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Outline

Short (& limited) review
I to provide some perspective to non-experts

Revisit LLM
I EPR=ER in two boundaries
I Entanglement in R-charge space
I Comments on entangled ”black holes”
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Wins & losses

in susy scenarios, dof (D-branes) are identified and counted, but not
in the regime of parameters where BHs exist

extremality, in many situations, leads to some CFT where Cardy’s
formula reproduces Hawking-Bekenstein

Despite huge success,

emergence of locality

information paradox and consistency with quantum mechanics

remain unanswered =⇒ study of string theory dynamics led to a new
framework
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A new framework : AdS/CFT
Given same kinematic symmetries, assume quantum gravity = QFT

∃ weakly coupled semiclassical gravity

Igravity ∼
1

GN

∫
(R − 2Λ) , GN ∼ `d−2

p , g2
eff ∼

(
`p
L

)d−2

� 1

Any CFT has a stress tensor with 2-pt function

〈Tµν(x)Tαβ(y)〉 ∼ N g(x , y)

the natural semi-classical gravity calculation involves

δ

δgµν

δ

δgαβ
e−Igravity ∼

Rd−2
AdS

GN
≡ 1

g2
eff

� 1

Hence, N ∼ 1
g2

eff
� 1
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A new framework : AdS/CFT

Reproducing gravity spectrum

In perturbative Einstein-like gravity, the only particles running in loops
are gravitons. To ensure the same property in CFT, we require

∆s>2 � 1

i.e., large anomalous dimensions due to strong interactions

∃ some evidence : CFTs satisfying

N � 1 & very strongly coupled

have gravity duals

Simón (Edinburgh) Information vs Gravity 2017 6 / 40



Holography
quantum

information

typicality

quantum
error

correction

resource
theory

Quantum
Mechanics

entangle-
ment

complexity

Black holes

bridges

condensed
matter

tensor
networks
+ disorder

Simón (Edinburgh) Information vs Gravity 2017 7 / 40



Holographic lessons

1. Connected 2-pt correlation function of a heavy operator

〈OA(xa)OB(xb)〉 ∼ e−mLbulk(xa, xb)

Lbulk(xa, xb) bulk geodesic distance between boundary xa and xb.

2. Entanglement entropy (RT)

S(ρB) =
Area(Σbulk)

4GN

Σbulk is a bulk minimal
surface anchored to ∂B
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Holographic lessons

3. Subregion duality : any bulk operator φ(x) in the entanglement
wedge of A can be reconstructed from its boundary data

Notice φ(x) can not be reconstructed from A, B or C alone, but it does
have multiple representations in AB, AC and BC
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Entanglement vs Spacetime Connectivity
Mutual information bounds the amount of correlation

I (A : B) ≥ (〈OAOB〉 − 〈OA〉〈OB〉)2

2‖OA‖2‖OB‖2

Sending entanglement to zero,
requires :

1 Proper bulk distance to
infinity

2 Area of the common
boundary to zero ⇒
pinching
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EPR-ER

Avoiding its connection to the firewall discussion

There is no fundamental
difference in the quantum state

|Ψ〉 =
1√
2

(|+〉|−〉+ |−〉|+〉) ,

|Ψ′〉 =
1√
Z

∑
n

e−βEn/2|n〉|n〉

except

Hilbert space : dimensionality, spectrum & dynamics (holographic)

Entropy of the state
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The wormhole interpretation

Consider the 4d Schwarzschild black hole metric

ds2 = −e2Φdt2 +
dr2

1− B/r
+ r2

(
dθ2 + sin2 θdφ2

)
Study a fixed t slice at θ = π/2 :

ds2
∣∣
Σ

=
dr2

1− B/r
+ r2dφ2

View this section as a surface z(r) in one higher euclidean dimension

ds2 = dz2 + dr2 + r2dφ2 =
(
1 + (z ′)2

)
dr2 + r2dφ2

z(r) = ±2B (r/B − 1)1/2

This is a non-traversable wormhole, but it illustrates that black holes can
be reinterpreted in terms of Einstein-Rosen (ER) bridges (wormholes)
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Path integral perspective

Consider some partial entangling between two CFTs through the projection

P =
∏
x∈P

(∑
nx

|nx〉1|nx〉2

)(∑
mx

|mx〉1|mx〉2

)
⊗
∏
x∈Pc

(
I2
x ⊗ I2

x

)

Path integral requires

slit along interval P in
each CFT

gluing of path integrals
across P

regularisation
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Eternal AdS BH revisited

1 Classical maximal extension of the
eternal AdS BH

2 Connectedness through BH event
horizon

For certain observables and low energies, an observer in HR measures a
thermal state :

ρBH =
1

Z (β)

∑
i

e−βEi |Ei 〉〈Ei | , |Ei 〉 ∈ HR

Can we interpret ρBH as a reduced density matrix ? (Maldacena)

ρBH = trHL
|Ψ〉〈Ψ| with |Ψ〉 =

1√
Z (β)

∑
i

e−βEi/2|Ei 〉 ⊗ |Ei 〉 ∈ HL ⊗HR

Quantum entanglement is responsible for the existence of correlations
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EPR = ER (Maldacena & Susskind)

Eternal black hole re-interpreted

1 Non-vanishing correlators between HL and HR are due to quantum
entanglement (EPR)

2 These correlations are holographically captured by the bulk geodesic
distance between opposite boundaries ⇒ length of the ER bridge

3 Entanglement entropy = black hole entropy ⇒ maximal cross-section
of the ER bridge

EPR=ER conjecture

In short, it takes the above picture and states it is always correct
One problem : there is no quantum analogue of what an ER bridge is
One question : can we check this proposal in the semi-classical regime ?
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Adding perturbations

This EPR-ER picture holds

when perturbing the eternal black hole/thermofield double
I bulk : shock wave
I boundary : insertion of local operator

This set-up
I made more precise the notion of scrambling

τ? ∼ β log S

I gave rise to out-ot-time-order correlators to put bounds on quantum
chaos

It is compatible with arguments to avoid quantum cloning in the
presence of a horizon
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Wormhole traversability

In GR, traversability requires to violate null energy condition

Gao, Jafferis & Wall turned on some interaction between HL and HR

under some conditions, the 1-loop stress tensor has negative average
null energy condition

Null geodesics can connect both boundaries

Given some interaction e igOLOR , if we turn on a perturbation e iεRφR in HR

a probe of traversability is :

〈e−iεRφR(−t) φ̂L(t) e iεRφR(−t)〉 = 〈φ̂L(t)〉 − g εR [φR(−t) ,OR ] [OL , φL(t)]

+ . . .

Simón (Edinburgh) Information vs Gravity 2017 17 / 40



N=4 SYM : half-BPS sector

∆ = J states ⇔
∏

i (trZmi )ni ,
∑

i mini = ∆ = J

Fermion description

SYM dimensionally reduced on 3-sphere + complex adjoint matrix Z
Diagonalisation : Z → diag (λ1, . . . λN)
Change in measure : Van der Monde determinant µ =

∏
i 6=j(λi − λj)

N free fermions in a 1-d harmonic oscillator

ψ(n1) ∼ Hn1(λ1) e−λ
2
i /2

ψ(ni , . . . ) ∼ Slater[Hni , . . . ] e
−

∑
i λ

2
i /2

ri =
1

~
(Ei − E fs

i ) = ni − i + 1

{5,3,3,1}
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Interpretation of states

∆ ∼ O(1) pointlike gravitons spinning on the 5-sphere : multitrace

∆ ∼ O(N) giant gravitons
I Myers’ effect : gravitons expand into spinning D3-branes with size

sin2 θ =
J

N

I subdeterminants, as operators

detkZ =
1

k!
εi1...ika1...aN−k

εj1...jka1...aN−kZ i1
j1
. . .Z ik

jk

∆ ∼ O(N2) bound states of giant gravitons (superstars), with
distribution

dn

dθ
= Nc sin 2θ , Nc ∼ N

Nc is the number of excited columns in the Young tableau
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Gravity : classical moduli space
R× SO(4)× SO(4) + susy type IIB metric & RR 5-form

ds2 = − y√
1
4 − z2

(dt + Vidx
i )2 +

√
1
4 − z2

y
(dy2 + dx idx i )

+ y

√
1
2 − z
1
2 + z

dΩ2
3 + y

√
1
2 + z
1
2 − z

dΩ̃2
3

characterised by a single scalar function droplet data

z(y ; x1, x2) =
y2

π

∫
dx ′1 dx

′
2

z(0; x ′1, x
′
2)

[(x − x ′)2 + y2]2
.

uniquely determined by droplet data on the y=0 plane

Smooth configurations

z(0; x1, x2) = ±1

2

Natural to introduce u(0; x1, x2) = 1
2 − z(0; x1, x2).
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LLM : dictionary

Energy

∆ = J =

∫
R2

d2x

2π~
1

2

x2
1 + x2

2

~
u(0; x1, x2)− 1

2

(∫
R2

d2x

2π~
u(0; x1, x2)

)2

Flux

N =

∫
R2

d2x

2π~
u(0; x1, x2) , ~ = 2π`4

p

Holographic dictionary

y = 0 LLM plane as phase space of single fermion

u(x1, x2; 0) phase space density
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Hamiltonian eigenstates

Global AdS : black droplet of radius rfs = R2
AdS

Working in polar coordinates : (x1, x2)→ (r , φ), map to global AdS

y = R2
AdS sinh ρ sin θ , r = R2

AdS cosh ρ cos θ ,

φ̃ = φ+ t

Wigner semi-circle distribution

ρ(x) = 2

∫ √R4
AdS−x2

0

dx2dx1

2π~

=
1

π~

√
R4

AdS − x2
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Hamiltonian eigenstates

Excited states : rings
large number (∼ N) of fermions with same excitation

Excitations set scales of
annulus sizes
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Superstar ensemble
Set of BPS states ∆ = J describing, at most, Nc giant gravitons
Superstar ensemble : infinite effective temperature =⇒ all configurations
are equiprobable

ρsuperstar =
1

Z

∑
A

|ΨA〉〈ΨA| , Z =

(
N + Nc

N

)
where A labels N fermion states whose Young tableau have ≤ Nc columns.

Limit curve

Averaged number of columns of length j , 〈cj〉 → Nc
N as N →∞

Approximate the Young tableau by a continuous curve :

ri → y(x) =

∫ N

N−x
di 〈cj〉 =

Nc

N
x

where x labels the fermion and y(x) its excitations, i.e. the limit curve
y(x) describes the shape of the
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Superstar : matching gravity
Using the phase space interpretation :

u(0; r2)

2~
dr2 = dx ,

r2 u(0; r2)

4~2
dr2 = (y(x) + x) dx

=⇒ u(0; r2) ≡ usuperstar =
1

1 + y ′
=

1

1 + Nc/N
,

matching the singular boundary condition defining the superstart
configuration (naked singularity)

Derivation of the giant graviton distribution

Phase space density of giants ugiants = Nc/N
Giants are located at ρ = 0, hence using the LLM map

r |ρ=0 = R2
AdS sin θ ,

inserting in the phase space measure and integrating over the angular
variable

dn =
rdr

~
ugiants = Nc sin 2θ dθ

Simón (Edinburgh) Information vs Gravity 2017 25 / 40



LLM vs EPR=ER

Consider half-BPS states (potentially entangled) in two non-interacting
N=4 SYM

Preliminary expectations for the superstar thermofield double

∃ naked singularity =⇒ absence of an infinite throat in this extremal
situation

entanglement entropy on one copy equals thermodynamic entropy

SL � N2 =⇒ quantum bridges

Proposal : to glue two LLM geometries through droplet regions where
correlations exist

NO new classical geometries

different quantum states will not be distinguished by a single observer
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Product states

Two global AdS

|0〉L ⊗ |0〉R : product of 2 global AdS spaces

all 2-sided correlators will factorise =⇒ absence of correlations

gravity dual : two independent LLM geometries

Two non-entangled states

|n〉L ⊗ |n〉R : product of 2 global AdS spaces

all 2-sided correlators will factorise =⇒ absence of correlations

if |n〉 has a gravity dual : two independent LLM geometries with
relevant droplets
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LLM-L

LLM-R

non-glued
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Superstar
Consider a maximally correlated state

|Ψ〉 =
∑
A

1√
Z
|ΨA〉 ⊗ |ΨA〉 , Z =

(
N + Nc

N

)
Notice ρL = ρR equal the superstar density matrix. Furthermore,

ρ
(1)
L =

1

1 + y ′

N+Nc∑
i=1

|i〉〈i | = usuperstar

N+Nc∑
i=1

|i〉〈i | ,

2-sided correlators for one-particle operators

〈Ψ|O(1)
L O

(1)
R |Ψ〉 =

N Nc

(N + Nc)(N + Nc − 1)

∑
k 6=j

〈j |O(1)
L |k〉〈j |O

(1)
R |k〉

+
Nc

N

1

(N + Nc)2


N+Nc∑

i

〈i |O(1)
L |i〉 〈i |O

(1)
R |i〉 −

1

N + Nc − 1

∑
i 6=j

〈i |O(1)
L |i〉 〈j |O

(1)
R |j〉


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LLM-L

LLM-R

glued
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Modified superstar

To stress where the gluing occurs, consider

N1 fermions in the Fermi sea

remaining N2 = N −N1 in all possible excited states with equal weight

Nc giant gravitons

Maximally correlated state :

|Ψ〉 =
1√
Za

∑
A∈H
|ΨA〉|ΨA〉 , with Za =

(
N2 + Nc

N2

)
.

By construction, 2-sided correlator is as before, up to

N → N2

sum over states
∑

A∈H
Hence, correlations between L-R are only supported in the region of phase
space describing the N2 − N1 excited fermions. Semiclassically, this
corresponds to
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LLM-L

LLM-R

glued
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Correlation design

Consider maximally correlated coherent states of fermions, i.e.

|Ψ〉 = p |Ψ1,Ψ1〉+
√

1− p2 |Ψ2,Ψ2〉 ,
|Ψ1〉 = A (|α1, α2〉 − |α2, α1〉) ,
|Ψ2〉 = B (|α1, α3〉 − |α3, α1〉) .

with αn ≡ xn+iyn√
2~

. Coherent states are not orthogonal

〈α1|α2〉 = e−(x1−x2)2/(4~) e−(y1−y2)2/(4~) e i(x1y2−y1x2)/(2~)

→ 0 when x1 − x2, y1 − y2 ∼ N
√
~ , ~→ 0

Hence, these tails are subleading for large semiclassical distances and
2-sided correlators still controlled by the same terms as before
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LLM-L

LLM-R

glued
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LLM & entanglement entropy in R-charge space

Half-BPS operators are delocalised in the N=4 SYM 3-sphere, but they
have non-trivial correlations

Reproduced by LLM phase space calculations & AdS/CFT methods

=⇒ ∃ entanglement entropy in R-charge space

Proposal : this is the entanglement among the fermions, i.e. we can ask
for the entanglement in some region A of the real line where the harmonic
potential acts.

Condensed matter aside

This is relevant in the field of optically trapped ultra-cold atomic gases
given the experimental possibility to measure this entanglement
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Computing fermion entanglement entropy

Gaussian systems + Wick theorem =⇒ ρA ∝ e−
∑

i,j Hijc
†
i cj

Overlap formalism

Renyi entropies are given by

Sq =
N∑
i=1

eq(ai ) , eq(x) ≡ 1

1− q
log[xq + (1− x)q] , q > 1

S1 =
N∑
i=1

H(ai ) , H(x) = −x log x − (1− x) log(1− x) .

where ai are the eigenvalues of the matrices

Anm =

∫
A
dz φ?n(z)φm(z) n,m = 1, . . . ,N

CA(x , y) = IA(x)〈c†(x) c(y)〉IA(y)
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CFT effective approximation
∃ intermediate scale ` where inhomogeneous systems allow a continuous
description ρ−1 � `� ρ|∂xρ|−1

ρ−1 controls the microscopic scale

ρ|∂xρ|−1 scale on which physical quantities vary macroscopically

Connection to CFT : consider the ground state propagator at large
distances, i.e. linearise the dispersion relation around Fermi points

〈c†(x , y)c(0, 0)〉 =

∫ kF

−kF

dk

2π
e−i [kx+iε(k) τ~ ] '

∫ kF

−∞

dk

2π
e−i [kx+i(k−kF )vF τ ]

+

∫ ∞
−kF

dk

2π
e−i [kx−i(k+kF )vF τ ] =

i

2π

[
e−ikF x

x + ivF τ
− e ikF x

x − ivF τ

]
.

where vF = dε(k)
~dk

∣∣∣
kF

This looks like the propagator of a massless Dirac fermion in a non-trivial
metric !! (Calabrese et al)
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CFT framework

For some potential V (x), this non-trivial background is

ds2 = e2σdzdz̄ ,

z(x , y) =

∫ x 1

vF (x ′)
dx ′ + iτ , eσ = vF (x) .

Using ~ = 1 for a trapped potential, the semicircle Wigner distribution is
non-zero for x ∈ [−L, L] where L =

√
2N. Away from the edges, we can

use the approach above giving rise to

z(x , y) = arcsin
x

L
+ iτ , eσ = vF =

√
L2 − x2 .

The coordinate z ∈ [−π/2, π/2]× R lives on an infinite strip.
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Application

Idea :

Use Weyl rescaling (to deal with e2σ)

Map the strip to the upper half plane (to use correlation functions of
twist operators)

Identify the UV cut-off with kF (x) (to capture the validity of the
effective CFT approach)

Renyi entropies :

Sn =
n + 1

12n
log

[
kF (x) eσ

∣∣∣∣dgdz
∣∣∣∣−1

Im(g(z))

]
=

n + 1

12n
log[N(1−x2/L2)3/2] ,

It reproduces the behaviour of the exact diagonalisation in the overlap
formalism.
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Further comments

Renyi entropy for the Fermi sea is captured by the variance in the number
of particles

Sq ≈
π2

6

(
1 +

1

q

)
VNA

, VNA
= 〈N2

A〉 − 〈NA〉2

Holographic comments

VNA
≡ variance in LLM charge in phase space region anchored by A

I relevance of the RR 5-form flux

Classical gravity dual depends on the phase space density; covariant
quantisation reproduces fermionic picture (Maoz-Rychkov)

I suggests some quantum effect (matching subleading behaviour in GN )

ceff = 1 =⇒ highly curved geometry (this may be tangential)

Prospects : small excitations (CFT) + giant gravitons entanglement, ...
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