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HS theory

Higher derivatives in interactions

A.Bengtsson, I.Bengtsson, Brink (1983), Berends, Burgers, van Dam (1984)

S = S2 + S3 + . . . , S3 =
∑
p,q,r

(Dpϕ)(Dqϕ)(Drϕ)ρp+q+r+1
2d−3

HS Gauge Theories (m = 0): Fradkin, M.V. (1987)

AdSd : [Dn, Dm] ∼ ρ−2 = λ2

AdS/CFT:

(3d,m = 0)⊗ (3d,m = 0) =
∑∞
s=0(4d,m = 0) Flato, Fronsdal (1978);

Sundborg (2001), Sezgin, Sundell (2002,2003), Klebanov, Polyakov (2002),

Giombi, Yin (2009). . .

Maldacena, Zhiboedov (2011) Thm:

Unitary, conformal, local theory conserved current of spin s > 2 is free

Is a boundary dual of AdS4 HS theory free?
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Main results

CFT3 dual of AdS4 HS theory: 3d superconformal HS theory

Holography: Unfolding
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Unfolded dynamics

First-order form of differential equations

q̇i(t) = ϕi(q(t)) initial values: qi(t0)

# degrees of freedom = # of dynamical variables

Field theory: infinite # of degrees of freedom = spaces of functions=

infinite # of undetermined derivatives (generalized momenta)

Dirac approach is nice and efficient but noncovariant.

Covariant extension t→ xn ?

Unfolded dynamics: multidimensional generalization

∂

∂t
→ d , qi(t)→WΩ(x) = dxn1 ∧ . . . ∧ dxnpWΩ

n1...np
(x)

a set of differential forms
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Unfolded equations
dWΩ(x) = GΩ(W (x)) , d = dxn∂n

GΩ(W ) : function of “supercoordinates” Wα

GΩ(W ) =
∞∑
n=1

fΩ
Λ1...ΛnW

Λ1 ∧ . . . ∧WΛn

d > 1: Nontrivial compatibility conditions

GΛ(W ) ∧
∂GΩ(W )

∂WΛ
≡ 0

Any solution to generalized Jacobi identities: FDA

Sullivan (1968); D’Auria and Fre (1982)

The unfolded equation is invariant under the gauge transformation

δWΩ = dεΩ + εΛ∂G
Ω(W )

∂WΛ
,

where the gauge parameter εΩ(x) is a (pΩ − 1)-form.

(No gauge parameters for 0-forms WΩ)
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Vacuum geometry

h: a Lie algebra. ω = ωαTα: a 1-form taking values in h.

G(ω) = −ω ∧ ω ≡ −
1

2
ωα ∧ ωβ[Tα, Tβ]

the unfolded equation with W = ω has the zero-curvature form

dω + ω ∧ ω = 0 .

Compatibility condition: Jacobi identity for h.

The FDA gauge transformation is the usual gauge transformation of the

connection ω.

The zero-curvature equations: background geometry in a coordinate

independent way.

If h is Poincare or anti-de Sitter algebra it describes Minkowski or AdSd

space-time
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Free fields unfolded

Let WΩ contain p-forms Ci (e.g. 0-forms) and Gi be linear in ω and C

Gi = −ωα(Tα)ij ∧ Cj .

The compatibility condition implies that (Tα)ij form some representation

T of h, acting in a carrier space V of Ci. The unfolded equation is

DωC = 0

Dω ≡ d+ ω: covariant derivative in the h-module V .

Covariant constancy equation : linear equations in a chosen background

h: global symmetry
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Scalar field example

s = 0: infinite set of totally symmetric 0-forms Cm1...mn(x) (n = 0,1,2, . . .).

Off-shell unfolded equations

dCm1...mn = ekCm1...mnk (n = 0,1, . . .) ,

Cartesian coordinates: DL = d. The space V of Cm1...mn forms an (infinite

dimensional) iso(d− 1,1)–module.

First two equations

∂nC = Cn , ∂nCm = Cmn

All other equations express highest tensors in terms of higher-order

derivatives

Cm1...mn = ∂m1 . . . ∂mnC .

Cn1...nn describe all derivatives of C(x). The system is off-shell: it is

equivalent to an infinite set of constraints

On-shell system: Ckkm3...mn(x) = 0
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Invariant functionals via Q–cohomology

Equivalent form of compatibility condition

Q2 = 0 , Q = GΩ(W )
∂

∂WΩ

Q-manifolds

Hamiltonian-like form of the unfolded equations

dF (W (x)) = Q(F (W (x)) , ∀F (W ) .

Invariant functionals

S =
∫
L(W (x)) , QL = 0 (2005)

L = QM : total derivatives

Actions and conserved charges: Q cohomology

for off-shell and on-shell unfolded systems, respectively
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Properties

• General applicability

• Manifest (HS) gauge invariance

• Invariance under diffeomorphisms

Exterior algebra formalism

• Interactions: nonlinear deformation of GΩ(W )

• Local degrees of freedom are in 0-forms Ci(x0) at any x = x0 (as q(t0))

infinite-dimensional module dual to the space of single-particle states

• Independence of ambient space-time

Geometry is encoded by GΩ(W )
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Unfolding and holographic duality

Unfolded formulation unifies various dual versions of the same system.

Duality in the same space-time: ambiguity in what is chosen to be

dynamical or auxiliary fields.

Holographic duality between theories in different dimensions: universal

unfolded system admits different space-time interpretations.

Extension of space-time without changing dynamics by letting the dif-

ferential d and differential forms W to live in a larger space

d = dXn ∂

∂Xn
→ d̃ = dXn ∂

∂Xn
+ dX̂n̂ ∂

∂X̂n̂
, dXnWn → dXnWn + dX̂n̂Ŵn̂ ,

X̂n̂ are some additional coordinates.

d̃WΩ(X, X̂) = GΩ(W (X, X̂))
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A particular space-time interpretation of a universal unfolded system,

e.g, whether a system is on-shell or off-shell, depends not only on GΩ(W )

but, in the first place, on a space-time Md and chosen vacuum solution

W0(X).

Two unfolded systems in different space-times are equivalent (dual) if

they have the same unfolded form.

Most direct way to establish holographic duality between two theories:

unfold both to see whether the operators Q of their unfolded formulations

coincide.

Given unfolded system generates a class of holographically dual theories

in different dimensions.
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HS gauge connections in AdS4

Gauge 1-forms ωα1...αn ,β̇1...β̇m
, n+m = 2(s− 1)

s = 1 : ω(x) = dxnωn(x)

s = 2 : ωαβ̇(x) , ωαβ(x) , ω̄α̇β̇(x)

s = 3/2 : ωα(x) , ω̄α̇(x)

Frame-like fields: |n−m| = 0 (bosons) or |n−m| = 1 fermions

Auxiliary Lorentz-like fields: |n−m| = 2 (bosons)

Extra fields: |n−m| > 2

1987
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Gauge invariant field strengths

0-forms Cα1...αn ,β̇1...β̇m
, |n−m| = 2s

(Anti)selfdual Weyl tensors carry only (dotted)undotted spinor indices

s = 0 : C(x)

s = 1/2 : Cα(x) , C̄α̇(x)

s = 1 : Cαβ , C̄α̇β̇

s = 3/2 : Cαβγ , C̄α̇β̇γ̇

s = 2 : Cα1...α4 , C̄α̇1...α̇4

Formulae simplify in terms of generating functions ω(y, ȳ | x), C(y, ȳ | x)

A(y, ȳ | x) = i
∞∑

n,m=0

1

n!m!
yα1 . . . yαnȳβ̇1

. . . ȳβ̇mA
α1...αn,

β̇1...β̇m(x)

Traceless tensors by virtue of Penrose formula:

pαβ̇ = yαȳβ̇ ⇒ pαβ̇pαβ̇ = 0 ⇔ pnpn = 0 .

Twistor auxiliary variables yα, ȳα̇ put the system on-shell
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Central on-shell theorem

Infinite set of spins s = 0,1/2,1,3/2,2 . . .

Fermions require doubling of fields

ωii(y, ȳ | x) , Ci1−i(y, ȳ | x) , i = 0,1 ,

ω̄ii(y, ȳ | x) = ωii(ȳ, y | x) , C̄i1−i(y, ȳ | x) = C1−i i(ȳ, y | x) .

The full unfolded system for the doubled sets of free fields is

? Rii1(y, y | x) = η H
α̇β̇ ∂2

∂yα̇∂yβ̇
C1−i i(0, y | x) + η̄ Hαβ ∂2

∂yα∂yβ
Ci1−i(y,0 | x)

? D̃0C
i1−i(y, y | x) = 0

R1(y, ȳ | x) = Dad
0 ω(y, ȳ | x) Hαβ = eαα̇ ∧ eβα̇ , H

α̇β̇ = eα
α̇ ∧ eαβ̇ ,

Dad
0 ω = DL − λeαβ̇

(
yα

∂

∂ȳβ̇
+

∂

∂yα
ȳβ̇

)
, D̃0 = DL + λeαβ̇

(
yαȳβ̇ +

∂2

∂yα∂ȳβ̇

)
,

DLA = dx −
(
ωαβyα

∂

∂yβ
+ ω̄α̇β̇ȳα̇

∂

∂ȳβ̇

)
.
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Non-Abelian HS algebra

Star product

(f ∗ g)(Y ) =
∫
dSdTf(Y + S)g(Y + T ) exp−iSATA

[YA, YB]∗ = 2iCAB , Cαβ = εαβ , Cα̇β̇ = εα̇β̇

Non-Abelian HS curvature

R1(y, ȳ|x)→ R(y, ȳ|x) = dω(y, ȳ|x) + ω(y, ȳ|x) ∗ ω(y, ȳ|x)

D̃0C(y, ȳ|x)→ D̃C(y, ȳ|x) = dC(y, ȳ|x)+ω(y, ȳ|x)∗C(y, ȳ|x)−C(y, ȳ|x)∗ω(y,−ȳ|x)
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Unfolding as twistor transform

Twistor transform

@
@
@
@R

�
�

�
�	

C(Y |x)

M(x) T(Y ) .

η ν

WΩ(Y |x) are functions on the “correspondence space” C.

Space-time M : coordinates x. Twistor space T : coordinates Y .

Unfolded equations describe the Penrose transform by mapping functions

on T to solutions of field equations in M.

Being simple in terms of unfolded dynamics and the corresponding

twistor space T, holographic duality in terms of usual space-time may

be complicated requiring solution of at least one of the two unfolded

systems: a nontrivial nonlinear integral map.
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Sp(2M) invariant equations

Conformal invariant massless equations in d = 3,4,6: Sp(2M) invariant

unfolded equations Bandos, Lukierski, Sorokin (1999); MV (2002) Bandos, Bekaert, de

Azcarraga, Sorokin, Tsulaia (2005)

dXAB(
∂

∂XAB
±

∂2

∂Y A∂Y B
)C(Y |X) = 0 , A,B = 1, . . .M .

M = 2: 3d massless fields: Sp(4) is 3d conformal group Shaynkman, MV (2001)

M = 4: Sp(8) extends 4d conformal group su(2,2).

Rank r unfolded equations in MM from tensoring of Fock modules

Gelfond, MV (2003)

dXAB(
∂

∂XAB
+ ηij

∂2

∂Y Ai ∂Y
B
j

)C(Y |X) = 0 , i, j = 1, . . . r , A,B = 1, . . .M .

For diagonal ηij higher-rank equations are satisfied by products of rank–

one fields

C(Yi|X) = C1(Y1|X)C2(Y2|X) . . . Cr(Yr|X) , DtwC(Y |x) = 0 .
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Higher rank as higher dimension

A rank–r field in MM ∼ a rank–one field in MrM with coordinates XAB
ij .

Y Ai → Y Ã , Ã = 1 . . . rM

Embedding of MM into MrM

XAB
11 = XAB

22 = . . . = XAB
rr = XAB

3d conformal currents:

a rank-two field in M2 (d = 3) ∼ rank-one field in M4 (d = 4).

A single rank-one field in M4 describes all 4d conformal fields.

Realization of Flato-Fronsdal Thm
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Rank-two equations and conserved currents

The rank-two equation can be rewritten in the form{
∂

∂XAB
−

∂2

∂Y (A∂UB)

}
T (U, Y |X) = 0

T (U, Y |X): generalized stress tensor. Rank-two equation is obeyed by

T (U, Y |X) =
N∑
i=1

C+ i(Y − U |X)C− i(U + Y |X)

Rank-two fields: bilocal fields in the twistor space.

Dynamical currents (primaries) are Gelfond, MV (2003)

J(U |X) = T (U,0 |X) , J̃(Y |X) = T (0, Y |X)

Jasym(U, Y |X) = (UAY B − UBY A)
(

∂2

∂UA∂Y B
T (U, Y |X)

∣∣∣∣
UA=Y A=0

)
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In the 3d case of M = 2 A,B → α, β. J(U |X) generates 3d currents of all

integer and half-integer spins

J(U |X) =
∞∑

2s=0

Uα1 . . . Uα2sJα1...α2s(X) , J̃(U |X) =
∞∑

2s=0

Uα1 . . . Uα2sJ̃α1...α2s(X) .

Jasym(U, Y |X) = UαY
αJasym(X)

∆Jα1...α2s(X) = ∆J̃α1...α2s(X) = s+ 1 ∆(Jasym(X)) = 2

Differential equations: conventional conservation condition

∂

∂Xαβ

∂2

∂Uα∂Uβ
J(U |X) = 0 ,

∂

∂Xαβ

∂2

∂Yα∂Yβ
J̃(Y |X) = 0

To define conserved charges, Fourier transform T (U, Y |X)

T̃ (W, Y |X) = (2π)−M/2
∫

RM
dMU exp

(
−i WC U

C
)
T (U, Y |X)

(
∂

∂XAB
+ iW(A

∂

∂Y B)

)
T̃ = 0

22



2M–form

Ω2M(T ) =
(
dWA ∧

(
iWBdX

AB − d Y A
))M

T̃ (W, Y |X)

is closed in MM × RM(WB)× CM(Y A)

The charge

q = q(T ) =
∫

Σ2M
Ω2M(T )

is independent of local variations of a 2M-dimensional surface Σ2M .

Remarkable output: conserved charges can be expressed as integrals

over the twistor space T

Solutions of current equation form a commutative algebra

η(W, Y |X) = ε(WA, Y
C −iXCBWB) , T̃η(W, Y |X) = η(W, Y |X)T̃ (W, Y |X) ,

η(W, Y |X) is a polynomial parameter representing global HS symmetry.

q(T̃η) with various η(W, Y |X) generate complete set of conformal HS

conserved charges. M = 2: all conserved charges built from bilinears of

free 3d massless fields.
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3d Conformal setup

For manifest conformal invariance introduce new oscillators

y+
α =

1

2
(yα − iȳα) , y−α =

1

2
(ȳα − iyα) , [y−α , y

+β]∗ = δβα

3d conformal realization of the algebra sp(4;R) ∼ o(3,2)

Lαβ = y+αy−β −
1

2
δαβy

+γy−γ , D =
1

2
y+αy−α

Pαβ = iy−α y
−
β , Kαβ = −iy+αy+β

Conformal weight of the HS gauge fields:

[D,ω(y±|X)] =
1

2

(
y+α ∂

∂y+α
− y−α

∂

∂y−α

)
ω(y±|X) .

Pullback ω̂(y±|x) of ω(y±|x) to Σ gives a set of 3d conformal HS gauge

fields.
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Conformal frame

D in the twisted adjoint representation is realized by the second-order

operator

{D ,C}∗ =

(
y+αy−α −

1

4

∂2

∂y+α∂y−α

)
C

Fields C inherited from AdS4 theory are not manifestly conformal.

Conformal frame: Wick star product

(fN ? gN)(y±) =
∫
µ(u±) exp(−u−αu+α)fN(y+, y−+ u−)gN(y+ + u+, y−)

fN(y±) = exp−
1

2
εαβ

∂2

∂y−α∂y+β
f(y±)

{DN , . . .}? =
1

2

(
y+α ∂

∂y+α
+ y−α

∂

∂y−α

)
+ y−α y

+α + 1

T (y±|x) = exp−y−α y+αCN(y±|x)

? DN(T (y±)) =
1

2

(
y+α ∂

∂y+α
+ y−α

∂

∂y−α
+ 2

)
T (y±)
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Holographic locality at infinity

AdS4 foliation: xn = (xa, z) where xa are coordinates of leafs (a = 0,1,2)

while z is a foliation parameter.

Poincaré coordinates

W =
i

z
dxαβy−α y

−
β −

dz

2z
y−α y

+α

eαα̇ =
1

2z
dxαα̇ , ωαβ = −

i

4z
dxαβ , ω̄α̇β̇ =

i

4z
dxα̇β̇

[
dx +

i

z
dxαβ

(
yα

∂

∂yβ
− ȳα

∂

∂ȳβ
+ yαȳβ −

∂2

∂yα∂ȳβ

) ]
C(y, ȳ|x, z) = 0

Rescaling yα and ȳα̇ via

C(y, ȳ|x, z) = z exp(yαȳ
α)T (w, w̄|x, z) ,

wα = z1/2yα , w̄α = z1/2ȳα

T (w, w̄|x, z) satisfies the 3d conformal invariant current equation[
dx − idxαβ

∂2

∂wα∂w̄β

]
T (w, w̄|x, z) = 0
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Connections

Setting

W jj(y±|x, z) = Ωjj(v−, w+|x, z)

v± = z−1/2y± , w± = z1/2y±

explicit z–dependence disappears

DxΩjj(v−, w+|x, z) =
(
dx + 2idxαβv−α

∂

∂w+β

)
Ωjj(v−, w+|x, z)

Using

wα = w+
α + izv−α , w̄α = iw+

α + zv−α

free HS equations take the form

DxΩjj
x (v−, w+|x, z) =

dxα
γdxβγ

∂2

∂w+
α ∂w

+
β

(
ηT j 1−j(w+ + izv−,0 | x, z)− η̄T1−j j(0, iw+ + zv− | x, z)

)
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z → 0 limit

Setting

T jj(w+, w−|x,0) = ηT j 1−j(w+, w− | x,0)− η̄T1−j j(−iw−, iw+ | x,0)

? DxΩjj
x (v−, w+|x,0) = dxα

γdxβγ
∂2

∂w+α∂w+β
T jj(w+,0 | x,0) ,

?
[
dx − idxαβ

∂2

∂w+α∂w−β

]
T j 1−j(w+, w−|x,0) = 0 .
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Towards nonlinear 3d conformal HS theory

Conformal HS theory is nonlinear since conformal HS curvatures inher-

ited from the AdS4 HS theory are non-Abelian Fradkin, Linetsky (1990)

Rxx(v−, w+ | x) = dxΩx(v−, w+ | x) + Ωx(v−, w+ | x) ?Ωx(v−, w+ | x)

It is important

[v−α , w
+β]? = δβα

The equation on 0-forms deforms to nonlinear twisted adjoint represen-

tation

dT (w±|x)+ Ω(
∂

∂w+β
, w+

α )◦T (w±|x)−T (w±|x)◦Ω(−iη
∂

∂w−α
,−iηw−|x) = O(T2) .

Matter fields can be added via the Fock module

(d+ Ω0(v−, w+|x)) ? Ci(w+|x) ? F = 0 .
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Free CFT3 reduction

The unfolded equation

DxΩjj
x (v−, w+|x,0) = Hαβ

∂2

∂w+α∂w+β
T jj(w+,0 | x,0)

remains free if

T jj = 0 −→ Jasym = 0 or Jsym = 0

depending on whether A-model or B-model is considered. For these

cases the model remains free in accordance with the Klebanov-Polyakov,

Sezgin-Sundell conjecture.

Free models are equivalent to the reductions of the HS theory with

respect to involution y ↔ ȳ which is possible for the A and B models.

For HS theory with general phase η parameter such reduction is not

possible: no realization as a free conformal theory.

Non-Abelian contribution of superconformal HS connections has to be

taken into account.
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Higher-spin theory and quantum mechanics

rank-one equation in MM can be rewritten in the form(
ih

∂

∂XAB
+

h2

2m

∂2

∂Y A∂Y B

)
Ψ(Y |X) = 0

Algebra of symmetries: algebra of polynomials of PA = ∂
∂Y A

and Y B:

conformal HS algebra. sp(2M) :

KAB = Y AY B , LAB = {Y A , PB} , PAB = PAPB

Time-like directions in MM are associated with positive-definite XAB

XAB = tMδAB

Restriction to t gives M-dimensional Schrodinger equation(
ih
∂

∂t
+

h2

2m
δAB

∂2

∂Y A∂Y B

)
Ψ(Y |t) = 0

Y A are now interpreted as Galilean coordinates.
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In unfolded dynamics it is easy to introduce coordinates in which any

symmetry h of a given system acts geometrically by introducing a non-

zero flat connection of h. Different symmetries require different spaces

and connections. Description of the same system in different space-

times gives holographically dual theories.

Being obvious in unfolded dynamics, where it refers to the same twistor

space (Y A) in other approaches holographic duality may look obscure.

Maximal finite dimensional symmetry algebra sph(M |R) Valenzuela (2009)

TAB = −
i

2
YAYB , tA = YA

[TAB , TCD] = CBCTAD + CACTBD + CBDTAC + CADTBC

[TAB , tC] = CBCtA + CACtB , [tA , tB] = 2iCAB

Relativistic and nonrelativistic symmetries of Schrodinger equation be-

long to sph(M |R) . Each symmetry acts geometrically in respective space.
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What if the system is deformed by a potential? Formally, this does

not affect the consideration much. In presence of potential U(Y ) the

equation (
ih
∂

∂t
+

h2

2m
δAB

∂2

∂Y A∂Y B
− U(Y )

)
Ψ(Y |t) = 0

remains linear, hence exhibiting infinite symmetries. It can be interpreted

as flatness condition

DΨ(Y |t) = 0 , D = dt
∂

∂t
+Ω , Ω = ih−1dtH , H = −

h2

2m
δAB

∂2

∂Y A∂Y B
+U(Y ) .

In the 1d case with the single coordinate t, any connection is flat. Hence

it can be represented in the pure gauge form which is simply

Ω = exp−ih−1Ht d exp ih−1Ht
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Any HS geometry is holographically dual to some quantum mechanics.

For example, AdS geometry is dual to harmonic potential

U(Y ) =
1

2
mω2Y AY BδAB

where −Λ ∼ λ2

1

2
mω2 = λ2 .

dS geometry is holographically dual to the inverted harmonic potential

not too surprisingly in the context of inflation.
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Conclusions

Holographic duality relates theories that have equivalent unfolded for-

mulation: equivalent twistor space description.

Beyond 1/N

AdS4 HS theory is dual to nonlinear 3d conformal HS theory of 3d currents

Maldacena-Zhiboedov theorem is escaped by virtue of boundary gauge

conformal HS symmetries

Both of holographically dual theories are HS theories of gravity

Relativistic HS field equations are holographically dual to nonrelativistic

quantum mechanics.

Holography at any surface is nonlocal
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To do

Nonlinear 3d conformal HS theory

Actions

Correlators

AdS3/CFT2 and Gaberdiel-Gopakumar conjecture
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