z} & =\lim _{n \rightarrow 0} \partial_{n} \overline{Z^{n}} \\
& =\lim _{n \rightarrow 0} \partial_{n} \int \prod_{a_{1}<a_{2}<\ldots<a_{q}}\left[d J_{\left.a_{1} \ldots a_{q}\right]}\right] P\left[J_{a_{1} \ldots a_{q}}\right] \int \prod_{\alpha=1}^{n}\left[d \psi^{\alpha}\right] e^{-\mathrm{S}_{\mathrm{SYK}}\left[\psi^{\alpha}\right]} \\
& =\lim _{n \rightarrow 0} \partial_{n} \int\left(\prod_{\alpha=1}^{n}\left[d \psi^{\alpha}\right]\right) e^{-\frac{1}{2} \sum_{\alpha} \int_{t} \psi_{a}^{\alpha} \partial_{t} \psi_{a}^{\alpha}+\frac{\mathrm{i}^{q} J^{2}}{2 q N^{q-1}} \sum_{\alpha, \beta} \int_{t} \psi_{a_{1}}^{\alpha} \ldots \psi_{a_{q}}^{\alpha} \int_{t^{\prime}} \psi_{a_{1}}^{\beta} \ldots \psi_{a_{q}}^{\beta}}
\end{aligned}
$$

Replica trick

(1) A standard method for dealing with quenched average: replica trick, i.e.

$$
\begin{aligned}
\overline{\ln Z} & =\lim _{n \rightarrow 0} \partial_{n} \overline{Z^{n}} \\
& =\lim _{n \rightarrow 0} \partial_{n} \int \prod_{a_{1}<a_{2}<\ldots<a_{q}}\left[d J_{a_{1} \ldots a_{q}}\right] P\left[J_{a_{1} \ldots a_{q}}\right] \int \prod_{\alpha=1}^{n}\left[d \psi^{\alpha}\right] e^{-\mathbf{S}_{\mathrm{SYK}}\left[\psi^{\alpha}\right]} \\
& =\lim _{n \rightarrow 0} \partial_{n} \int\left(\prod_{\alpha=1}^{n}\left[d \psi^{\alpha}\right]\right) e^{-\frac{1}{2} \sum_{\alpha} \int_{t} \psi_{a}^{\alpha} \partial_{t} \psi_{a}^{\alpha}+\frac{\mathrm{i}^{q} J^{2}}{2 q N^{q-1}} \sum_{\alpha, \beta} \int_{t} \psi_{a_{1}}^{\alpha} \ldots \psi_{a_{q}}^{\alpha} \int_{t^{\prime}} \psi_{a_{1}}^{\beta} \ldots \psi_{a_{q}}^{\beta}}
\end{aligned}
$$

(2) Introduce bilocal variables: insert

$$
\begin{aligned}
1 & =\int \prod_{\alpha \beta}^{1 \ldots n}\left[d G^{\alpha \beta}\right] \delta\left(N G^{\alpha \beta}\left(t, t^{\prime}\right)-\sum_{a} \psi_{a}^{\alpha}(t) \psi_{a}^{\beta}\left(t^{\prime}\right)\right) \\
& =\int \prod_{\alpha \beta}^{1 \ldots n}\left[d G^{\alpha \beta}\right]\left[d \Sigma^{\alpha \beta}\right] e^{-\frac{1}{2} \int_{t, t^{\prime}} \Sigma^{\alpha \beta}\left(t, t^{\prime}\right)\left(N G^{\alpha \beta}\left(t, t^{\prime}\right)-\sum_{a} \psi_{a}^{\alpha}(t) \psi_{a}^{\beta}\left(t^{\prime}\right)\right)}
\end{aligned}
$$

inside functional integral, use the constraint in the interaction part ($\sim G^{q}$), and integrate out the fermions (now Gaussian)

Bilocal effective action

$$
\overline{Z^{n}}=\int\left(\prod_{\alpha \beta}^{1 \ldots n}\left[d G^{\alpha \beta}\right]\left[d \Sigma^{\alpha \beta}\right]\right) e^{-N \mathbf{S}_{\mathrm{eff}}[G, \Sigma]}
$$

where

$$
\mathbf{S}_{\mathrm{eff}}[G, \Sigma]=-\frac{1}{2} \widehat{\operatorname{Tr}} \ln \left(\partial_{t}-\Sigma\right)+\frac{1}{2} \sum_{\alpha \beta}^{1 \ldots n} \int_{t, t^{\prime}}\left(\Sigma^{\alpha \beta}\left(t, t^{\prime}\right) G^{\alpha \beta}\left(t, t^{\prime}\right)-\frac{J^{2}}{q}\left(G^{\alpha \beta}\left(t, t^{\prime}\right)\right)^{q}\right)
$$

- N-dependence factors in front of the action: large- N limit is given by saddle-point approximation
- For SYK there is no replica symmetry breaking at large $N\left(T_{\mathrm{RSB}} \sim e^{-\sqrt{N}}\right)$ [Georges, Parcollet, Sachdev - 2001], hence we can use a replica-symmetric and diagonal ansatz:

$$
G^{\alpha \beta}\left(t, t^{\prime}\right)=\delta^{\alpha \beta} \underline{G}\left(t, t^{\prime}\right)+\frac{1}{N^{1 / 2}} g^{\alpha \beta}\left(t, t^{\prime}\right)
$$

with $\underline{G}\left(t, t^{\prime}\right)$ solving the saddle point equation ($=$ Schwinger-Dyson equation)

- At leading and subleading order in $\frac{1}{N}, n=0$ coincides with $n=1$ (quenched $=$ annealed)

Leading order result:

$$
\overline{\ln Z}_{L O}=N\left(\frac{1}{2} \operatorname{Tr}\left[\ln \underline{G}^{-1}\right]+\frac{1}{2} \operatorname{Tr}\left[\partial_{t} \underline{G}\left(t, t^{\prime}\right)\right]+\frac{J^{2}}{2 q} \int_{t, t^{\prime}} \underline{G}\left(t, t^{\prime}\right)^{q}\right)
$$

Bilocal effective action

$$
\overline{Z^{n}}=\int\left(\prod_{\alpha \beta}^{1 \ldots n}\left[d G^{\alpha \beta}\right]\left[d \Sigma^{\alpha \beta}\right]\right) e^{-N \mathbf{S}_{\mathrm{eff}}[G, \Sigma]}
$$

where

$$
\mathbf{S}_{\mathrm{eff}}[G, \Sigma]=-\frac{1}{2} \widehat{\operatorname{Tr}} \ln \left(\partial_{t}-\Sigma\right)+\frac{1}{2} \sum_{\alpha \beta}^{1 \ldots n} \int_{t, t^{\prime}}\left(\Sigma^{\alpha \beta}\left(t, t^{\prime}\right) G^{\alpha \beta}\left(t, t^{\prime}\right)-\frac{J^{2}}{q}\left(G^{\alpha \beta}\left(t, t^{\prime}\right)\right)^{q}\right)
$$

- N-dependence factors in front of the action: large- N limit is given by saddle-point approximation
- For SYK there is no replica symmetry breaking at large $N\left(T_{\mathrm{RSB}} \sim e^{-\sqrt{N}}\right)$ [Georges, Parcollet, Sachdev - 2001], hence we can use a replica-symmetric and diagonal ansatz:

$$
G^{\alpha \beta}\left(t, t^{\prime}\right)=\delta^{\alpha \beta} \underline{G}\left(t, t^{\prime}\right)+\frac{1}{N^{1 / 2}} g^{\alpha \beta}\left(t, t^{\prime}\right)
$$

with $\underline{G}\left(t, t^{\prime}\right)$ solving the saddle point equation ($=$ Schwinger-Dyson equation)

- At leading and subleading order in $\frac{1}{N}, n=0$ coincides with $n=1$ (quenched $=$ annealed)

Leading order result:

$$
\overline{\ln Z}_{L O}=N\left(\frac{1}{2} \operatorname{Tr}\left[\ln \underline{G}^{-1}\right]+\frac{1}{2} \operatorname{Tr}\left[\boldsymbol{t} \underline{G}\left(t, t^{\prime}\right)\right]+\frac{J^{2}}{2 q} \int_{t, t^{\prime}} \underline{G}\left(t, t^{\prime}\right)^{q}\right)
$$

again conformal invariant in the IR

Bilocality and holography

SYK has attracted attention because the $C F T_{1}$ is expected to have an $A d S_{2}$ dual, and thus describe the microscopics of near extremal black holes

Bilocal action formulation is a useful tool in the construction of the holographic dual: bilocality \sim extra dimensions

Basic idea: $2 d$ coordinates $\Rightarrow d+1$ coordinates + spin [Das, Jevicki - '03]
In SYK: [Jevicki, Suzuki, Yoon - '16]
$d=1 \Rightarrow$ no spin

$$
\begin{gathered}
t=\frac{1}{2}\left(t_{1}+t_{2}\right), \quad z=\frac{1}{2}\left(t_{1}-t_{2}\right) \\
g\left(t_{1}, t_{2}\right) \Rightarrow \phi(t, z)
\end{gathered}
$$

From the quadratic fluctuations around saddle point:

$$
S_{\mathrm{eff}} \sim \frac{1}{2} \sum_{n} \int d^{2} x \sqrt{-g}\left[-g^{\mu \nu} \partial_{\mu} \phi_{n} \partial_{\nu} \phi_{n}-h_{n}\left(1-h_{n}\right) \phi_{n}^{2}\right]
$$

\Rightarrow the bilocal field packs a sequence of $A d S_{2}$ scalars, with growing mass

$$
h_{n} \simeq 2 \Delta+2 n+1: \text { conformal dimension of } \psi_{a} \partial_{t}^{2 n+1} \psi_{a}
$$

Bilocal action and Jackiw-Teitelboim gravity

Bilocal action has also played an important role in identifying the gravitational part of the bulk dual: [Kitaev - '15; Maldacena,Stanford - '16]

- Fluctuations $g^{\alpha \beta}\left(t, t^{\prime}\right)$ around saddle point have an exact zero mode in the IR/conformal limit:

$$
\overline{\ln Z}_{N L O}=-\frac{1}{2} \operatorname{Tr}\left[\ln \left(I_{-}-\tilde{\mathcal{K}} I_{-}\right)\right]
$$

with the ladder kernel:

$$
\tilde{\mathcal{K}}\left(t_{1}, t_{2} ; t_{3}, t_{4}\right)=-J^{2}(q-1)\left|\underline{G}\left(t_{1}, t_{2}\right)\right|^{\frac{q-2}{2}} \underline{G}\left(t_{1}, t_{3}\right) \underline{G}\left(t_{2}, t_{4}\right)\left|\underline{G}\left(t_{3}, t_{4}\right)\right|^{\frac{q-2}{2}}
$$

Zero mode: $\tilde{\mathcal{K}}=1$ eigenmode
\Rightarrow non-conformal corrections lead to an effective action for the zero mode, a.k.a. the Schwarzian action

$$
S_{\mathrm{Sch}}=-N \frac{\alpha}{J} \int d \tau\left(\frac{f^{\prime \prime \prime}}{f^{\prime}}-\frac{3}{2}\left(\frac{f^{\prime \prime}}{f^{\prime}}\right)^{2}\right)
$$

Effective action for pseudo-Golstone modes of reprametrization invariance ($\tau \rightarrow f(\tau)$)

Bilocal action and Jackiw-Teitelboim gravity

Bilocal action has also played an important role in identifying the gravitational part of the bulk dual: [Kitaev - '15; Maldacena,Stanford - '16]

- Jackiw-Teitelboim gravity

$$
S_{J T}=-\frac{1}{16 \pi G}\left[\int_{M} d^{2} x \sqrt{g}(R-2 \Lambda) \phi+2 \int_{\partial M} d t \phi K\right]
$$

has similar phenomenon: singularity at conformal AdS boundary
\rightarrow cut out near-boundary region
\rightarrow Schwarzian action from on-shell evaluation of the boundary action
\Rightarrow Same pattern of symmetry breaking, controlled by the same effective action

Tensor models in $d=1$

Tensor models

The same melonic limit, and hence conformal symmetry in the IR, can be obtained without disorder, but replacing vectors with tensors
[Witten - '16]

Three types of models:

- Colored tensor models: with q distinguished fields with $q-1$ distinguished indices \Rightarrow symmetry group: $O(N)^{q(q-1) / 2}$
[Gurau - '10]
- Uncolored tensor models: with only one field with $q-1$ distinguished indices \Rightarrow symmetry group: $O(N)^{q-1}$
[Bonzom, Gurau, Rivasseau - '12 ($U(N)$); Carrozza, Tanasa - '15 $(O(N))$]
- Symmetric tensor models: with only one field with $q-1$ indices, in an irreducible representation of $O(N)$ (e.g. symmetric-traceless, antisymmetric, etc.) [Klebanov, Tarnopolsky - '17; DB, Carrozza, Gurau, Kolanowski - '17]

Gurau-Witten model

$d=1$ fermionic generalization of colored tensor model
Fields: q Majorana fermions in fundamental representation of $O(N)^{q-1}$; field $c(=1, \ldots, q)$ has an index $c_{1}(\neq c)$ transforming with the same group element as the index c of field c_{1}
\Rightarrow symmetry group: $O(N)^{q(q-1) / 2}$

$$
\begin{aligned}
\mathbf{S}_{\mathrm{GW}}[\psi]= & \frac{1}{2} \sum_{c=1}^{q} \int_{t} \psi_{\mathbf{a}_{\mathbf{c}}}^{(c)}(t) \partial_{t} \psi_{\mathbf{a}_{\mathbf{c}}}^{(c)}(t) \\
& +\frac{\mathrm{i}^{q / 2} \lambda}{N^{(q-1)(q-2) / 4}} \int_{t} \prod_{c=1}^{q} \psi_{\mathbf{a}_{\mathbf{c}}}^{(c)}(t) \prod_{c_{1}<c_{2}} \delta_{a_{c_{2}} c_{1} c_{c_{1}}}^{c_{2}}
\end{aligned}
$$

where $\mathbf{a}_{\mathbf{c}}=\left(a_{c_{1}}^{c} \mid c_{1} \in\{1, \ldots, q\} \backslash\{c\}\right)$

CTKT model

$d=1$ fermionic generalization of uncolored tensor model
Field: Majorana fermion in fundamental representation of $O(N)^{q-1}$.

$$
\mathbf{S}_{\mathrm{CTKT}}[\psi]=\int_{t}\left(\frac{1}{2} \psi_{a b c}(t) \partial_{t} \psi_{a b c}(t)+\frac{\lambda}{4 N^{3 / 2}} \psi_{a_{1} a_{2} a_{3}}(t) \psi_{a_{1} b_{2} b_{3}}(t) \psi_{b_{1} a_{2} b_{3}}(t) \psi_{b_{1} b_{2} a_{3}}(t)\right)
$$

Feynman graphs

Perturbative expansion:

- Represent Wick contraction of two tensors by dashed line, e.g.:

- Ordinary Feynman diagrams, tracking only ordinary spacetime/momentum integrals are obtained by shrinking interaction bubbles to a point:

- The leading order in $1 / N$ is given by melonic diagrams
\Rightarrow same Schwinger-Dyson equation as in SYK

Tensor models vs SYK

Advantages of tensor models:

- No quenched disorder, which is unnatural for $A d S / C F T$
- In SYK the $O(N)$ symmetry only emerges after quenching; in tensor models it is there from the beginning, so it can be gauged:
\Rightarrow Gauging gets rid of the non-singlet states, which are an obstacle in the search for the gravity dual
- Subleading corrections better understood (several years of results from tensor models and no tricky issues with replica limit)

Important differences:

- In non-gauged version, global symmetry becomes almost local in IR: new soft modes besides the Schwarzian mode [Minwalla et al. - '17; DB, Gurau - '18]
- Many more invariants (singlets) in tensor models: complicated bulk dual
- No collective field formulation

2PI effective action for tensor models

JHEP 05 (2018) 156 [arXiv:1802.05500], with R. Gurau

2PI effective action - general definition

Define the generating functional:

$$
\mathbf{W}[j, k]=\ln \int[d \varphi] \exp \left\{-\mathbf{S}[\varphi]+j_{\mathbf{a}} \varphi_{\mathbf{a}}+\frac{1}{2} \varphi_{\mathbf{a}} k_{\mathbf{a b}} \varphi_{\mathbf{b}}\right\}
$$

The 2PI effective action is the double Legendre transform with respect to the sources:

$$
\boldsymbol{\Gamma}[\phi, G]=-\mathbf{W}[\mathbf{J}, \mathbf{K}]+\mathbf{J}_{\mathbf{a}} \phi_{\mathbf{a}}+\frac{1}{2} \phi_{\mathbf{a}} \mathbf{K}_{\mathbf{a b}} \phi_{\mathbf{b}}+\frac{1}{2} \operatorname{Tr}[G \mathbf{K}]
$$

with \mathbf{J}, and \mathbf{K} such that:

$$
\begin{aligned}
\frac{\delta \mathbf{W}}{\delta j_{\mathbf{a}}}[\mathbf{J}, \mathbf{K}] & =\left\langle\varphi_{\mathbf{a}}\right\rangle_{\mathbf{J}, \mathbf{K}}=\phi_{\mathbf{a}} \\
\frac{\delta \mathbf{W}}{\delta k_{\mathbf{a b}}}[\mathbf{J}, \mathbf{K}] & =\frac{1}{2}\left\langle\varphi_{\mathbf{a}} \varphi_{\mathbf{b}}\right\rangle_{\mathbf{J}, \mathbf{K}}=\frac{1}{2}\left(G_{\mathbf{a b}}+\phi_{\mathbf{a}} \phi_{\mathbf{b}}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
\frac{\delta \boldsymbol{\Gamma}}{\delta \phi_{\mathbf{a}}}[\phi, G] & =\mathbf{J}_{\mathbf{a}}[\phi, G]+\mathbf{K}_{\mathbf{a b}}[\phi, G] \phi_{\mathbf{b}} \\
\frac{\delta \boldsymbol{\Gamma}}{\delta G_{\mathbf{a b}}}[\phi, G] & =\frac{1}{2} \mathbf{K}_{\mathbf{b a}}[\phi, G]
\end{aligned}
$$

$$
\mathbf{J}=\mathbf{K}=0 \Rightarrow \underline{\phi}=\langle\varphi\rangle, \underline{G}=2\langle\varphi \varphi\rangle_{c}
$$

2PI effective action - loop expansion

It is not hard to prove that

$$
\boldsymbol{\Gamma}[\phi, G]=\underbrace{\mathbf{S}[\phi]}_{\text {tree level }}+\underbrace{\frac{1}{2} \operatorname{Tr}\left[\ln G^{-1}\right]+\frac{1}{2} \operatorname{Tr}\left[\mathbf{S}_{\phi \phi}[\phi] G\right]}_{\text {one loop }}+\underbrace{\boldsymbol{\Gamma}_{2}[\phi, G]}_{\text {two or more loops }}
$$

with the following Feynman rules:

$$
\begin{array}{ll}
\text { vertices: } & \mathbf{S}_{\mathrm{int}}[\phi, \varphi]=\mathbf{S}[\phi+\varphi]_{\text {starting at cubic order in } \varphi} \\
\text { propagator: } & G(x, y)
\end{array}
$$

2PI effective action - loop expansion

It is not hard to prove that

$$
\boldsymbol{\Gamma}[\phi, G]=\underbrace{\mathbf{S}[\phi]}_{\text {tree level }}+\underbrace{\frac{1}{2} \operatorname{Tr}\left[\ln G^{-1}\right]+\frac{1}{2} \operatorname{Tr}\left[\mathbf{S}_{\phi \phi}[\phi] G\right]}_{\text {one loop }}+\underbrace{\Gamma_{2}[\phi, G]}_{\text {two or more loops }}
$$

with the following Feynman rules:

$$
\begin{array}{ll}
\text { vertices: } & \mathbf{S}_{\mathrm{int}}[\phi, \varphi]=\mathbf{S}[\phi+\varphi]_{\text {starting at cubic order in } \varphi} \\
\text { propagator: } & G(x, y)
\end{array}
$$

$\boldsymbol{\Gamma}_{2}[\phi, G]$ is given by the sum of all the ($n \geq 2$)-loops two-particle irreducible vacuum graphs

Hint:

$$
\frac{\delta \boldsymbol{\Gamma}}{\delta G_{\mathbf{a b}}}=0 \Rightarrow G^{-1}=\mathbf{S}_{\phi \phi}[\phi]+2 \frac{\delta \boldsymbol{\Gamma}_{2}}{\delta G}=G_{0}^{-1}-\Sigma
$$

Large- N limit of the 2 PI effective action

 - vector $O(N)$ model -$$
\mathbf{S}[\varphi]=\frac{1}{2} \int_{x, y} \varphi_{a}(x) C^{-1}(x, y) \varphi_{a}(y)+\frac{\lambda}{4!N} \int_{x}\left(\varphi_{a}(x) \varphi_{a}(x)\right)^{2}
$$

vertex ($\phi=0$) :

2 PI vacuum graphs:

$$
\boldsymbol{\Gamma}_{2}[\phi, G]=N \frac{\lambda}{4!} \int_{x} G(x, x)^{2}+\frac{1}{2} \operatorname{Tr}\left[\ln \left(\mathbf{1}+\frac{\lambda}{6} G(x, y)^{2}\right)\right]+O\left(\frac{1}{N}\right)
$$

Large- N limit of the 2 PI effective action

 - vector $O(N)$ model -$$
\mathbf{S}[\varphi]=\frac{1}{2} \int_{x, y} \varphi_{a}(x) C^{-1}(x, y) \varphi_{a}(y)+\frac{\lambda}{4!N} \int_{x}\left(\varphi_{a}(x) \varphi_{a}(x)\right)^{2}
$$

Loop structure of $1 / N$ expansion: from same trick as in SYK

$$
\begin{aligned}
Z & =\int[d \varphi] e^{-\mathbf{S}[\varphi]} \\
& =\int[d \varphi][d \tilde{G}][d \tilde{\Sigma}] e^{-\mathbf{S}[\varphi]-\frac{1}{2} \int_{x, y} \tilde{\Sigma}(x, y)\left(N \tilde{G}(x, y)-\sum_{a} \varphi_{a}(x) \varphi_{a}(y)\right)} \\
& =\int[d \tilde{G}][d \tilde{\Sigma}] e^{-N\left\{\frac{1}{2} \operatorname{Tr}\left[\left(C^{-1}-\tilde{\Sigma}\right) \tilde{G}\right]+\frac{1}{2} \operatorname{Tr}[\ln (\tilde{\Sigma})]+\frac{\lambda}{4!} \int_{x} \tilde{G}(x, x)^{2}\right\}} \\
& \equiv \int[d \tilde{G}][d \tilde{\Sigma}] e^{-N \mathbf{S}_{\operatorname{eff}}[\tilde{G}, \tilde{\Sigma}]}
\end{aligned}
$$

Large- N limit of the 2 PI effective action

- GW model -

$$
\mathbf{S}_{\mathrm{GW}}[\psi]=\frac{1}{2} \sum_{c=1}^{q} \int_{t} \psi_{\mathbf{a}_{\mathbf{c}}}^{(c)}(t) \partial_{t} \psi_{\mathbf{a}_{\mathbf{c}}}^{(c)}(t)+\frac{\mathrm{i}^{q / 2} \lambda}{N^{(q-1)(q-2) / 4}} \int_{t} \prod_{c=1}^{q} \psi_{\mathbf{a}_{\mathbf{c}}}^{(c)}(t) \prod_{c_{1}<c_{2}} \delta_{a_{c_{1} c_{2}} a_{c_{2} c_{1}}}
$$

Introduce a bilocal source for each color and perform the double Legendre transform:

$$
\begin{aligned}
\boldsymbol{\Gamma}\left[\Psi_{\mathbf{a}_{\mathbf{c}}}^{(c)}(t), G_{\mathbf{a}_{\mathbf{c}} \mathbf{b}_{\mathbf{c}}}^{(c)}\left(t, t^{\prime}\right)\right]= & \mathbf{S}_{\mathrm{GW}}\left[\Psi^{(c)}\right]+\frac{1}{2} \sum_{c=1}^{q} \operatorname{Tr}\left[\ln \left(G^{(c)}\right)\right]-\frac{1}{2} \sum_{c=1}^{q} \operatorname{Tr}\left[\left(G_{0}^{(c)}\right)^{-1} G^{(c)}\right] \\
& +\boldsymbol{\Gamma}_{2}\left[\Psi^{(c)}, G^{(c)}\right]
\end{aligned}
$$

with

$$
\begin{aligned}
\left\langle\psi_{\mathbf{a}_{\mathbf{c}}}^{(c)}(t)\right\rangle & =\underline{\Psi}_{\mathbf{a}_{\mathbf{c}}}^{(c)}(t) \\
\left\langle\Psi_{\mathbf{a}_{\mathbf{c}}}^{(c)}(t) \Psi_{\mathbf{b}_{\mathbf{c}}}^{(c)}\left(t^{\prime}\right)\right\rangle & =\frac{1}{2}\left(\underline{G}_{\mathbf{a}_{\mathbf{c}} \mathbf{b}_{\mathbf{c}}}^{(c)}\left(t, t^{\prime}\right)+\underline{\Psi}_{\mathbf{a}_{\mathbf{c}}}^{(c)}(t) \underline{\Psi}_{\mathbf{b}_{\mathbf{c}}}^{(c)}\left(t^{\prime}\right)\right)
\end{aligned}
$$

Large- N limit of the 2 PI effective action

- GW model -

$$
\mathbf{S}_{\mathrm{GW}}[\psi]=\frac{1}{2} \sum_{c=1}^{q} \int_{t} \psi_{\mathbf{a}_{\mathbf{c}}}^{(c)}(t) \partial_{t} \psi_{\mathbf{a}_{\mathbf{c}}}^{(c)}(t)+\frac{\mathrm{i}^{q / 2} \lambda}{N^{(q-1)(q-2) / 4}} \int_{t} \prod_{c=1}^{q} \psi_{\mathbf{a}_{\mathbf{c}}}^{(c)}(t) \prod_{c_{1}<c_{2}} \delta_{a_{c_{1} c_{2}} a_{c_{2} c_{1}}}
$$

Introduce a bilocal source for each color and perform the double Legendre transform:

$$
\begin{aligned}
\boldsymbol{\Gamma}\left[\Psi_{\mathbf{a}_{\mathbf{c}}}^{(c)}(t), G_{\mathbf{a}_{\mathbf{c}} \mathbf{b}_{\mathbf{c}}}^{(c)}\left(t, t^{\prime}\right)\right]= & \mathbf{S}_{\mathrm{GW}}\left[\Psi^{(c)}\right]+\frac{1}{2} \sum_{c=1}^{q} \operatorname{Tr}\left[\ln \left(G^{(c)}\right)\right]-\frac{1}{2} \sum_{c=1}^{q} \operatorname{Tr}\left[\left(G_{0}^{(c)}\right)^{-1} G^{(c)}\right] \\
& +\boldsymbol{\Gamma}_{2}\left[\Psi^{(c)}, G^{(c)}\right]
\end{aligned}
$$

with

$$
\begin{aligned}
\left\langle\psi_{\mathbf{a}_{\mathbf{c}}}^{(c)}(t)\right\rangle & =\underline{\Psi}_{\mathbf{a}_{\mathbf{c}}}^{(c)}(t) \\
\left\langle\Psi_{\mathbf{a}_{\mathbf{c}}}^{(c)}(t) \Psi_{\mathbf{b}_{\mathbf{c}}}^{(c)}\left(t^{\prime}\right)\right\rangle & =\frac{1}{2}\left(\underline{G}_{\mathbf{a}_{\mathbf{c}} \mathbf{b}_{\mathbf{c}}}^{(c)}\left(t, t^{\prime}\right)+\underline{\Psi}_{\mathbf{a}_{\mathbf{c}}}^{(c)}(t) \underline{\Psi}_{\mathbf{b}_{\mathbf{c}}}^{(c)}\left(t^{\prime}\right)\right)
\end{aligned}
$$

In the symmetric phase

$$
\underline{\Psi}_{\mathbf{a}_{\mathbf{c}}}^{(c)}(t)=0, \quad \underline{G}_{\mathbf{a}_{\mathbf{c}} \mathbf{b}_{\mathbf{c}}}^{(c)}\left(t, t^{\prime}\right)=G\left(t, t^{\prime}\right) \prod_{c^{\prime} \neq c} \delta_{a_{c^{\prime}}^{c}, b_{c^{\prime}}^{c}}
$$

\Rightarrow each trace on a color index counts as a factor N

Leading-order 2PI effective action for GW model

Large N :
Counting traces $=$ counting faces in stranded graph \Rightarrow leading order is given by melons

There is only one melon graph which is also 2 PI : the fundamental melon

$$
\begin{aligned}
\boldsymbol{\Gamma}_{2}^{\mathrm{LO}}\left[\Psi^{(c)}=0, G^{(c)}=G\right] & =-\frac{\lambda^{2}}{2 N^{(q-1)(q-2) / 2}} \int_{t, t^{\prime}} \prod_{c=1}^{q} G_{\mathbf{a}_{\mathbf{c}} \mathbf{b}_{\mathbf{c}}}^{(c)}\left(t, t^{\prime}\right) \prod_{c_{1}<c_{2}} \delta_{a_{c_{2}}^{c_{1}} a_{c_{1}}^{c_{2}} \delta_{b_{c_{2}} b_{1}} b_{c_{1}}^{c_{2}}} \\
& =-\frac{\lambda^{2} N^{q-1}}{2} \int_{t, t^{\prime}} G\left(t, t^{\prime}\right)^{q}
\end{aligned}
$$

\Rightarrow Same result as in the SYK model

Leading-order 2PI effective action for CTKT model

For the CTKT model we obtain a similar result:

$$
\boldsymbol{\Gamma}[0, G]=-\frac{1}{2} \operatorname{Tr}\left[\ln G_{a_{1} a_{2} a_{3} b_{1} b_{2} b_{3}}^{-1}\right]-\frac{1}{2} \operatorname{Tr}\left[\partial_{t} G_{a_{1} a_{2} a_{3} b_{1} b_{2} b_{3}}\left(t, t^{\prime}\right)\right]+\boldsymbol{\Gamma}_{2}^{(3)}[G]
$$

with

$$
\begin{aligned}
& \boldsymbol{\Gamma}_{2}^{(3)}[G]= \\
& =\frac{-\lambda^{2}}{8 N^{3}} \int_{t, t^{\prime}} G_{a_{1} a_{2} a_{3} b_{1} b_{2} b_{3}}\left(t, t^{\prime}\right) G_{a_{1} a_{2}^{\prime} a_{3}^{\prime} b_{1} b_{2}^{\prime} b_{3}^{\prime}}\left(t, t^{\prime}\right) G_{a_{1}^{\prime} a_{2} a_{3}^{\prime} b_{1}^{\prime} b_{2} b_{3}^{\prime}}\left(t, t^{\prime}\right) G_{a_{1}^{\prime} a_{2}^{\prime} a_{3} b_{1}^{\prime} b_{2}^{\prime} b_{3}}\left(t, t^{\prime}\right) \\
& =-\frac{1}{8} \lambda^{2} N^{3} \int_{t, t^{\prime}} G\left(t, t^{\prime}\right)^{4}
\end{aligned}
$$

Leading-order 2PI effective action for CTKT model

For the CTKT model we obtain a similar result:

$$
\boldsymbol{\Gamma}[0, G]=-\frac{1}{2} \operatorname{Tr}\left[\ln G_{a_{1} a_{2} a_{3} b_{1} b_{2} b_{3}}^{-1}\right]-\frac{1}{2} \operatorname{Tr}\left[\partial_{t} G_{a_{1} a_{2} a_{3} b_{1} b_{2} b_{3}}\left(t, t^{\prime}\right)\right]+\boldsymbol{\Gamma}_{2}^{(3)}[G]
$$

with

$$
\begin{aligned}
& \Gamma_{2}^{(3)}[G]= \\
& =\frac{-\lambda^{2}}{8 N^{3}} \int_{t, t^{\prime}} G_{a_{1} a_{2} a_{3} b_{1} b_{2} b_{3}}\left(t, t^{\prime}\right) G_{a_{1} a_{2}^{\prime} a_{3}^{\prime} b_{1} b_{2}^{\prime} b_{3}^{\prime}}\left(t, t^{\prime}\right) G_{a_{1}^{\prime} a_{2} a_{3}^{\prime} b_{1}^{\prime} b_{2} b_{3}^{\prime}}\left(t, t^{\prime}\right) G_{a_{1}^{\prime} a_{2}^{\prime} a_{3} b_{1}^{\prime} b_{2}^{\prime} b_{3}}\left(t, t^{\prime}\right) \\
& =-\frac{1}{8} \lambda^{2} N^{3} \int_{t, t^{\prime}} G\left(t, t^{\prime}\right)^{4}
\end{aligned}
$$

In the IR limit, global $O(N)^{q-1}$ symmetry becomes a local symmetry: new zero modes

Leading-order 2PI effective action for CTKT model

For the CTKT model we obtain a similar result:

$$
\boldsymbol{\Gamma}[0, G]=-\frac{1}{2} \operatorname{Tr}\left[\ln G_{a_{1} a_{2} a_{3} b_{1} b_{2} b_{3}}^{-1}\right]-\frac{1}{2} \operatorname{Tr}\left[\partial_{t} G_{a_{1} a_{2} a_{3} b_{1} b_{2} b_{3}}\left(t, t^{\prime}\right)\right]+\boldsymbol{\Gamma}_{2}^{(3)}[G]
$$

with

$$
\begin{aligned}
& \Gamma_{2}^{(3)}[G]= \\
& =\frac{-\lambda^{2}}{8 N^{3}} \int_{t, t^{\prime}} G_{a_{1} a_{2} a_{3} b_{1} b_{2} b_{3}}\left(t, t^{\prime}\right) G_{a_{1} a_{2}^{\prime} a_{3}^{\prime} b_{1} b_{2}^{\prime} b_{3}^{\prime}}\left(t, t^{\prime}\right) G_{a_{1}^{\prime} a_{2} a_{3}^{\prime} b_{1}^{\prime} b_{2} b_{3}^{\prime}}\left(t, t^{\prime}\right) G_{a_{1}^{\prime} a_{2}^{\prime} a_{3} b_{1}^{\prime} b_{2}^{\prime} b_{3}}\left(t, t^{\prime}\right) \\
& =-\frac{1}{8} \lambda^{2} N^{3} \int_{t, t^{\prime}} G\left(t, t^{\prime}\right)^{4}
\end{aligned}
$$

In the IR limit, global $O(N)^{q-1}$ symmetry becomes a local symmetry: new zero modes
As in the case of the Schwarzian action, reintroducing the derivative term leads to an effective action for the soft modes; this time a non-linear sigma model $\left(V_{c} \in O(N)\right)$:

$$
S_{\mathrm{eff}}=-\frac{\alpha}{2} N^{q-2} \int_{t} \sum_{c=1}^{q-1} \operatorname{Tr}\left[\left(V_{c}^{-1} \partial_{t} V_{c}\right)^{2}\right]
$$

Next three subleading orders for GW model

Leading order is $\sim N^{q-1}$, while subleading orders start at $\sim N^{2}$:

$$
\boldsymbol{\Gamma}_{2}[G]=\boldsymbol{\Gamma}_{2}^{(q-1)}[G]+\boldsymbol{\Gamma}_{2}^{(2)}[G]+\boldsymbol{\Gamma}_{2}^{(1)}[G]+\boldsymbol{\Gamma}_{2}^{(0)}[G]
$$

Subleading diagrams are an infinite family of ladders:

where colors and twist lead to different scalings with N : [Bonzom, Lionni, Tanasa - 2017]
Order $N^{2} \quad \Rightarrow \quad$ rails: alternating colors without twist
Order $N \quad \Rightarrow \quad$ rails: alternating colors with twist
Order $1 \quad \Rightarrow \quad$ rails: non-alternating colors with or without twist

Resummation of subleading contributions for GW model

Subleading diagrams can be resummed:

$$
\begin{aligned}
\boldsymbol{\Gamma}_{2}^{(2)}[G]= & N^{2} \frac{1}{4}\binom{q}{2} \operatorname{Tr}\left[I^{=} \ln \left(1-\lambda^{4} \hat{\mathcal{K}}^{2}\right)\right] \\
\boldsymbol{\Gamma}_{2}^{(1)}[G]= & N \frac{1}{4}\binom{q}{2} \operatorname{Tr}\left[\left(-I^{\times}\right) \ln \left(1-\lambda^{4} \hat{\mathcal{K}}^{2}\right)\right] \\
\boldsymbol{\Gamma}_{2}^{(0)}[G]= & \frac{1}{2} \operatorname{Tr}\left[I_{-} \ln \left(1-(q-1) \lambda^{2} \hat{\mathcal{K}}\right)\right] \\
& \quad+\frac{q-1}{2} \operatorname{Tr}\left[I_{-} \ln \left(1+\lambda^{2} \hat{\mathcal{K}}\right)\right]-\frac{1}{2}\binom{q}{2} \operatorname{Tr}\left[I_{-} \ln \left(1-\lambda^{4} \hat{\mathcal{K}}^{2}\right)\right]
\end{aligned}
$$

where $\hat{\mathcal{K}}$ is a ladder kernel, and $I_{ \pm}=\left(I^{=} \pm I^{\times}\right) / 2$ are projectors on (anti-)symmetric bilocal functions

Free energy

Putting all together we have the free energy (for $q>4$):

$$
\begin{aligned}
-\ln Z=\boldsymbol{\Gamma}[0, \underline{G}]= & N^{q-1} \frac{q}{2} \operatorname{Tr}\left[\ln \left(\underline{G}^{(0)}\right)\right]-N^{q-1} \frac{q}{2} \operatorname{Tr}\left[\partial_{t} \underline{G}^{(0)}\right]-N^{q-1} \frac{\lambda^{2}}{2} \int_{t, t^{\prime}} \underline{G}^{(0)}\left(t, t^{\prime}\right)^{q} \\
& +\left[\frac{N(N-1)}{2}\binom{q}{2}\right] \frac{1}{2} \operatorname{Tr}\left[\ln \left(1-\lambda^{4}\left[\underline{\hat{\mathcal{K}}}^{(0)}\right]^{2} I_{+}\right)\right] \\
& +\left[\left(\frac{N(N-1)}{2}+(N-1)\right)\binom{q}{2}\right] \frac{1}{2} \operatorname{Tr}\left[\ln \left(1-\lambda^{4}\left[\underline{\hat{\mathcal{K}}}^{(0)}\right]^{2} I_{-}\right)\right] \\
& +(q-1) \frac{1}{2} \operatorname{Tr}\left[\ln \left(1+\lambda^{2}\left[\underline{\hat{\mathcal{K}}}^{(0)}\right] I_{-}\right)\right]+\frac{1}{2} \operatorname{Tr}\left[\ln \left(1-(q-1) \lambda^{2}\left[\underline{\hat{\mathcal{K}}}^{(0)}\right] I_{-}\right)\right]
\end{aligned}
$$

where $\underline{G}^{(0)}$ and $\underline{\hat{\mathcal{K}}}^{(0)}$ are the leading-order on-shell two-point function and its ladder kernel (subleading corrections to $\underline{G}^{(0)}$ contribute the free energy at order N^{5-q})

We have rearranged subleading contributions to highlight a peculiar structure...

Interpretation in terms of an auxiliary theory

The trace-log terms can be interpreted as the one loop correction to the leading-order action

$$
N^{q-1} \frac{q}{2} \operatorname{Tr}[\ln (G)]-N^{q-1} \frac{q}{2} \operatorname{Tr}\left[\partial_{t} G\right]-N^{q-1} \frac{\lambda^{2}}{2} \int_{t, t^{\prime}} G\left(t, t^{\prime}\right)^{q}
$$

Hint:
Expanding around the saddle point

$$
G_{\mathbf{a}_{\mathbf{c}} \mathbf{b}_{\mathbf{c}}}^{(c)}\left(t, t^{\prime}\right)=\underline{G}^{(0)}\left(t, t^{\prime}\right) \delta_{\mathbf{a}_{\mathbf{c}} \mathbf{b}_{\mathbf{c}}}+g_{\mathbf{a}_{\mathbf{c}} \mathbf{b}_{\mathbf{c}}}^{(c)}\left(t, t^{\prime}\right)
$$

the one loop correction gives the $\operatorname{det}\left(\mathbb{I}-\lambda^{2} \mathbb{K}\right)^{-1 / 2}$, where the operator \mathbb{K} is a matrix in color space built out of kernels $\mathcal{K}^{\left(c_{1} c_{2}\right)}$, such as

Interpretation in terms of an auxiliary theory

The trace-log terms can be interpreted as the one loop correction to the leading-order action

$$
N^{q-1} \frac{q}{2} \operatorname{Tr}[\ln (G)]-N^{q-1} \frac{q}{2} \operatorname{Tr}\left[\partial_{t} G\right]-N^{q-1} \frac{\lambda^{2}}{2} \int_{t, t^{\prime}} G\left(t, t^{\prime}\right)^{q}
$$

\Rightarrow fluctuations decompose into symmetric traceless matrices, antisymmetric matrices and scalars:

$$
g_{\mathbf{a}_{\mathbf{c}} \mathbf{b}_{\mathbf{c}}}^{(c)}\left(t, t^{\prime}\right)=g^{(c)}\left(t, t^{\prime}\right) \prod_{i \neq c} \delta_{a_{i}^{c} b_{i}^{c}}+\sum_{i \neq c} g_{a_{i}^{c} b_{i}^{c}}^{(c i)}\left(t, t^{\prime}\right) \prod_{j \neq i, c} \delta_{a_{j}^{c} b_{j}^{c}}+\hat{g}_{\mathbf{a}_{\mathbf{c}} \mathbf{b}_{\mathbf{c}}}^{(c)}\left(t, t^{\prime}\right)
$$

and $g_{a_{c i} b_{c i}}^{(c i)}\left(t, t^{\prime}\right)$ decomposed in symmetric traceless and antisymmetric parts
Taking into account the matrix structure of \mathbb{K}, we find exactly the free energy above

Conclusions and outlook

Conclusions and outlook

- The SYK model has brought the melonic limit of tensor models under the spotlight
- Tensor models offer a number of advantages over the SYK model (in particular because of no disorder)
- They also present some differences and extra challenges (new light modes, many more invariants, ...)
- We advocated the use of the 2PI formalism to bypass the lack of a bilocal reformulation of the path integral, showing that it reproduces the bilocal effective action of SYK
- Large- N of colored tensor model: only one 2PI diagram at leading order; infinite but summable families of 2PI diagrams at first three subleading orders
- Surprisingly, the $1 / N$ expansion of the 2PI effective action of the colored tensor model suggests the existence of an effective bilocal reformulation, at least up to order N^{0}
- Many open directions and questions, in particular concerning the holographic interpretation of tensor models

