Asymptotic Symmetry Algebra of Conformal

 GravityIva Lovrekovic

Quantum Physics and Gravity
ESI

Contents

- Introduction and Motivation
- Conformal Gravity (CG)
- Boundary Conditions
- Asymptotic Symmetry Algebra (ASA) of CG
- Global Solutions
- Conclusion and Outline

Introduction and Motivation

Introduction and Motivation

- CG is two loop renormalizable, however contains ghosts

Introduction and Motivation

- CG is two loop renormalizable, however contains ghosts
- Arises from twistor string theory, as a counterterm in 5 dim AdS/CFT from EG

Introduction and Motivation

- CG is two loop renormalizable, however contains ghosts
- Arises from twistor string theory, as a counterterm in 5 dim AdS/CFT from EG
- Theoretically studied by Maldacena, t'Hooft ...
- Maldacena showed that one can obtain EG from CG upon imposing right boundary conditions

Introduction and Motivation

- CG is two loop renormalizable, however contains ghosts
- Arises from twistor string theory, as a counterterm in 5 dim AdS/CFT from EG
- Theoretically studied by Maldacena, t'Hooft ...
- Maldacena showed that one can obtain EG from CG upon imposing right boundary conditions

-

importance of the boundary conditions

Introduction and Motivation

- t'Hooft: conformal symmetry may play crucial role at the Planck energy scale

Introduction and Motivation

- t'Hooft: conformal symmetry may play crucial role at the Planck energy scale
- Phenomenologically studied by Mannheim in description of the galactic rotation curves w/o addition of DM

Introduction and Motivation

- t'Hooft: conformal symmetry may play crucial role at the Planck energy scale
- Phenomenologically studied by Mannheim in description of the galactic rotation curves w/o addition of DM
- AdS/CFT correspondence [Maldacena, '97] - shown to work on number of observables

Introduction and Motivation

- t'Hooft: conformal symmetry may play crucial role at the Planck energy scale
- Phenomenologically studied by Mannheim in description of the galactic rotation curves w/o addition of DM
- AdS/CFT correspondence [Maldacena, '97] - shown to work on number of observables
- generalised to gauge/gravity correspondence

Introduction and Motivation

- examples of generalisations: AdS3/LCFT2 [Grumiller, Hohm, '09], Gauge/Gravity Duals [Erdmenger et. al, ‘07]

Introduction and Motivation

- examples of generalisations: AdS3/LCFT2 [Grumiller, Hohm, '09], Gauge/Gravity Duals [Erdmenger et. al, ‘07]
- AdS/Ricci flat correspondence - it has application to AdS on torus, AdS black branes, fluids/gravity metrics
[Caldarelli et. al, ‘13]

Introduction and Motivation

- examples of generalisations: AdS3/LCFT2 [Grumiller, Hohm, '09], Gauge/Gravity Duals [Erdmenger et. al, ‘07]
- AdS/Ricci flat correspondence - it has application to AdS on torus, AdS black branes, fluids/gravity metrics [Caldarelli et. al, ‘13]
- Solutions of CG can be classified according to the ASA they form - we have classified BH and geon solutions

Introduction and Motivation

- examples of generalisations: AdS3/LCFT2 [Grumiller, Hohm, '09], Gauge/Gravity Duals [Erdmenger et. al, ‘07]
- AdS/Ricci flat correspondence - it has application to AdS on torus, AdS black branes, fluids/gravity metrics [Caldarelli et. al, ‘13]
- Solutions of CG can be classified according to the ASA they form - we have classified BH and geon solutions
- Geon = pp wave solutions

Conformal Gravity

$$
S=\alpha \int d^{4} x C_{\nu \sigma \rho}^{\mu} C_{\mu}^{\nu \sigma \rho}
$$

Conformal Gravity

$$
\begin{gathered}
S=\alpha \int d^{4} x C_{\nu \sigma \rho}^{\mu} \mathscr{C}_{\mu}{ }^{\nu \sigma \rho} \\
C_{\mu \nu \rho \sigma}=R_{\mu \nu \rho \sigma}-\frac{2}{n-2}\left(g_{\mu[\rho} R_{\sigma] \nu}-g_{\nu[\rho} R_{\sigma] \mu}\right)+\frac{2}{(n-1)(n-2)} R g_{\mu[\rho} g_{\sigma] \nu}
\end{gathered}
$$

Conformal Gravity

$$
g_{\mu \nu} \rightarrow e^{2 \omega} g_{\mu \nu}
$$

Conformal Gravity

$$
\begin{gathered}
S=\alpha \int d^{4} x C_{\nu \sigma \rho}^{\mu} \oint_{\mu}^{\nu \sigma \rho} \\
C_{\mu \nu \rho \sigma} \stackrel{2}{=R_{\mu \nu \rho \sigma}-\frac{2}{n-2}\left(g_{\mu[\rho} R_{\sigma] \nu}-g_{\nu[\rho} R_{\sigma] \mu}\right)+\frac{2}{(n-1)(n-2)} R g_{\mu[\rho} g_{\sigma] \nu}} . ~
\end{gathered}
$$

$$
g_{\mu \nu} \rightarrow e^{2} \overleftrightarrow{\omega_{g_{\mu \nu}}} \text { Weyl rescaling }
$$

Conformal Gravity

$$
\begin{gathered}
g_{\mu \nu} \rightarrow e^{2} \widehat{\omega}_{g_{\mu \nu}} \text { Weyl rescaling } \\
\left(\nabla^{\rho} \nabla_{\sigma}+\frac{1}{2} R_{\sigma}^{\rho}\right) C_{\mu \rho \nu}^{\sigma}=0
\end{gathered}
$$

Boundary Conditions

Boundary Conditions

$$
\delta g_{\mu \nu}=\left(e^{2 \omega}-1\right) g_{\mu \nu}+£_{\xi} g_{\mu \nu}
$$

Boundary Conditions

$$
\begin{aligned}
& \delta g_{\mu \nu}=\left(e^{2 \omega}-1\right) g_{\mu \nu}+£_{\xi} g_{\mu \nu} \\
& d s^{2}=\frac{\ell^{2}}{\rho^{2}}\left(-\sigma d \rho^{2}+\gamma_{i j} d x^{i} d x^{j}\right)
\end{aligned}
$$

Boundary Conditions

$$
\begin{gathered}
\delta g_{\mu \nu}=\left(e^{2 \omega}-1\right) g_{\mu \nu}+£_{\xi} g_{\mu \nu} \\
d s^{2}=\frac{\ell^{2}}{\rho^{2}}\left(-\sigma d \rho^{2}+\gamma_{i j} d x^{i} d x^{j}\right) \\
\gamma_{i j}=\gamma_{i j}^{(0)}+\rho\left(\gamma_{i j}^{(1)}+\frac{1}{2} \rho^{2} \gamma_{i j}^{(2)}+\ldots\right.
\end{gathered} \begin{aligned}
& \delta g_{\rho \rho}=0 \\
& \delta g_{\rho i}=0
\end{aligned}
$$

Boundary Conditions

$$
\begin{equation*}
\mathcal{D}_{i} \xi_{j}^{(0)}+\mathcal{D}_{j} \xi_{i}^{(0)}=\frac{2}{3} \gamma_{i j}^{(0)} \mathcal{D}_{k} \xi^{(0) k} \tag{1}
\end{equation*}
$$

Boundary Conditions

$$
\begin{equation*}
\mathcal{D}_{i} \xi_{j}^{(0)}+\mathcal{D}_{j} \xi_{i}^{(0)}=\frac{2}{3} \gamma_{i j}^{(0)} \mathcal{D}_{k} \xi^{(0) k} \tag{1}
\end{equation*}
$$

(1)

$$
\gamma_{i j}^{(0)}=\eta_{i j}=\operatorname{diag}(-1,1,1)
$$

(t, x, y)

Boundary Conditions

$$
\begin{equation*}
\mathcal{D}_{i} \xi_{j}^{(0)}+\mathcal{D}_{j} \xi_{i}^{(0)}=\frac{2}{3} \gamma_{i j}^{(0)} \mathcal{D}_{k} \xi^{(0) k} \tag{1}
\end{equation*}
$$

$(1) \quad \gamma_{i j}^{(0)}=\eta_{i j}=\operatorname{diag}(-1,1,1) \quad(\mathrm{t}, \mathrm{x}, \mathrm{y})$

Killing vectors (KVs) define conformal algebra

Boundary Conditions

$$
\begin{gather*}
\mathcal{D}_{i} \xi_{j}^{(0)}+\mathcal{D}_{j} \xi_{i}^{(0)}=\frac{2}{3} \gamma_{i j}^{(0)} \mathcal{D}_{k} \xi^{(0) k} \tag{1}\\
£_{\xi^{(0)}} \gamma_{i j}^{(1)}=\frac{1}{3} \mathcal{D}_{k} \xi_{(0)}^{k} \gamma_{i j}^{(1)} \tag{2}
\end{gather*}
$$

$(1) \quad \gamma_{i j}^{(0)}=\eta_{i j}=\operatorname{diag}(-1,1,1) \quad(\mathrm{t}, \mathrm{x}, \mathrm{y})$

Killing vectors (KVs) define conformal algebra

Boundary Conditions

- KVs of CG algebra

Boundary Conditions

- KVs of CG algebra

translations

Boundary Conditions

- KVs of CG algebra $\xi^{(0)}=\partial_{t}$,
$\xi^{(1)}=\partial_{x}$,
$\xi^{(2)}=\partial_{y}$

Boundary Conditions

- KVs of CG algebra $\xi^{(0)}=\partial_{t}$,
$\xi^{(1)}=\partial_{x}$,
$\xi^{(2)}=\partial_{y}$

$$
L_{i j}=\left(x_{i} \partial_{j}-x_{j} \partial_{i}\right)
$$

dilatations

Boundary Conditions

- KVs of CG algebra

$$
\xi^{(0)}=\partial_{t}
$$

$$
\xi^{(1)}=\partial_{x},
$$

$$
\xi^{(2)}=\partial_{y}
$$

$$
\begin{gathered}
L_{i j}=\left(x_{i} \partial_{j}-x_{j} \partial_{i}\right) \\
\xi^{(6)}=t \partial_{t}+x \partial_{x}+y \partial_{y}
\end{gathered}
$$

Boundary Conditions

- conformal algebra o(3,2)

$$
\begin{aligned}
{\left[\xi^{d}, \xi_{j}^{t}\right]=-\xi_{j}^{t} } & {\left[\xi^{d}, \xi_{j}^{s c t}\right]=\xi_{j}^{s c t} } \\
{\left[\xi_{l}^{t}, L_{i j}\right]=\left(\eta_{l i} \xi_{j}^{t}-\eta_{l j} \xi_{i}^{t}\right) } & {\left[\xi_{l}^{s c t}, L_{i j}\right]=-\left(\eta_{l i} \xi_{j}^{s c t}-\eta_{l j} \xi_{i}^{s c t}\right) } \\
{\left[\xi_{i}^{s c t}, \xi_{j}^{t}\right] } & =-\left(\eta_{i j} \xi^{d}-L_{i j}\right) \\
{\left[L_{i j}, L_{m j}\right] } & =-L_{i m}
\end{aligned}
$$

Boundary Conditions

$$
\begin{equation*}
\mathcal{D}_{i} \xi_{j}^{(0)}+\mathcal{D}_{j} \xi_{i}^{(0)}=\frac{2}{3} \gamma_{i j}^{(0)} \mathcal{D}_{k} \xi^{(0) k} \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
£_{\xi^{(0)}} \gamma_{i j}^{(1)}=\frac{1}{3} \mathcal{D}_{k} \xi_{(0)}^{k} \gamma_{i j}^{(1)} \tag{2}
\end{equation*}
$$

$(1) \quad \gamma_{i j}^{(0)}=\eta_{i j}=\operatorname{diag}(-1,1,1) \quad(\mathrm{t}, \mathrm{x}, \mathrm{y})$

Killing vectors (KVs) define conformal algebra

Boundary Conditions

$$
\text { (2) } \quad \begin{array}{r}
i j \\
(1) \\
\hline
\end{array}
$$

1. subalgebra of o $(3,2)$ allows (or not) to find $\gamma_{i j}^{(1)}$
2. restriction on $\gamma_{i j}^{(1)}$ defines subalgebra

Boundary Conditions

$$
\text { (2) } \quad \gamma_{i j}^{(1)}
$$

1. subalgebra of $\mathrm{o}(3,2)$ allows (or not) to find $\gamma_{i j}^{(1)}$
2. restriction on $\gamma_{i j}^{(1)}$ defines subalgebra
\rightleftarrows here, we focus on 1 .

Boundary Conditions

(2) $\longmapsto \gamma_{i j}^{(1)}$

1. subalgebra of o(3,2) allows (or not) to find $\gamma_{i j}^{(1)}$
2. restriction on $\gamma_{i j}^{(1)}$ defines subalgebra
\longmapsto here, we focus on 1 .
$\gamma_{i j}^{(1)}$ can depend on all the coordinates on the boundary

we can consider from the simplest constant ones, to those that depend on three coordinates of the boundary symmetric behaviour

Boundary Conditions

$$
\text { (2) } \quad \gamma_{i j}^{(1)}
$$

1. subalgebra of $\mathrm{o}(3,2)$ allows (or not) to find $\gamma_{i j}^{(1)}$
2. restriction on $\gamma_{i j}^{(1)}$ defines subalgebra

Patera et al. classification \longmapsto linearly combined KVs

$$
\begin{aligned}
\xi^{l c} & =a_{0} \xi^{(0)}+a_{1} \xi^{(1)}+a_{2} \xi^{(2)}+a_{3} \xi^{(3)}+a_{4} \xi^{(4)} \\
& +a_{5} \xi^{(5)}+a_{6} \xi^{(6)}+a_{7} \xi^{(7)}+a_{8} \xi^{(8)}+a_{9} \xi^{(9)}
\end{aligned}
$$

Asymptotic Symmetry Algebra (ASA) of CG

Asymptotic Symmetry Algebra (ASA) of CG

- $(2) \longmapsto \gamma_{i j}^{(1)}$
- classification
allowed boundary conditions (realizations of linear term) can be set in one of the subalgebras

Interesting are the ones with the largest number of KVs

5 and 4 dimensional subalgebras

Asymptotic Symmetry Algebra (ASA) of CG

- $(2) \longmapsto \gamma_{i j}^{(1)}$
- classification
allowed boundary conditions (realizations of linear term) can be set in one of the subalgebras

1. similitude algebra sim(2,1)
2. optical algebra opt(2,1)
3. maximal compact subalgebra $o(3) \otimes o(2)$
4. $o(2) \otimes o(2,1)$
5. $o(2,2)$
6. Lorentz algebra o(3,1)
7. irreducible subalgebra $o(2,1)$

Asymptotic Symmetry Algebra (ASA) of CG

1. similitude algebra $\operatorname{sim}(2,1)$

Highest number of KVs is 7 however, boundary conditions allow as largest 5 dimensional ASA

$$
\begin{aligned}
& P_{0}=-\xi^{(0)}, P_{1}=\xi^{(1)}, P_{2}=\xi^{(2)}, F=\xi^{(6)}, \\
& K_{1}=\xi^{(3)}, K_{2}=\xi^{(4)}, L_{3}=\xi^{(5)} \\
& {\left[\xi^{d}, \xi_{j}^{t}\right] }=-\xi_{j}^{t} \\
& {\left[\xi_{l}^{t}, L_{i j}\right] }=-\left(\eta_{l i} \xi_{j}^{t}-\eta_{l j} \xi_{i}^{t}\right) \\
& {\left[L_{i j}, L_{m j}\right] }=L_{i m}
\end{aligned}
$$

Asymptotic Symmetry Algebra (ASA) of CG

2. optical algebra opt(2,1$) ~ \leftrightharpoons$ Highest subalgebra: 7 KVs ASA: $5,4 \mathrm{KVs}$
$W=-\frac{\xi^{(6)}+\xi^{(4)}}{2}$

$$
K_{1}=\frac{\xi^{(6)}-\xi^{(4)}}{2}
$$

$K_{2}=\frac{1}{2}\left[\xi^{(0)}-\xi^{(2)}+\frac{\left(\xi^{(8)}-\xi^{(9)}\right)}{2}\right] \quad L_{3}=\frac{1}{2}\left[\xi^{(0)}-\xi^{(2)}-\frac{\left(\xi^{(8)}-\xi^{(9)}\right)}{2}\right]$

$$
\begin{aligned}
M & =-\sqrt{2} \xi^{(1)} \\
N & =-\left(\xi^{(0)}+\xi^{(2)}\right)
\end{aligned}
$$

$Q=\frac{\xi^{(5)}-\xi^{(3)}}{2 \sqrt{2}}$

Asymptotic Symmetry Algebra (ASA) of CG

$$
\begin{aligned}
& {\left[K_{1}, K_{2}\right]=-L_{3}, \quad\left[L_{3}, K_{1}\right]=K_{2}, \quad\left[L_{3}, K_{2}\right]=-K_{1}, \quad[M, Q]=-N,} \\
& {\left[K_{1}, M\right]=-\frac{1}{2} M, \quad\left[K_{1}, Q\right]=\frac{1}{2} Q, \quad\left[K_{1}, N\right]=0, \quad\left[K_{2}, M\right]=\frac{1}{2} Q,} \\
& {\left[K_{2}, Q\right]=\frac{1}{2} M, \quad\left[K_{2}, N\right]=0 \quad\left[L_{3}, M\right]=-\frac{1}{2} Q, \quad\left[L_{3}, Q\right]=\frac{1}{2} M,} \\
& {\left[L_{3}, N\right]=0 \quad[W, M]=\frac{1}{2} M, \quad[W, Q]=\frac{1}{2} Q, \quad[W, N]=\frac{1}{2} N}
\end{aligned}
$$

Asymptotic Symmetry Algebra (ASA) of CG

5. $o(2,2)$

Highest subalgebra: 6 KVs
ASA: 4 KVs

$$
\begin{aligned}
& A_{1}=-\frac{1}{2}\left[\frac{\xi^{(9)}+\xi^{(8)}}{2}-\left(\xi^{(0)}+\xi^{(2)}\right)\right], \quad A_{2}=\frac{1}{2}\left(\xi^{(6)}+\xi^{(4)}\right) \text {, } \\
& A_{3}=\frac{1}{2}\left[-\frac{\xi^{(9)}+\xi^{(8)}}{2}-\left(\xi^{(0)}+\xi^{(2)}\right)\right], \quad B_{1}=-\frac{1}{2}\left[\frac{-\xi^{(9)}+\xi^{(8)}}{2}+\left(\xi^{(0)}-\xi^{(2)}\right)\right] \text {, } \\
& B_{2}=\frac{1}{2}\left(\xi^{(6)}-\xi^{(4)}\right) \text {, } \\
& B_{3}=\frac{1}{2}\left[\frac{\xi^{(9)}-\xi^{(8)}}{2}+\left(\xi^{(0)}-\xi^{(2)}\right)\right] \\
& \begin{array}{lll}
{\left[A_{1}, A_{2}\right]=-A_{3},} & {\left[A_{3}, A_{1}\right]=A 2,} & {\left[A_{2}, A_{3}\right]=A_{1}} \\
{\left[B_{1}, B_{2}\right]=-B_{3},} & {\left[B_{3}, B_{1}\right]=B_{2},} & {\left[B_{2}, B_{3}\right]=B_{1}}
\end{array} \\
& {\left[A_{i}, B_{k}\right]=0} \\
& (i, k=1,2,3)
\end{aligned}
$$

Asymptotic Symmetry Algebra (ASA) of CG

6. $o(3,1)$

Highest subalgebra: 6 KVs ASA: 4 KVs

$$
\begin{array}{lll}
L_{1}=\xi^{(7)}+\frac{\xi^{(2)}}{2}, & L_{2}=\xi^{(5)}, & L_{3}=\xi^{(8)}+\frac{1}{2} \xi^{(1)} \\
K_{1}=\xi^{(8)}-\frac{1}{2} \xi^{(1)}, & K_{2}=\xi^{(6)}, & K_{3}=-\xi^{(7)}+\frac{1}{2} \xi^{(2)}
\end{array}
$$

$$
\begin{aligned}
{\left[L_{i}, L_{j}\right] } & =\epsilon_{i j k} L_{k}, \\
{\left[L_{i}, K_{j}\right] } & =\epsilon_{i j k} K_{k}, \\
{\left[K_{i}, K_{j}\right] } & =-\epsilon_{i j k} L_{k}
\end{aligned}
$$

Asymptotic Symmetry Algebra (ASA) of CG

3. $o(3) \otimes o(2)$, 4. $o(2) \otimes o(2,1)$, 7. $\mathrm{o}(2,1)$

Highest subalgebra: 7 KV s ASA: < 4 KV s

Asymptotic Symmetry Algebra (ASA) of CG

3. $o(3) \otimes o(2), 4 . o(2) \otimes o(2,1), 7 . o(2,1)$

Highest subalgebra: 7 KV s ASA: < 4 KVs

- Allowed ASAs - not straightforwardly extended to global solution

Global solutions

$$
\gamma_{i j}^{(1)}=\left(\begin{array}{ccc}
c & c & 0 \\
c & c & 0 \\
0 & 0 & 0
\end{array}\right)
$$

Global solutions

$$
\begin{gathered}
d s^{2}=d r^{2}+(-1+c f(r)) d x_{i}^{2}+2 c f(r) d x_{i} d x_{j}+(1+c f(r)) d x_{j}^{2}+d x_{k}^{2} \\
x_{i}=t, x_{j}=y, x_{k}=y \\
f(r)=c_{1}+c_{2} r+c_{3} r^{2}+c_{4} r^{3} \\
\gamma_{i j}^{(1)}=\left(\begin{array}{lll}
c & c & 0 \\
c & c & 0 \\
0 & 0 & 0
\end{array}\right)
\end{gathered}
$$

Global solutions

$$
\begin{gathered}
d s^{2}=d r^{2}+(-1+c f(r)) d x_{i}^{2}+2 c f(r) d x_{i} d x_{j}+(1+c f(r)) d x_{j}^{2}+d x_{k}^{2} \\
x_{i}=t, x_{j}=y, x_{k}=y \\
f(r)=c_{1}+c_{2} r+c_{3} r^{2}+c_{4} r^{3} \\
\gamma_{i j}^{(1)}=\left(\begin{array}{lll}
c & c & 0 \\
c & c & 0 \\
0 & 0 & 0
\end{array}\right) \\
\tau_{i j}=\left(\begin{array}{ccc}
-c c_{4} & -c c_{4} & 0 \\
-c c_{4} & -c c_{4} & 0 \\
0 & 0 & 0
\end{array}\right) \quad P_{i j}=\left(\begin{array}{ccc}
c c_{3} & c c_{3} & 0 \\
c c_{3} & c c_{3} & 0 \\
0 & 0 & 0
\end{array}\right)
\end{gathered}
$$

Global solutions

$$
\gamma_{i j}^{(1)}=\left(\begin{array}{ccc}
-c \cdot b(t-y) & 0 & c \cdot b(t-y) \\
0 & 0 & 0 \\
c \cdot b(t-y) & 0 & -c \cdot b(t-y)
\end{array}\right)
$$

Global solutions

$$
\gamma_{i j}^{(1)}=\left(\begin{array}{ccc}
-c \cdot b(t-y) & 0 & c \cdot b(t-y) \\
0 & 0 & 0 \\
c \cdot b(t-y) & 0 & -c \cdot b(t-y)
\end{array}\right)
$$

conserves

$$
\xi_{2}^{(n 1)}=-P_{0}+P_{2}, \xi_{2}^{(n 2)}=P_{1}, \xi_{2}^{(n 3)}=P_{1}, \xi_{2}^{(n 3)}=L_{3}-K_{1}
$$

Global solutions

$$
\gamma_{i j}^{(1)}=\left(\begin{array}{ccc}
-c \cdot b(t-y) & 0 & c \cdot b(t-y) \\
0 & 0 & 0 \\
c \cdot b(t-y) & 0 & -c \cdot b(t-y)
\end{array}\right)
$$

conserves

$$
\xi_{2}^{(n 1)}=-P_{0}+P_{2}, \xi_{2}^{(n 2)}=P_{1}, \xi_{2}^{(n 3)}=P_{1}, \xi_{2}^{(n 3)}=L_{3}-K_{1}
$$

solving for 4 th KV , one obtains global solution with the function b of the form

4th KV	b(t-y)	4th KV	$\mathrm{b}(\mathrm{t}-\mathrm{y})$
F	$\frac{b}{t-y}$	$F-K_{2}$	$\frac{b}{(t-y)^{3 / 2}}$
$F+K_{2}+\epsilon\left(-P_{0}-P_{2}\right)$	$b \cdot e^{\frac{t-1}{2 \epsilon}}$	K_{2}	$\frac{b}{(t-y)^{2}}$
$P_{0}-P_{2}$	$b(t-1)$	$F+c K_{2}$	$b \cdot(t-y)^{\frac{1-2 c}{-1+c}}$

Conclusion and Outline

- There is a number of boundary conditions that can be imposed to CG depending on the linear term in the FG expansion.

Conclusion and Outline

- There is a number of boundary conditions that can be imposed to CG depending on the linear term in the FG expansion.
- They are classified according to subalgebras of o(3,2)

Conclusion and Outline

- There is a number of boundary conditions that can be imposed to CG depending on the linear term in the FG expansion.
- They are classified according to subalgebras of o(3,2)
- Clever choice can lead to global solution

Conclusion and Outline

- There is a number of boundary conditions that can be imposed to CG depending on the linear term in the FG expansion.
- They are classified according to subalgebras of o(3,2)
- Clever choice can lead to global solution
- Global solutions can be classified according to the allowed subalgebras

Conclusion and Outline

- Largest subalgebra belongs to sim(2,1) and opt(2,1), contains 5 KVs and defines pp wave solution

Conclusion and Outline

- Largest subalgebra belongs to sim(2,1) and opt(2,1), contains 5 KV and defines pp wave solution
- $o(2,2)$ and $o(3,1)$ algebras, define ASAs with maximally 4 KVs

Conclusion and Outline

- Largest subalgebra belongs to sim(2,1) and opt(2,1), contains 5 KVs and defines pp wave solution
- o(2,2) and o(3,1) algebras, define ASAs with maximally 4 KVs
- There are more global solutions, not discussed here

Conclusion and Outline

- Largest subalgebra belongs to sim(2,1) and opt(2,1), contains 5 KVs and defines pp wave solution
- o(2,2) and o(3,1) algebras, define ASAs with maximally 4 KVs
- There are more global solutions, not discussed here
- Further research - further global solutions: black holes, black branes, black strings

Thank you for the attention!

Realised subalgebras, sim(2,1)

Patera name	generators	Realisation	Name
$\begin{gathered} a_{5,4}^{a} \\ a \neq 0, \pm 1 \end{gathered}$	$\begin{array}{r} F+\frac{1}{2} K_{2},-K_{1}+L_{3}, \\ P_{0}, P_{1}, P_{2} \end{array}$	$\left(\begin{array}{ccc}c & c & 0 \\ c & c & 0 \\ 0 & 0 & 0\end{array}\right)$	
$a_{4,1}=b_{4,6}$	$P_{1} \oplus\left\{K_{2}, P_{0}, P_{2}\right\}$	$\left(\begin{array}{ccc}\frac{c_{1}}{2} & 0 & 0 \\ 0 & c_{1} & 0 \\ 0 & 0 & -\frac{c_{1}}{2}\end{array}\right)$	$\mathcal{R} \oplus o(3)$
$a_{4,2}$	$P_{0}-P_{2} \oplus\left\{F-K_{2} ; P_{0}+P_{2}, P_{1}\right\}$	$\left(\begin{array}{ccc}-c_{1} & 0 & 0 \\ 0 & c_{1} & 0 \\ 0 & 0 & -2 c_{1}\end{array}\right)$	
$a_{4,3}$	$P_{0} \oplus\left\{L_{3}, P_{1}, P_{2}\right\}$	$\left(\begin{array}{ccc}2 c_{1} & 0 & 0 \\ 0 & c_{1} & 0 \\ 0 & 0 & c_{1}\end{array}\right)$	$M K R$ $\mathcal{R} \oplus o(3)$
$a_{4,4}$	$F \oplus\left\{K_{1}, K_{2}, L_{3}\right\}$	$\left(\begin{array}{ccc}2 f(t) & 0 & 0 \\ 0 & f(t) & 0 \\ 0 & 0 & f(t)\end{array}\right)$	
$a_{4,5}$	$\begin{array}{r} F\left\{K_{2} ; P_{0}-P_{2}\right\} \oplus \\ \left\{F-K_{2}, P_{1}\right\} \end{array}$	$\left(\begin{array}{ccc}0 & \frac{c}{t-y} & 0 \\ \frac{c}{t-y} & 0 & \frac{c}{y-t} \\ 0 & \frac{c}{y-t} & 0\end{array}\right)$	
$a_{4,6}=b_{4,9}$	$\begin{array}{r} \left\{F+K_{2}, P_{0}-P_{2}\right\} \oplus \\ \left\{F-K_{2}, P_{0}+P_{2}\right\} \end{array}$	$\left(\begin{array}{ccc}\frac{c}{x} & 0 & 0 \\ 0 & \frac{2 c}{x} & 0 \\ 0 & 0 & -\frac{c}{x}\end{array}\right)$	
$a_{4,7}$	$\begin{array}{r} L_{3}-K_{1}, P_{0}+P_{2} ; \\ P_{0}-P_{2}, P_{1} \end{array}$	leads to 5 KV algebra	
$\begin{array}{r} a_{4,10}^{b}=b_{4,13} \\ b>0, \neq 1 \end{array}$	$\left\{F-b K_{2}, P_{0}, P_{1}, P_{2}\right\}$	$\left(\begin{array}{lll}\mathrm{c} & 0 & \mathrm{c} \\ 0 & 0 & 0 \\ \mathrm{c} & 0 & \mathrm{c}\end{array}\right),\left(\begin{array}{ccc}0 & \mathrm{c} & 0 \\ \mathrm{c} & 0 & -\mathrm{c} \\ 0 & -\mathrm{c} & 0\end{array}\right),\left(\begin{array}{lll}0 & \mathrm{c} & 0 \\ \mathrm{c} & 0 & \mathrm{c} \\ 0 & \mathrm{c} & 0\end{array}\right)$	
$\begin{gathered} a_{4,11}^{b}=b_{4,13} \\ b>0,[b \neq 0] \end{gathered}$	$\left\{F+b L_{3}, P_{0}, P_{1}, P_{2}\right\}$	$\left(\begin{array}{ccc}0 & \mathrm{c} & i \mathrm{c} \\ \mathrm{c} & 0 & 0 \\ i \mathrm{c} & 0 & 0\end{array}\right),\left(\begin{array}{ccc}0 & \mathrm{c} & -i \mathrm{c} \\ \mathrm{c} & 0 & 0 \\ -i \mathrm{c} & 0 & 0\end{array}\right)$	

