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Motivations
• We will consider the coupling of an arbitrary-spin massless
fermion to a U(1) gauge field, in flat spacetime with D ≥ 4.
Such a study is important in that fermionic fields are required by
supersymmetry. This fills a gap in the higher-spin literature.

• No-go theorems prohibit, in flat space, minimal coupling to
gravity for s ≥ 5/2, and to EM for s ≥ 3/2. These particles may
still interact through gravitational and EM multipoles.

• Metsaev's light-cone formulation restricts the possible number
of derivatives in generic higher-spin cubic vertices. 

• Sagnotti-Taronna used the tensionless limit of string theory to
present generating function for off-shell trilinear vertices.



• BRST cohomological methods could independently reconfirm,

rederive and check these results.

• Search for consistent interactions in a gauge theory becomes

very systematic as one as one takes the cohomological approach.

• Any non-trivial consistent interaction cannot go unnoticed.

• Full off-shell vertices are natural output.

• Whether a given vertex calls for deformation of  the gauge

transformations and the gauge algebra is known by construction,

and the deformations are given explicitly.

• Higher-order consistency of vertices can be checked easily.



Results
• Cohomological proof of no minimal EM coupling for s ≥ 3/2.

• Reconfirmation of Metsaev’s restriction on the number of
derivatives in a cubic 1-s-s vertex, with s = n+1/2. There are
Only three allowed values: 2n-1, 2n, and 2n+1. 

• Explicit construction of off-shell cubic vertices for arbitrary 
s = n+1/2, and presenting them in a very neat form .

1. Non-abelian (2n-1)-derivative vertex containing the (n-1)-curl of the field.

2. Abelian 2n-derivative vertex, for D ≥ 5, involving n-curl (curvature tensor).

3. Abelian (2n+1)-derivative vertex of Born-Infeld type (3-curvature term).

• Explicit matching with known results for lower spins.

• Generic obstruction for the non-abelian cubic vertices.



Outline

• EM coupling of massless spin 3/2: simple but nontrivial. We
start with free theory and perform cohomological reformulation
of the gauge system. We employ the BRST deformation scheme
to construct consistent parity-preserving off-shell cubic vertices.

• We generalize to arbitrary spin, s = n+1/2, coupled to EM. 
There appear restrictions on the gauge parameter and the field. 
These actually make easy the search for consistent interactions!

• Comparative study of the vertices with known results.

• Second-order deformations & issues with locality.

• Concluding remarks.



Massless Rarita-Schwinger Field 
Coupled to Electromagnetism



Step 0: Free Gauge Theory
• The free theory contains a photon Aµ and a massless spin-3/2
Rarita-Schwinger field ψµ, described by the action:

• It enjoys two abelian the gauge invariances: 

• Bosonic gauge parameter: λ, fermionic gauge parameter: ε

• Curvature for the fermionic field: 



Step 1: Introduce Ghosts
• For each gauge parameter, we introduce a ghost field, with

the same algebraic symmetries but opposite Grassmann parity: 

• Grassmann-odd bosonic ghost: C

• Grassmann-even fermionic ghost: ξ

• The original fields and ghosts are collectively called fields:

• Introduce the grading: pure ghost number, pgh, which is

• 1 for the ghost fields

• 0 for the original fields



Step 2: Introduce Antifields

• One introduces, for each field and ghost, an antifield ΦA
*, 

with the same algebraic symmetries but opposite Grassmann 

parity. Each antifield has 0 pure ghost number: pgh(ΦA
*)=0.

• Introduce the grading: antighost number, agh, which is 0 for 

the fields and non-zero for the antifields: 



Step 3: Define Antibracket

• On the space of fields and antifields, one defines an odd

symplectic structure, called the antibracket:

• Here R and L respectively mean right and left derivatives.

• The antibracket satisfies graded Jacobi identity. 



Step 4: Construct Master Action

• The master action S0 is an extension of the original action; it

includes terms involving ghosts and antifields. 

• Because of Noether identities, it solves the master equation:

• The antifields appear as sources for the “gauge” variations,

with gauge parameters replaced by corresponding ghosts.



Step 5: BRST Differential

• S0 is the generator of the BRST differential s of the free theory 

• Then the free master equation means: S0 is BRST-closed.

• Graded Jacobi identity of the antibracket gives:

• The free master action S0 is in the cohomology of s, in the 
local functionals of the fields, antifields and their derivatives.
Locality calls for a finite number of derivatives.



• The BRST differential decomposes into two differentials:

s = Γ + Δ
• Δ is the Koszul-Tate differential. It implements the equations 
of motion by acting only on the antifields. It decreases the agh
by one unit while keeping unchanged the pgh.

• Γ is the longitudinal derivative along the gauge orbits. It acts 
only on the original fields to produce the gauge transformations. 
It increases the pgh by one unit without modifying the agh.     

• They obey:Γ2 = Δ2 = 0,  Γ Δ +Δ Γ = 0.
• All Γ, Δ, s increase the ghost number, gh, by one unit, where

gh = pgh – agh



Step 6: Properties of ΦA & Φ*
A



An Aside: BRST Deformation Scheme

• The solution of the master equation incorporates compactly all 
consistency conditions pertaining to the gauge transformations.

• Any consistent deformation of the theory corresponds to:

S = S0 + gS1 + g2S2 + O(g3)

where S solves the deformed master equation: (S , S) = 0.

• Coupling constant expansion gives, up to O(g2): 



• The first equation is fulfilled by assumption.

• The second equation says S1 is BRST-closed:

• First order non-trivial consistent local deformations: S1 = ∫ a

are in one-to-one correspondence with elements of H0( s|d ) –

the cohomology of the free BRST differential s, modulo total

derivative d, at ghost number 0. One has the cocycle condition:



• A cubic deformation with 0 ghost number cannot have agh>2.

Thus one can expand a in antighost number:

a = a0 + a1 + a2 ,     agh( ai ) = i

• a0 is the deformation of the Lagrangian. a1 and a2 encode 

information about the deformations of the gauge transformations

and the gauge algebra respectively.

• Then the cocycle condition reduces, by s = Γ + Δ, to a cascade



• The cubic vertex will deform the gauge algebra if and only 

if a2 is in the cohomology of Γ. 

• Otherwise, one can always choose a2 = 0 and a1 = Γ-closed. 

In this case, if a1 is in the cohomology of Γ, the vertex deforms 

the gauge transformations. 

• If this is also not the case, we can take a1 = 0, so that the 

vertex is abelian, i.e. a0 is in the cohomology of Γ modulo d. 

• The cohomology of Δ is also relevant in that the Lagrangian 

deformation a0 is Δ-closed, whereas trivial interactions are given 

by Δ-exact terms.



Step 7: Cohomology of Γ

Cohomology of Γ isomorphic to the space of functions of:

• These are nothing but “gauge-invariant” objects, that 

themselves are not “gauge variation” of something else.

• Note: Fronsdal tensor is already included in this list.



Step 8: Non-Abelian Vertices

• Recall that a2 must be Grassmann even, satisfying: 

• The most general parity-even Lorentz scalar solution is:

• It is a linear combination of two independent terms: one that 

contains C, another that contains C *. The former one potentially 

gives rise to minimal coupling, while the latter could produce

dipole interactions (look at the cascade and count derivatives).



• Each of the terms can be lifted to an a1:

• The ambiguity is in the cohomology of Γ :

• The Δ variation of none of the unambiguous pieces is Γ-exact 

modulo d. The Δ variation of the ambiguity must kill, modulo d,

the non-trivial part, so that  Δa1 could be Γ-exact modulo d:



• Any element of the cohomology of Γ at antighost number 1 

contains at least 1 derivative, so that such a cancellation is not 

possible for the would-be minimal coupling, simply because the 

ambiguity contains too many derivatives. 

• Thus minimal coupling is ruled out, and we must set g0 = 0.

• For the would-be dipole interaction, one has 

• To see that this can be lifted to an a0, we use the identity



• And also the Bianchi identity: ∂[µFνρ] = 0, to arrive at

• In view of all possible forms of the EoMs:

it is clear that the second line is Δ-exact, and it can cancel the Δ

variation of the ambiguity, if the latter is chosen as:



• This leaves us with the non-abelian Lagrangian deformation:

• This is a 1-derivative Pauli term that corresponds to g = 2.

• The same appears in N = 2 SUGRA, where the dimensionful 

coupling constant g1 is simply the inverse Planck mass.

• To proceed, we note that we have exhausted all possible a2. 

Any other possible vertex will not deform the gauge algebra.



Step 9: Gauge-Symmetry-Preserving Vertices

• If a vertex comes from a1 or a0 itself, one can always write:

• Therefore, the most generic form of the vertex is:

• Any derivative contained in X must have one of the 5 indices.

• It is not difficult to see if X contains more than 1 derivatives,

a0 is Δ-exact modulo d (trivial). At most 3 derivatives in a0.



• There is a non-trivial 3-derivative vertex, corresponding to

• Other possibilities differ by trivial terms.

• Up to Δ-exact modulo d terms, this is an abelian 3-curvature 

term (Born-Infeld type):



• A 2-derivative vertex can follow from two possibilities:

• But they differ by Δ-exact terms, thanks to the identities:

• For D > 4, we have an abelian 2-derivative vertex, that is

gauge invariant up to a total derivative:



Arbitrary Spin: s = n + 1/2
• The set of fields and antifields are:

• The ghost field C is Grassmann odd.

• Grassmann-even rank-(n-1) fermionic ghost field 
is γ-traceless. The original fermion is triply γ-traceless:

• The n-curl curvature                                 obeys Bianchi 
identity and EoMs identical to the spin-3/2 curvature.



• Cohomology of Γ is isomorphic to the space of functions of

• A derivative of 0, 1, …, (n-2) curls of the fermionic ghost is

in the cohomology of Γ, but that of (n-1) curl is Γ-exact. 



• The list of candidates of a2 , for cross-coupling, is:

1. A set containing C, i-th curl of the fermionic ghost and 
i-th curl of its antifield. i=0,1,…,n-1. 

2. A set containing C*, i-th curl of the fermionic ghost and 
i-th curl of its Dirac conjugate. i=0,1,…,n-1. 

• The second kind cannot be lifted to a1 unless i = n-1.

• For the first kind, all can be lifted to a1. i = 0 corresponds to 
minimal coupling: ruled out like in s = 3/2. Other possibilities 
cannot also be lifted to a0, because of different natures of  the 
unambiguous piece and the ambiguity in a1 .

• The rest of the story is like in spin 3/2. (n-1)-curl  of the 
fermion appears in non-abelian vertex, and n-curl in the others.



Comparative Study of Vertices

• Comparison of ours with Sagnotti-Taronna off-shell vertices
reveal that they differ by Δ-exact modulo d terms. Off-shell
calculation has been carried out for the 1--3/2--3/2 vertices.

• The Sagnotti-Taronna vertices, written in the most naïve 
way, contains many terms. For them, it not straightforward at 
all to see that the 2-derivative vertex vanishes for D = 4.

• Our number of derivative count matches with Metsaev.

• Our off-shell vertices have a neat form for all spin.

• In the transverse-traceless gauge, our vertices also reduce to
known results in the literature, in particular to Sagnotti-Taronna 
for higher spins.



Second-Order Deformation

• Consistent 2nd-order deformation requires (S1 , S1 ) be s-exact:

• For abelian vertices, this antibracket is zero, so the first-order 

deformations always go unobstructed. Non-abelian vertices,

however, are more interesting in this respect.

• If the consistency condition holds, the Γ variation of the 

antibracket at zero antifields must be Δ-exact. 



• For our non-abelian vertices, we see easily

• Straightforward computation for spin 3/2 gives

• Its Γ variation is clearly not Δ-exact. So the non-abelian 

vertex is obstructed beyond the cubic order.

• The proof is very similar for arbitrary spin.



Notice that the non-abelian 1—3/2—3/2 vertex is precisely the 
Pauli term appearing in N = 2 SUGRA. The theory, however, 
contains additional degrees of freedom, namely graviton, on top 
of a complex massless spin 3/2 and a U(1) field. 

It is this new DOF that renders the vertex unobstructed, while 
keeping locality intact. If one decouples gravity by sending 
Planck mass to infinity, the Pauli term vanishes because the 
dimensionful coupling constant is nothing but the inverse 
Planck mass. One could integrate out the massless graviton to 
obtain a system of spin-3/2 and spin-1 fields only. The resulting 
theory contains the Pauli term, but is necessarily non-local. 

Thus, higher-order consistency of the non-abelian vertex is 
possible either by forgoing locality or by adding a new 
dynamical field (graviton).



Remarks & Future Perspectives

• Gravitational coupling of fermions.

• Mixed Symmetry fields.

• Similarities with bosonic 1-s-s and 2-s-s results by Boulanger! 

• Chargeless massless scaling limit of massive theory in 4D.

• Comparison with BCFW results in 4D.

• Hint of non-locality at the quartic level.

• Construction of vertices in AdS spaces, and compare with the

the results of Joung-Lopez-Taronna.


