$E P R=E R$ in LLM

Joan Simón

University of Edinburgh and Maxwell Institute of Mathematical Sciences
Quantum physics \& Gravity, thematic programme Vienna, Schrödinger Institute, June 19, 2017

Outline

- Short (\& limited) review
- to provide some perspective to non-experts
- Revisit LLM
- EPR=ER in two boundaries
- Entanglement in R-charge space
- Comments on entangled "black holes"

Black holes \& entropy

Wins \& losses

- in susy scenarios, dof (D-branes) are identified and counted, but not in the regime of parameters where BHs exist
- extremality, in many situations, leads to some CFT where Cardy's formula reproduces Hawking-Bekenstein

Despite huge success,

- emergence of locality
- information paradox and consistency with quantum mechanics remain unanswered \Longrightarrow study of string theory dynamics led to a new framework

A new framework: AdS/CFT

Given same kinematic symmetries, assume quantum gravity = QFT
\exists weakly coupled semiclassical gravity

$$
I_{\text {gravity }} \sim \frac{1}{G_{N}} \int(R-2 \Lambda), \quad G_{N} \sim \ell_{p}^{d-2}, \quad g_{\text {eff }}^{2} \sim\left(\frac{\ell_{p}}{L}\right)^{d-2} \ll 1
$$

- Any CFT has a stress tensor with 2-pt function

$$
\left\langle T_{\mu \nu}(x) T_{\alpha \beta}(y)\right\rangle \sim \mathcal{N} g(x, y)
$$

the natural semi-classical gravity calculation involves

$$
\frac{\delta}{\delta g_{\mu \nu}} \frac{\delta}{\delta g_{\alpha \beta}} e^{-I_{\text {gravity }}} \sim \frac{R_{\text {AdS }}^{d-2}}{G_{N}} \equiv \frac{1}{g_{\text {eff }}^{2}} \gg 1
$$

Hence, $\mathcal{N} \sim \frac{1}{g_{\text {eff }}^{2}} \gg 1$

A new framework : AdS/CFT

Reproducing gravity spectrum

- In perturbative Einstein-like gravity, the only particles running in loops are gravitons. To ensure the same property in CFT, we require

$$
\Delta_{s>2} \gg 1
$$

i.e., large anomalous dimensions due to strong interactions
\exists some evidence: CFTs satisfying

$$
\mathcal{N} \gg 1 \& \text { very strongly coupled }
$$

have gravity duals

Holographic lessons

1. Connected 2-pt correlation function of a heavy operator

$$
\left\langle\mathcal{O}_{A}\left(x_{a}\right) \mathcal{O}_{B}\left(x_{b}\right)\right\rangle \sim e^{-m L_{\text {bulk }}\left(x_{a}, x_{b}\right)}
$$

$L_{\text {bulk }}\left(x_{a}, x_{b}\right)$ bulk geodesic distance between boundary x_{a} and x_{b}.
2. Entanglement entropy (RT)

$$
S\left(\rho_{B}\right)=\frac{\operatorname{Area}\left(\Sigma_{\text {bulk }}\right)}{4 G_{N}}
$$

$\Sigma_{\text {bulk }}$ is a bulk minimal surface anchored to ∂B

Holographic lessons

3. Subregion duality: any bulk operator $\phi(x)$ in the entanglement wedge of A can be reconstructed from its boundary data

Notice $\phi(x)$ can not be reconstructed from A, B or C alone, but it does have multiple representations in $A B, A C$ and $B C$

Entanglement vs Spacetime Connectivity

Mutual information bounds the amount of correlation

$$
I(A: B) \geq \frac{\left(\left\langle\mathcal{O}_{A} \mathcal{O}_{B}\right\rangle-\left\langle\mathcal{O}_{A}\right\rangle\left\langle\mathcal{O}_{B}\right\rangle\right)^{2}}{2\left\|\mathcal{O}_{A}\right\|^{2}\left\|\mathcal{O}_{B}\right\|^{2}}
$$

Sending entanglement to zero, requires:
(1) Proper bulk distance to infinity
(2) Area of the common boundary to zero \Rightarrow pinching

EPR-ER

Avoiding its connection to the firewall discussion
There is no fundamental difference in the quantum state

$$
\begin{aligned}
|\Psi\rangle & =\frac{1}{\sqrt{2}}(|+\rangle|-\rangle+|-\rangle|+\rangle) \\
\left|\Psi^{\prime}\right\rangle & =\frac{1}{\sqrt{Z}} \sum_{n} e^{-\beta E_{n} / 2}|n\rangle|n\rangle
\end{aligned}
$$

except

- Hilbert space : dimensionality, spectrum \& dynamics (holographic)
- Entropy of the state

The wormhole interpretation

Consider the 4d Schwarzschild black hole metric

$$
d s^{2}=-e^{2 \Phi} d t^{2}+\frac{d r^{2}}{1-B / r}+r^{2}\left(d \theta^{2}+\sin ^{2} \theta d \phi^{2}\right)
$$

Study a fixed t slice at $\theta=\pi / 2$:

$$
\left.d s^{2}\right|_{\Sigma}=\frac{d r^{2}}{1-B / r}+r^{2} d \phi^{2}
$$

View this section as a surface $z(r)$ in one higher euclidean dimension

$$
\begin{aligned}
d s^{2}=d z^{2}+d r^{2}+r^{2} d \phi^{2} & =\left(1+\left(z^{\prime}\right)^{2}\right) d r^{2}+r^{2} d \phi^{2} \\
z(r) & = \pm 2 B(r / B-1)^{1 / 2}
\end{aligned}
$$

This is a non-traversable wormhole, but it illustrates that black holes can be reinterpreted in terms of Einstein-Rosen (ER) bridges (wormholes)

Path integral perspective

Consider some partial entangling between two CFTs through the projection

$$
\mathcal{P}=\prod_{x \in P}\left(\sum_{n_{x}}\left|n_{x}\right\rangle_{1}\left|n_{x}\right\rangle_{2}\right)\left(\sum_{m_{x}}\left|m_{x}\right\rangle_{1}\left|m_{x}\right\rangle_{2}\right) \otimes \prod_{x \in P^{c}}\left(\mathbb{I}_{x}^{2} \otimes \mathbb{I}_{x}^{2}\right)
$$

Path integral requires

- slit along interval P in each CFT
- gluing of path integrals across P
- regularisation

Eternal AdS BH revisited

(1) Classical maximal extension of the eternal AdS BH
(2) Connectedness through BH event horizon

For certain observables and low energies, an observer in \mathcal{H}_{R} measures a thermal state :

$$
\rho_{\mathrm{BH}}=\frac{1}{Z(\beta)} \sum_{i} e^{-\beta E_{i}}\left|E_{i}\right\rangle\left\langle E_{i}\right|, \quad\left|E_{i}\right\rangle \in \mathcal{H}_{R}
$$

Can we interpret ρ_{BH} as a reduced density matrix ? (Maldacena)
$\rho_{\mathrm{BH}}=\operatorname{tr}_{\mathcal{H}_{L}}|\Psi\rangle\langle\Psi|$ with $|\Psi\rangle=\frac{1}{\sqrt{Z(\beta)}} \sum_{i} e^{-\beta E_{i} / 2}\left|E_{i}\right\rangle \otimes\left|E_{i}\right\rangle \in \mathcal{H}_{L} \otimes \mathcal{H}_{R}$
Quantum entanglement is responsible for the existence of correlations.

$E P R=E R($ Maldacena \& Susskind)

Eternal black hole re-interpreted

(1) Non-vanishing correlators between \mathcal{H}_{L} and \mathcal{H}_{R} are due to quantum entanglement (EPR)
(2) These correlations are holographically captured by the bulk geodesic distance between opposite boundaries \Rightarrow length of the ER bridge
(3) Entanglement entropy $=$ black hole entropy \Rightarrow maximal cross-section of the ER bridge

$E P R=E R$ conjecture

In short, it takes the above picture and states it is always correct One problem : there is no quantum analogue of what an ER bridge is One question : can we check this proposal in the semi-classical regime?

Adding perturbations

This EPR-ER picture holds

- when perturbing the eternal black hole/thermofield double
- bulk : shock wave
- boundary: insertion of local operator

This set-up

- made more precise the notion of scrambling

$$
\tau_{\star} \sim \beta \log S
$$

- gave rise to out-ot-time-order correlators to put bounds on quantum chaos
- It is compatible with arguments to avoid quantum cloning in the presence of a horizon

Wormhole traversability

In GR, traversability requires to violate null energy condition

Gao, Jafferis \& Wall turned on some interaction between \mathcal{H}_{L} and \mathcal{H}_{R}

- under some conditions, the 1-loop stress tensor has negative average null energy condition
- Null geodesics can connect both boundaries

Given some interaction $e^{i g \mathcal{O}_{L} \mathcal{O}_{R}}$, if we turn on a perturbation $e^{i \varepsilon_{R} \phi_{R}}$ in \mathcal{H}_{R} a probe of traversability is :

$$
\begin{aligned}
\left\langle e^{-i \varepsilon_{R} \phi_{R}(-t)} \hat{\phi}_{L}(t) e^{i \varepsilon_{R} \phi_{R}(-t)}\right\rangle & =\left\langle\hat{\phi}_{L}(t)\right\rangle-g \varepsilon_{R}\left[\phi_{R}(-t), \mathcal{O}_{R}\right]\left[\mathcal{O}_{L}, \phi_{L}(t)\right] \\
& +\ldots
\end{aligned}
$$

$\mathrm{N}=4 \mathrm{SYM}$: half-BPS sector

$\Delta=J$ states $\Leftrightarrow \prod_{i}\left(\operatorname{tr} Z^{m_{i}}\right)^{n_{i}}, \quad \sum_{i} m_{i} n_{i}=\Delta=J$

Fermion description

SYM dimensionally reduced on 3-sphere + complex adjoint matrix Z
Diagonalisation: $Z \rightarrow \operatorname{diag}\left(\lambda_{1}, \ldots \lambda_{N}\right)$
Change in measure : Van der Monde determinant $\mu=\prod_{i \neq j}\left(\lambda_{i}-\lambda_{j}\right)$
N free fermions in a 1-d harmonic oscillator
\{5,3,3,1\}

$$
\psi\left(n_{1}\right) \sim H_{n_{1}}\left(\lambda_{1}\right) e^{-\lambda_{i}^{2} / 2}
$$

$$
\psi\left(n_{i}, \ldots\right) \sim \operatorname{Slater}\left[H_{n_{i}}, \ldots\right] e^{-\sum_{i} \lambda_{i}^{2} / 2}
$$

$$
r_{i}=\frac{1}{\hbar}\left(E_{i}-E_{i}^{\mathrm{fs}}\right)=n_{i}-i+1
$$

Interpretation of states

- $\Delta \sim \mathcal{O}(1)$ pointlike gravitons spinning on the 5-sphere : multitrace
- $\Delta \sim \mathcal{O}(N)$ giant gravitons
- Myers' effect : gravitons expand into spinning D3-branes with size

$$
\sin ^{2} \theta=\frac{J}{N}
$$

- subdeterminants, as operators

$$
\operatorname{det}_{k} Z=\frac{1}{k!} \varepsilon_{i_{1} \ldots i_{k} a_{1} \ldots a_{N-k}} \varepsilon^{j_{1} \ldots j_{k} a_{1} \ldots a_{N-k}} Z_{j_{1}}^{i_{1}} \ldots Z_{j_{k}}^{i_{k}}
$$

- $\Delta \sim \mathcal{O}\left(N^{2}\right)$ bound states of giant gravitons (superstars), with distribution

$$
\frac{d n}{d \theta}=N_{c} \sin 2 \theta, \quad N_{c} \sim N
$$

N_{c} is the number of excited columns in the Young tableau

Gravity : classical moduli space

$\mathbb{R} \times S O(4) \times S O(4)+$ susy type IIB metric \& RR 5-form

$$
\begin{aligned}
d s^{2} & =-\frac{y}{\sqrt{\frac{1}{4}-z^{2}}}\left(d t+V_{i} d x^{i}\right)^{2}+\frac{\sqrt{\frac{1}{4}-z^{2}}}{y}\left(d y^{2}+d x^{i} d x^{i}\right) \\
& +y \sqrt{\frac{\frac{1}{2}-z}{\frac{1}{2}+z}} d \Omega_{3}^{2}+y \sqrt{\frac{\frac{1}{2}+z}{\frac{1}{2}-z}} d \tilde{\Omega}_{3}^{2}
\end{aligned}
$$

characterised by a single scalar function droplet data

$$
z\left(y ; x_{1}, x_{2}\right)=\frac{y^{2}}{\pi} \int d x_{1}^{\prime} d x_{2}^{\prime} \frac{z\left(0 ; x_{1}^{\prime}, x_{2}^{\prime}\right)}{\left[\left(x-x^{\prime}\right)^{2}+y^{2}\right]^{2}}
$$

uniquely determined by droplet data on the $\mathrm{y}=0$ plane

Smooth configurations

$$
z\left(0 ; x_{1}, x_{2}\right)= \pm \frac{1}{2}
$$

Natural to introduce $u\left(0 ; x_{1}, x_{2}\right)=\frac{1}{2}-z\left(0 ; x_{1}, x_{2}\right)$.

LLM : dictionary

Energy

$$
\Delta=J=\int_{\mathbb{R}^{2}} \frac{d^{2} x}{2 \pi \hbar} \frac{1}{2} \frac{x_{1}^{2}+x_{2}^{2}}{\hbar} u\left(0 ; x_{1}, x_{2}\right)-\frac{1}{2}\left(\int_{\mathbb{R}^{2}} \frac{d^{2} x}{2 \pi \hbar} u\left(0 ; x_{1}, x_{2}\right)\right)^{2}
$$

Flux

$$
N=\int_{\mathbb{R}^{2}} \frac{d^{2} x}{2 \pi \hbar} u\left(0 ; x_{1}, x_{2}\right), \quad \hbar=2 \pi \ell_{p}^{4}
$$

Holographic dictionary

- $y=0$ LLM plane as phase space of single fermion
- $u\left(x_{1}, x_{2} ; 0\right)$ phase space density

Hamiltonian eigenstates

Global AdS: black droplet of radius $r_{\mathrm{fs}}=R_{\text {AdS }}^{2}$
Working in polar coordinates : $\left(x_{1}, x_{2}\right) \rightarrow(r, \phi)$, map to global AdS

$$
\begin{gathered}
y=R_{\text {AdS }}^{2} \sinh \rho \sin \theta, \quad r=R_{\text {AdS }}^{2} \cosh \rho \cos \theta, \\
\tilde{\phi}=\phi+t
\end{gathered}
$$

Wigner semi-circle distribution

$$
\begin{aligned}
\rho(x) & =2 \int_{0}^{\sqrt{R_{\mathrm{AdS}}^{4}-x^{2}}} \frac{d x_{2} d x_{1}}{2 \pi \hbar} \\
& =\frac{1}{\pi \hbar} \sqrt{R_{\mathrm{AdS}}^{4}-x^{2}}
\end{aligned}
$$

Hamiltonian eigenstates

Excited states : rings
large number $(\sim N)$ of fermions with same excitation

Excitations set scales of annulus sizes

Superstar ensemble

Set of BPS states $\Delta=J$ describing, at most, N_{c} giant gravitons Superstar ensemble : infinite effective temperature \Longrightarrow all configurations are equiprobable

$$
\rho_{\text {superstar }}=\frac{1}{Z} \sum_{A}\left|\Psi_{A}\right\rangle\left\langle\Psi_{A}\right|, \quad Z=\binom{N+N_{c}}{N}
$$

where A labels N fermion states whose Young tableau have $\leq N_{c}$ columns.

Limit curve

Averaged number of columns of length $j,\left\langle c_{j}\right\rangle \rightarrow \frac{N_{c}}{N}$ as $N \rightarrow \infty$ Approximate the Young tableau by a continuous curve :

$$
r_{i} \rightarrow y(x)=\int_{N-x}^{N} d i\left\langle c_{j}\right\rangle=\frac{N_{c}}{N} x
$$

where x labels the fermion and $y(x)$ its excitations, i.e. the limit curve $y(x)$ describes the shape of the

Superstar : matching gravity

Using the phase space interpretation :

$$
\begin{gathered}
\frac{u\left(0 ; r^{2}\right)}{2 \hbar} d r^{2}=d x, \quad \frac{r^{2} u\left(0 ; r^{2}\right)}{4 \hbar^{2}} d r^{2}=(y(x)+x) d x \\
\Longrightarrow u\left(0 ; r^{2}\right) \equiv u_{\text {superstar }}=\frac{1}{1+y^{\prime}}=\frac{1}{1+N_{c} / N}
\end{gathered}
$$

matching the singular boundary condition defining the superstart configuration (naked singularity)

Derivation of the giant graviton distribution

Phase space density of giants $u_{\text {giants }}=N_{c} / N$
Giants are located at $\rho=0$, hence using the LLM map

$$
\left.r\right|_{\rho=0}=R_{\mathrm{AdS}}^{2} \sin \theta
$$

inserting in the phase space measure and integrating over the angular variable

$$
d n=\frac{r d r}{\hbar} u_{\text {giants }}=N_{c} \sin 2 \theta d \theta
$$

LLM vs EPR=ER

Consider half-BPS states (potentially entangled) in two non-interacting N=4 SYM

Preliminary expectations for the superstar thermofield double

- \exists naked singularity \Longrightarrow absence of an infinite throat in this extremal situation
- entanglement entropy on one copy equals thermodynamic entropy

$$
S_{L} \ll N^{2} \quad \Longrightarrow \quad \text { quantum bridges }
$$

Proposal : to glue two LLM geometries through droplet regions where correlations exist

- NO new classical geometries
- different quantum states will not be distinguished by a single observer

Product states

Two global AdS

$|0\rangle_{L} \otimes|0\rangle_{R}$: product of 2 global AdS spaces

- all 2-sided correlators will factorise \Longrightarrow absence of correlations
- gravity dual : two independent LLM geometries

Two non-entangled states

$|n\rangle_{L} \otimes|n\rangle_{R}$: product of 2 global AdS spaces

- all 2-sided correlators will factorise \Longrightarrow absence of correlations
- if $|n\rangle$ has a gravity dual : two independent LLM geometries with relevant droplets

Superstar

Consider a maximally correlated state

$$
|\Psi\rangle=\sum_{A} \frac{1}{\sqrt{Z}}\left|\Psi_{A}\right\rangle \otimes\left|\Psi_{A}\right\rangle, \quad Z=\binom{N+N_{c}}{N}
$$

Notice $\rho_{L}=\rho_{R}$ equal the superstar density matrix. Furthermore,

$$
\rho_{L}^{(1)}=\frac{1}{1+y^{\prime}} \sum_{i=1}^{N+N_{c}}|i\rangle\langle i|=u_{\text {superstar }} \sum_{i=1}^{N+N_{c}}|i\rangle\langle i|
$$

2-sided correlators for one-particle operators

$$
\begin{aligned}
&\langle\Psi| \mathcal{O}_{L}^{(1)} \mathcal{O}_{R}^{(1)}|\Psi\rangle=\frac{N N_{c}}{\left(N+N_{c}\right)\left(N+N_{c}-1\right)} \sum_{k \neq j}\langle j| \mathcal{O}_{L}^{(1)}|k\rangle\langle j| \mathcal{O}_{R}^{(1)}|k\rangle \\
&+\frac{N_{c}}{N} \frac{1}{\left(N+N_{c}\right)^{2}}\left\{\sum_{i}^{N+N_{c}}\langle i| \mathcal{O}_{L}^{(1)}|i\rangle\langle i| \mathcal{O}_{R}^{(1)}|i\rangle-\frac{1}{N+N_{c}-1} \sum_{i \neq j}\langle i| \mathcal{O}_{L}^{(1)}|i\rangle\langle j| \mathcal{O}_{R}^{(1)}|j\rangle\right\}
\end{aligned}
$$

Modified superstar

To stress where the gluing occurs, consider

- N_{1} fermions in the Fermi sea
- remaining $N_{2}=N-N_{1}$ in all possible excited states with equal weight
- N_{c} giant gravitons

Maximally correlated state :

$$
|\Psi\rangle=\frac{1}{\sqrt{Z_{\mathrm{a}}}} \sum_{A \in \mathcal{H}}\left|\Psi_{A}\right\rangle\left|\Psi_{A}\right\rangle, \quad \text { with } \quad Z_{\mathrm{a}}=\binom{N_{2}+N_{c}}{N_{2}} .
$$

By construction, 2-sided correlator is as before, up to

- $N \rightarrow N_{2}$
- sum over states $\sum_{A \in \mathcal{H}}$

Hence, correlations between L-R are only supported in the region of phase space describing the $N_{2}-N_{1}$ excited fermions. Semiclassically, this corresponds to

Correlation design

Consider maximally correlated coherent states of fermions, i.e.

$$
\begin{aligned}
|\Psi\rangle & =p\left|\Psi_{1}, \Psi_{1}\right\rangle+\sqrt{1-p^{2}}\left|\Psi_{2}, \Psi_{2}\right\rangle \\
\left|\Psi_{1}\right\rangle & =A\left(\left|\alpha_{1}, \alpha_{2}\right\rangle-\left|\alpha_{2}, \alpha_{1}\right\rangle\right) \\
\left|\Psi_{2}\right\rangle & =B\left(\left|\alpha_{1}, \alpha_{3}\right\rangle-\left|\alpha_{3}, \alpha_{1}\right\rangle\right)
\end{aligned}
$$

with $\alpha_{n} \equiv \frac{x_{n}+i y_{n}}{\sqrt{2 \hbar}}$. Coherent states are not orthogonal

$$
\begin{aligned}
\left\langle\alpha_{1} \mid \alpha_{2}\right\rangle & =e^{-\left(x_{1}-x_{2}\right)^{2} /(4 \hbar)} e^{-\left(y_{1}-y_{2}\right)^{2} /(4 \hbar)} e^{i\left(x_{1} y_{2}-y_{1} x_{2}\right) /(2 \hbar)} \\
& \rightarrow 0 \quad \text { when } \quad x_{1}-x_{2}, y_{1}-y_{2} \sim N \sqrt{\hbar}, \quad \hbar \rightarrow 0
\end{aligned}
$$

Hence, these tails are subleading for large semiclassical distances and 2-sided correlators still controlled by the same terms as before

LLM \& entanglement entropy in R-charge space

Half-BPS operators are delocalised in the $\mathrm{N}=4$ SYM 3-sphere, but they have non-trivial correlations

- Reproduced by LLM phase space calculations \& AdS/CFT methods
$\Longrightarrow \exists$ entanglement entropy in R-charge space

Proposal : this is the entanglement among the fermions, i.e. we can ask for the entanglement in some region A of the real line where the harmonic potential acts.

Condensed matter aside

This is relevant in the field of optically trapped ultra-cold atomic gases given the experimental possibility to measure this entanglement

Computing fermion entanglement entropy

Gaussian systems + Wick theorem $\Longrightarrow \rho_{A} \propto e^{-\sum_{i, j} H_{i j} c_{i}^{\dagger} c_{j}}$

Overlap formalism

Renyi entropies are given by

$$
\begin{array}{ll}
S_{q}=\sum_{i=1}^{N} e_{q}\left(a_{i}\right), & e_{q}(x) \equiv \frac{1}{1-q} \log \left[x^{q}+(1-x)^{q}\right], q>1 \\
S_{1} & =\sum_{i=1}^{N} H\left(a_{i}\right),
\end{array} \quad H(x)=-x \log x-(1-x) \log (1-x) .
$$

where a_{i} are the eigenvalues of the matrices

$$
\begin{aligned}
A_{n m} & =\int_{A} d z \phi_{n}^{\star}(z) \phi_{m}(z) \quad n, m=1, \ldots, N \\
\mathcal{C}_{A}(x, y) & =I_{A}(x)\left\langle c^{\dagger}(x) c(y)\right\rangle I_{A}(y)
\end{aligned}
$$

CFT effective approximation

\exists intermediate scale ℓ where inhomogeneous systems allow a continuous description $\rho^{-1} \ll \ell \ll \rho\left|\partial_{x} \rho\right|^{-1}$

- ρ^{-1} controls the microscopic scale
- $\rho\left|\partial_{x} \rho\right|^{-1}$ scale on which physical quantities vary macroscopically Connection to CFT : consider the ground state propagator at large distances, i.e. linearise the dispersion relation around Fermi points

$$
\begin{aligned}
\left\langle c^{\dagger}(x, y) c(0,0)\right\rangle & =\int_{-k_{F}}^{k_{F}} \frac{d k}{2 \pi} e^{-i\left[k x+i \varepsilon(k) \frac{\tau}{\hbar}\right]} \simeq \int_{-\infty}^{k_{F}} \frac{d k}{2 \pi} e^{-i\left[k x+i\left(k-k_{F}\right) v_{F} \tau\right]} \\
& +\int_{-k_{F}}^{\infty} \frac{d k}{2 \pi} e^{-i\left[k x-i\left(k+k_{F}\right) v_{F} \tau\right]}=\frac{i}{2 \pi}\left[\frac{e^{-i k_{F} x}}{x+i v_{F} \tau}-\frac{e^{i k_{F} x}}{x-i v_{F} \tau}\right]
\end{aligned}
$$

where $v_{F}=\left.\frac{d \varepsilon(k)}{\hbar d k}\right|_{k_{F}}$
This looks like the propagator of a massless Dirac fermion in a non-trivial metric !! (Calabrese et al)

CFT framework

For some potential $V(x)$, this non-trivial background is

$$
\begin{aligned}
d s^{2} & =e^{2 \sigma} d z d \bar{z} \\
z(x, y) & =\int^{x} \frac{1}{v_{F}\left(x^{\prime}\right)} d x^{\prime}+i \tau, \quad e^{\sigma}=v_{F}(x) .
\end{aligned}
$$

Using $\hbar=1$ for a trapped potential, the semicircle Wigner distribution is non-zero for $x \in[-L, L]$ where $L=\sqrt{2 N}$. Away from the edges, we can use the approach above giving rise to

$$
z(x, y)=\arcsin \frac{x}{L}+i \tau, \quad e^{\sigma}=v_{F}=\sqrt{L^{2}-x^{2}} .
$$

The coordinate $z \in[-\pi / 2, \pi / 2] \times \mathbb{R}$ lives on an infinite strip.

Application

Idea :

- Use Weyl rescaling (to deal with $e^{2 \sigma}$)
- Map the strip to the upper half plane (to use correlation functions of twist operators)
- Identify the UV cut-off with $k_{F}(x)$ (to capture the validity of the effective CFT approach)

Renyi entropies:
$S_{n}=\frac{n+1}{12 n} \log \left[k_{F}(x) e^{\sigma}\left|\frac{d g}{d z}\right|^{-1} \operatorname{Im}(g(z))\right]=\frac{n+1}{12 n} \log \left[N\left(1-x^{2} / L^{2}\right)^{3 / 2}\right]$,
It reproduces the behaviour of the exact diagonalisation in the overlap formalism.

Further comments

Renyi entropy for the Fermi sea is captured by the variance in the number of particles

$$
S_{q} \approx \frac{\pi^{2}}{6}\left(1+\frac{1}{q}\right) V_{N_{A}}, \quad V_{N_{A}}=\left\langle N_{A}^{2}\right\rangle-\left\langle N_{A}\right\rangle^{2}
$$

Holographic comments

- $V_{N_{A}} \equiv$ variance in LLM charge in phase space region anchored by A
- relevance of the RR 5 -form flux
- Classical gravity dual depends on the phase space density; covariant quantisation reproduces fermionic picture (Maoz-Rychkov)
- suggests some quantum effect (matching subleading behaviour in G_{N})
- $c_{\text {eff }}=1 \Longrightarrow$ highly curved geometry (this may be tangential)

Prospects : small excitations (CFT) + giant gravitons entanglement, ...

