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Why higher spins?

1. Crucial 1ssue in Field Theory

2. Key role in String Theory
»  Strings beyond low-energy SUGRA
HSGT as symmetric phase of String Theory?

3. HS/CFT correspondences



Summary

* The 4D Vasiliev equations

- HS algebras as extensions of $8(3,2)

- Unfolded formulation

* Solving the equations

- Gauge function method and separation of variables in twistor space

e Exact solutions

= Spherically-symmetric solution.

- Weyl 0-form and deformed oscillators.

- Construction of some HS invariants. Singularities?
- Cylindrically and biaxisymmetric solutions.

e Conclusions and Outlook 3



The Vasiliev Equations

Interactions? Consistent!, in presence of:

 Infinitely many fields
« Cosmological constant A = 0
» Higher-derivative vertices

Consistent non-linear equations for all spins (all symm tensors):
 Diff invariant Ppiy...pis

» s0(5;C)-invariant natural vacuum solutions (S*, H,, (A)dS,,H (32)
e Infinite-dimensional (tangent-space) algebra

» Correct free field limit = Fronsdal or Francia-Sagnotti eqs

e Arguments for uniqueness

Focus on D = 4 bosonic model
[ NO Chan-Paton-like internal symmetry]



The Vasiliev Equations

= oo-dim. extension of AdS-gravity with gauge fields valued in HS tangent-space
algebra §s(3,2) C 2(s0(3,2))/1(D)
50(3,2) ({Map, Megls = 4inppMyyiaqp»  [Maps Pelx = 2, Py, [Pa, Polx = iA° My,

Oscillator

T 1 o iA A s
realization: Mgy = ~3 (Uab)aﬂyozyﬁ + (Uab)aﬁyayg} , FPo= Z(Ua)aﬁyayg
_ . [ €ap 0
sp(4,R) quartet < Yy, = (Ya,¥a) Yo, Ys] =2iCop = 2i 0 ..
B aB &

=  Weyl-ordered star-product (implements operator product on symbols):

Ar7 14
FOY)*G(Y) = /Rd (g;g v

eV p(Y4U) G(Y +V)
Generators of §s(3.2): n 4+ m

Ts ~ TR TR 1 =
(symm. and TRACELESS!) ~° ap--YonTay Yam » 5 t °




V V. Y

The Vasiliev Equations

Antiautomorphism T:

T(XAY) = 7(Y)*7(X), 7(Wa) = Wa, 7(¥a) = s
Automorphisms 7, 7 :

(X *Y) = 7#(X)x7(Y), 7(ya) = Yo, ™(¥a) = ¥a

T(XxY) = 7(X)*7(Y), 7(ya) =va, 7(¥a) = —Va
Nonminimal bosonic HS algebra (s=1,2,...): {X(y,y): n7(X) = X}

Minimal bosonic HS algebra (s=2.4,...): (X(y,y): 7(X)=—-X}

[T81 7T82] — T81—|—82—2+T81—|—82—4+' . '_l_fr’Sl—SQH—Q

Maximal finite (bosonic) subalgebra = 50(3,2)

Even spins close, minimal infinite extension = minimal HS algebra §a(3,2)
Spin 2 always appears

6



The Vasiliev Equations

= Gauge field € Adj(h0(3,2)) (master 1-form):
5 :

— (4 ] : — —
Ap(zly,y) = ) ol At Ay ST S () Yo YU Yo
n+m=2mod4 Tem

(every spin-s sector contains all one-form connections that are necessary
for a frame-like formulation of HS dynamics (finitely many) )

» Massless UIRs with all spins in AdS include !
 “Unfolded” eq.™ require a “twisted adjoint”
master O-form (contains a scalar, Weyl, HS Weyl and derivatives)

T(X)(®) = [X,P],r = X %D — &% 7(X)

Nonminimal bos. twisted adj. (s=0,1,2,...): ®(y,y) : 7«7(P) = P

Minimal bos. twisted adj. (s=0,2,4,...):  ®(y,y) : 7(®) = 7(P)



The Vasiliev Equations

= Introduce a master 0O-form (contains a scalar, Weyl, HS Weyl and derivatives)

) 1 o -
®(zly,y) = Z o QXL Il () Yos o Yor,, Ycy - Yéi,
|n—m|=0mod4 o

O

N.B.: spin-s sector = infinite-dimensional
(upon constraints, all on-shell-nontrivial covariant derivatives of the physical fields,
i.e., all the local dof encoded in the O0-form at a point)

= Unfolding s=2: Ricci=0 <> [tracelessness = dynamics !]
[Bianchi => infinite chain of ids. ¥)am) o, (ygad)mpal2s) |

i o 0 , 0 0

F ) =— |edT Nel s ——-P 0 TN b — - ®(x|0,7
Unfolded 1(@ly,9) = 7160’ Neo s g a g p Pl 0) +eg” Aeoy g P (]0,7)

free HS €4S' Dy (aly, ) = dd + [wo, B], + {eo, @}, =0

» Manifest HS-covariance (Vasiliev 63)

« Consistency (d> = 0) = gauge invariance (FDA)
. covariant constancy conditions, infinitely many fields
+ trace constraints = DYNAMICS :



The Vasiliev Equations

= NC extension, X —>(X,Z):
Zoa = (2a,—Z2a) Za, Zsli = _22'0% , Yo, Zpli =0

= Extended star-product, normal-ordering (wrt A" = (Y-Z2)/2i ,A = (Y+Z)/2)

F(Y,Z)*G(Y,Z) = We gPW(}/V—"(],Z‘i‘(])G(Y"“/,Z—‘/)
R
= Fields live on correspondence space, locally X'x ¥'x Z:
0 0 0
d—-d=d+d; = det—+ dz%— + dz°
tdz B OxH tdz 0z% + oz%

A(z|Y) — A(:U|Z, Y) = (dx“z‘iu—l—dZaAa—i—dZa/io})(fC‘Za V), Au(z]Y)= AM‘Z:()
O(z]Y) = (x|2,Y), ®(a|Y)=(2]2,Y)|,_,

" mautomorphism becomes inner, generated by the nner kleinian K
W(f) = Kk fxkK, K = (—l)f, n=a"%xa, kxk = 1

AN
AN

#(f) = Rxf*F, E=(-1)", n=a"%xa Rxk = 1

A~ A~ AN A~ 9

©(f(y,9;2,2) = f(=y,9;,—2,2), 7(f(y,4;2,2)) = f(y,—¥;2,—Z)



The Vasiliev Equations

4 e’ - (8 2wl
* In normal-ordering: Kk = eV k = eY *a

K = KyxKy,, R = KyxKz, Kyxky = 1 tidem k,, ky and Rz

Ry = 275(2)(9) = 27(y1)6(y2)

Unfolded F = dA +Ax A=
full egs: N
(Vasiliev *90)

Local sym: §A = Deé , 5P = —[€, D], ) P
Fag = — §€a58*q)*l€ ,
Solving for Z-contractions yields Fop= —%ea 5[? * P xR

consistent nonlinear corrections NP L.
as an expansion in O. el il
For spacetime components, project on spacetime mamfold X

10



Black Holes and Higher Spins

Crucial to look into the non-perturbative sector of the theory, may shed
some light on peculiarities of HS physics and prompts to study global issues
in HS gravity (boundary conditions, asymptotic charges, global dof in Z...).
Very likely new tools, and HS geometry adapted to HS symmetries, have

to be developed.

HS Gravity does not admit a consistent truncation to spin 2. No obvious
embedding of gravitational bhs.

Characterization of bhs rests on geodesic motion, but relativistic interval
ds? = guvdxtdzx? 18 NOT HS-invariant . What 1s to be called a

“higher-spin black hole”?

Do non-local interactions & HS gauge symmetries smooth out singularities?
(already from ST we are used to higher-derivative stringy correction
affecting the nature of singularities) 11



Exact Solutions: gauge function method

A~

F,.

= Full eqgns: A %-

5.3,

5.3,

*

*

*

ar 7
S, x®
ar =/
S, x®

_|_
_|_

A~

Fuo = Fuo =0, D,® = 0,

—2ieqs(l — Bx® k) ,

—2ie5(1 — B+ ® * k)

0,
' x7(S,) =0

=  Project on Z! (base <= fiber evolution)
Locally give x-dep. via gauge functions (spacetime ~ pure gauge!)

A, = L7 % 9,L,

A

So = L7t % (8') » L,
L=1L(z|ZY),L0|ZY)=1

A

& = L% % (L)

S =5,002,Y), & =0|2,Y)

= 7-eq.™ can be solved exactly: 1) imposing symmetries on primed fields

2) via projectors

= “Dress” with x-dependence. Lorentz tensors are coefficients of:

W, = A\M—[?M, K

P

1 s
ZinBMaB — h.c. ,

—~

Muog = Yalg — 2028 + S(a * SB)



AdS, Vacuum Solution

= AdS, vacuum sol.:

. S\ a ) oo TE
The gauge function  1(z:y. 7) = e 0 @o%ufn _ 127hhexp [Z)‘xl yzya]
gives AdS, connection
0) _ . ab a _ af -0 = = aB_ =
) = i (§“<0>Mab+e<0>P a) = 57 (@i veys + (507 + 2 va)
) @ add u N )\2 ab aﬁd “
e = Mg 22 R i @ )hz =
eading to AdS, metric in stereographic coords.: S(o) = (1 - A222)2
" (Global symmetries: 058 = lzade =0 = €= V(aY)
0 _ 0) (0 _
6 = DP@y) =0 |
0 L o delyy = 0 = VPu = kap
Y2-sector: € = —i (516“ Mab+vaPa) ey o
0

5“’&5}) = 0 = VELO)/‘ﬂbc = gc(f?vb—gab Ve



Local properties of 4D black holes

Bh Weyl tensor 1is of Petrov-type D, ((anti-)selfdual part) has 2 principal spinors :

Poprs = v(z) u&uguiug), utu, =1

Local characterization of 4D bhs: sol.ns of Einstein’s egs. in vacuum (flat or AdS)

such that their Weyl tensor’s principal spinors are collinear with those of the
Killing 2-form of an asymptotically timelike KVF, K, =V, v, Mars, 99;

Didenko-Matveev- A 1
VdSiZi@V, ’08-’09) ) q)aﬁ’y(s ~ W %(045 %75) R %2 = 5%(15%@/8

Bh metric admits Kerr-Schild form (linearizes field egs.):
2M , . 2M
Juv = Q,S?,)-I-F k,uku ) g'u - g?@) - F kMK , k”ku =0 = k“DukV

A generic bh 1s completely determined by a chosen background global symmetry

parameter Y*K,zY" (e s o
(Didenko-Matveev-Vasiliev, "09) af = Vap  Hap ’ 0Baf =

Properties of bh encoded in algebraic conditions: K2

w2 =1
T e 22 = 32
— 0 14

= _]1 = static:

K2KgY = —5,2 K
2ol vg v 2y = 0 — ’U[MVV’UP]



HS black-hole-like Ansatz

= Weylzero-form & — L-! x & « W(E) : reduces egs. to linearized on AdS
9, @+ [A,®0, =0 — 9,0+[Q0 @, =0 with

~ ~

L(z|Y,Z) = L(z|Y) x L(z|Z), =(L) = L o = P'(Y)

= Link with global sym parameters: to any HS global sym parameter £ ,,(x|Y)
( DO — ) is associated a solution €% x x, of the linearized Weyl 0-form eqn.

0u(e® % ry) + 1O, (9 % k)l = (DVeD) % iy = 0
O(z|Y) = €V@Y)xry = L7 x¢jqy(V)*xLxr, = (V) = €p(Y)*r,

* Bh determined by a chosen AdS KVF K 4(x) = bya rigid K’ ; € $p(4,0).
Generalize to a HS global sym parameter (Didenko-Vasiliev '09)
o(x]Y) = fF(YeKap(x)YE), = &(Y) = f(YEK,5Y?),
= “Static” 2> Kéﬁ[{/gl = —042 = Kig ~ (TaBlap, Map = _éYQ(FAB)%Yﬁ

Up to sp(4,R) rotations this selects YK/ 5Y§ ~ E,J,iB,iP

= Spherical symmetry -2 YQKéwYé ~ F 15



HS black-hole-like Ansatz

»  Which f(E)? Choose a projector (enforces Kerr-Schild property in gauge fields):
1 o B
731 ($|Y) = 46_§Y_Kﬁ(x)y_ y 7)1 * 731 — 7)1 , (KgﬁKﬁl = —521)

=> Solve the full twisted adjoint eq. with ®(x|Y) o« P, *K , and

y b
- 4M Lo — _¢v ——1 -/ LG —
P(z) = iMP1 %Ky = N exp [5 (y %aﬁly5+y %dﬁ-ly6+2zy Y %aﬁlvﬁd)]

containing the spin-s generalized type-D Weyl 0-form components:
(Didenko-Vasiliev, & — M 3¢ 3 M = real deformation
; a(2s) 95 (_ ,,2)\s+1/2 (ar1ag *++ Pags_1a3s)
09) (=5%) parameter

= Using the gauge function:

Lyagr yP a 0 =
Pi(Y) = 4e 2 8 = 47V %Y = 4 o L7laP(Y)*xL = 4e

In AdS, spherical coords. (t,r,0,0) [ds? = (1+r?) dt? + (1+r?) ! dr? + > dQ?]
0 ural +u-u > ( 27“&?'&115) \/W(aﬁ; + ﬁ;ﬁg) )

ap e
uj +uguy 0 VI+r2(Ugaf + tig i) IRTT

—3Y 2K op(2) Y

—>Ka[3=

AM 5 N o
Toa- ... at 16

a23—1u0é25)



Spherically symmetric type-D solutions

= Solution based on scalar singleton ground-state projector!, i.e. ...

E % 6_4E = €_4E x F = %e—4E :
Lrwe® = 0= etmapy, o0 el = [/Z0K1/200 € Do@ Dy
M. xe *E = 0 (C.1., P. Sundell ‘08)

* (More) general spherically symm. type-D ansatz: include all projectors
on scalar (super)singleton modes (all s8(3)-invariant excitations of 4 exp(-4E))
and their negative-energy counterparts.
b at™ ... at% x|1/2;0)(1/2;0| % a;, ...a;, , n>0
" Qi ...a;, *|—1/2;0)(=1/2;0[xaf® . .afin | n <0

11

P, xP,, = 0nm P

1

1
a1 = =(p+iys), o'l = (g —iy), : :
’ 2 2 [a;,al7], = &
| i@ Mk = 0;
1 i P2 Lo
ax = 5(—’927”/3/)7 a - = 5(—92—23/1)

= @’(Y) = any f(Y) diagonalizable on such basis of projectors * K, :

OY) = > vnPu(Y) * fiy
n==x1,+2,... a f 17

-y e

.



Spherically symmetric type-D solutions

=  Weyl-ordered (integral) realization (g := sign(n), n=£1,+2,...):

14¢ 14¢ 1 "
Py(B) = 4(-1)""% e P LY, (8E) = 2(-1)" 7 7{ = (S+ ) E
C(e)

=  Weyl O-form:

Type-D
Weyl 0-form
generating f :

Y

2mt \ s — 1
ds s+ 1\" E
. L—l —4sFE )’ f
(z|Y ZVN ' 2 (5—1> L™ (z) * e o (:p)mg;
1 1 —1 —1 Zap 2 2
— e eXP(z—sya”aﬂyﬁ>  Hap T T T
. 1
(n) M
Catas) ~ g1 (@707 )aqs)

» Deformation parameter is real for scalar singleton, imaginary for spinor singl.
—> generalized ¢lectric/magnetic charge (or mass/NUT).
E/m duality connects Type A/B models?

» Spacetime coords. enter as parameter of a limit representation of a delta

function .

= Residual symmetry = stabilizer of E = h=58(2), ® 50(3)Mij .

0P (x|Y)

A~ r O A . —
P, i} (I)/l = VKy—ioey = 2w [52<y_710-0y>]

L [(@]V), D@V )or = 0 & [(Y),e"E], = 0



Internal Z-Space Solution

= Ansatz for internal egs., separation of Y and Z variables, absorb Y-dep. in P_(Y):

S\ = 2 —ZZZP )« AM(2), S, = z —QZZP ) « AR(Z)

Reduced deformed oscillators: ¥ = 2, — 274", Y7 = 7z, — 2iA"

v'  Orthogonality of projectors = egs. for different n split;
v' Projectors only Y-dep. = spectators, out of commutators;
v v =cost and m(Z)=-3 solve {S’, @’} =0 ;

v' Holomorphicity in z of S’ solves [S>, S’] =0

= Left with the deformed oscillator problem :
], = ~2ieas(l - Bk

{ig, ig} = —2ie,3(1 — Bpnkz)
Can solve by a general method (Prokushkin-Vasiliev 98, Sezgin-Sundell ‘05) for
regular deformation terms. Use a limit representation of K, ~ 0 %(z) or first go to

normal-ordering where kK, = gaussian . =



Solution for Z-space deformed oscillators

= Introduce basis spinors u*, (a priori non-collinear with u*_(x)) :

2= uT %%, w,i=2T27, (27,2t =21
= Solve [Zi , 2, |« = =1+ Byvpk, w/ Laplace-like transform:
E:I: 4 :i:/1 dt fn:I:(t) 1o t:L—lw
= 4z e "+l T
§ YRR
: S . 1 oot -
and using the limit representation  lim —e"¢*7*" = o [x. ]V .

e—0 &
Leads to manageable algebraic eqns for 2, (t). Can either solve symmetrically,
fr. =" | or asymmetrically (gauge freedom on S).
Study sym case:  particular, v-dependent solution

onBnvn 1 onBnn 1
1F1 | =32 5 log 5

nt _ . o -

= Also: a general way of solving the homogeneous (v, = 0) eq. i1s the
projector solution: X2 =1 —» X =1_092P p2_p
20



Solution for Z-space deformed oscillators

= [nternal Z-space connection:

AT = Ai(r69>+A1(pm‘j>
0, BV 1 dt t—1 1
Antres) _ 0nBntn i/ izt | e (172,220
+ >~ ) @r12€ /225 log 3 |
n (proj = z+z_k_+—‘
Ai(p P zziz QkLk [Vn] Pr(2) Pk(z):( k‘!> e * 7
k=0
1
Lilv] = / dtthfr(t) — 1 as v, — 0, 6, = 0,1
—1

Sol.ns depend on two infinite sets of parameters:

» continuous parameters v, =2 ®P-moduli;
» discrete parameters 8, =2 S-moduli, a “landscape” of vacua.

= Divergent deformed oscillators (t = -1) but S(x|Y,Z) only singular inr =0 !
Pushed out of integration domain by star-product with P (x|Y). For n=1:
dt . topn(t—1) ata—

1
:S’\:t — s+ 8 Y ~3|:/ it t+14ior(t—1)
FAsPEY)a | (t+1—|—ianr(t—1))2‘71()e

a~ = U g Ao = Za‘{'i(%aﬁyﬂ—*_vaﬁgg) ) 2axP1 = as’P1 ) [aow CLB]* — _2i€a6



dn
C(e) 271 n— 1

dn
C(e) 271 n— 1

dn
C’(e) 2m1

ata” — nr(P+R)|,




t+1 —w“(;_l) G+5-

gt e
()Xg

1 ! . . iO’n(E—l): S_
dt j"(t) / at () & 1)(1+0”)+~(; Dd=on) 2 F5—ara
-1

—1 X

t—1)(14o0y,) + (t'—1)(1—
>~<3

Ijn(tl) (




Deformation parameters and asymptotic charges

= Building solutions on more than one projector opens up interesting possibilities.

» Every singleton-state projector contains a tower of fields of all spins = can
change basis and diagonalize on spin (and not occupation number)

ZV A dn (n+1)” 1 exp(iy - yﬁ)
i " Mo 2mi \n—1) p/a c o)
1 a(2s ~4 ~—\5
Clzly) = ZmCa(Qs)(x>y ) CQV@ (a*a )a(28)
s=0 )

“HS asymptotic charge”, f(v,): M.~ v\, 477 (77 T 1)
n (€)

ooy 2minstl \n—1

0

(Can we choose v, such that M, ~ 0, , switching off all spins except one?)

» Possible to turn on an angular dependence in the Weyl tensor singularity via

specific choices of deformation parameters (e.g. v, = q", exchanging sum and
integral) = Kerr-like HS black-hole? 5



Reading off asymptotic charges

Having found the gauge-ficlds generating functions, one may try to read off
asymptotic charges from the sources of field strengths for r = o, i.e. analyzing
the asymptotics of the gauge field eq.

VW +W W + L (raﬁf\/iaﬁﬂLdeMaﬁ') =0
L e _ ,=0)
rof = dups —|—wa7w57 , VW = dW + 4%; [waBMo(zoﬂ) +waﬁMdB W

after moving to the standard gauge of perturbation theory and reducing to
spacetime submanifold {Z=0}.

Possible mixing between different orders in A1 . due to s-dependent r-behaviour
of spin-s component fields

—~

M s
(V(O)W + {?(0), W}*)Q_QS) N SORA 6(9) 82?(_)25)(1) + h.0.1';v. = e (u+u” )a(Q_S)

leads to possible asymptotic charge redefinition

M, = M, +OWM?)

25



Twistor gauge and asymptotic charges

= To compare solutions in x-space, need to bring them in “universal” twistor gauge
via some extended HS gauge transformation G(V)(K)(X|Y 7).

0 o, 0
Y2l 2) = FalV.2), ot = gt = 0=

0 ~
K.

o° Ry

with residual gauge symmetries = ho(3,2), e.g., standard choice v* = z%

=  Qur solutions are in some twistor gauge but NOT in universal twistor gauge
(v® depends explicitly on K). Can be brought to twistor gauge, e.g., the standard
gauge of perturbative analysis, order by order in v,.

= The action of GY; on solutions will redefine the HS asymptotic charges, too!
= A(K)\—1 | & ~N(K
(I)(v) = (GEU))) 1 * (I)(K) * W(GEU)))
— M@ = Mol + ) My

S /S//

(k) fs° +

S//

* Finally, §a(3,2) asymptotic symmetries (possibly enhanced to current algebra of

free fields) will act A , . Invariants O (M ) ?
26



HS Invariants

Define HS observables, gauge invariant off-shell. Weyl-curvature invariants:

CE = NiTrilCop),  Cap = [®xm(D)]?
Trlf(Y,2)] = / %ﬂw), Tr_[f(Y,2)] = Trylf(Y, 2) % ]

Ciclicity:  Try[f(Y,Z)xg(Y,Z)] = Trilg(xY,+2Z)* f(Y, Z)]

Conserved on the field equations:

D,® = 0 = 9,(®+r)* = —[A,, (Dxr)*)],
Ciclicity + A even function of oscilllators :>
dTr.[C3,) = 0|
o = T, [@ o (B))F % m—{]
(o, k, ks M A) = Try [(gﬁ)w e exp, (A*S, + X9Ss) % (B xR)*F % (B *E)ﬂ



Singularity?

= Radial dependence of individual spin-s Weyl tensor ~ r !, However,
HS-invariants for finitely many projectors are finite!

TT_|_ {(&\) * W(EI\)))N * /{R} = —4 Z |n|(_1)(N+1)nMiN
n==+1,£2,...

Note: 1nvariants are also (formally) insensitive to changes of ordering!
Can the singularity be only an artefact of basis choice for function of operators?
(crucial with non-polynomial f(operators) )

=  Examine master-fields inr = 0:

®(r=0) = L' |=0 * PL(E) * L|y=o * k, = PiI(E) x r, ~ 6*(y—io"y)

[L(r=0)=1E) ]

=  Weyl tensors generating function ~ 0%(y)
= aregular function (exp(-2N,) ) in normal ordering!

28



Cylindrically-symmetric solutions

= Condition K'PKLY = —{§,~ solved by any YQKZMYQ ~ B, J,iB,iP

=» Solutions with $8(2,1); ® 5$0(2)y .y symmetry (h= stabilizer of YK’Y).

1 (e / B
= In particular, for K’=T",, P(Y) := 4e Y Rap V= go—4d
Again a ground state of a 2D Fock-space (a non-compact ultra-short irrep,
singleton-like but with roles of E and J exchanged, E < J instead of E > J).

[ Systematic procedure to extract creation/annihilation operators, based on 3 possible
inequivalent embeddings of a complexified Heisenberg algebra in the complexified
Cartan subalgebra of 50 (3,2)]

=  Same steps yield o g;\y EVnN 7{ 25 (s—|—1) L) e % L(z) * Kyl

m \s— 1 N - v

—————Tre T ————————Ty T T ——— T T~

1 1 >,
g=0: — “1y8) “1_ _ZaB 214 26029
Yy S\/_ exp( y %,3Y > < 2 V1 + 77 sin
; 1
(M A ———
o(2s) (1+ 72 sin2 §)(s+1)/2 (2s) 29



Conclusions & Outlook

* Found a general class of (almost) type-D solutions, with various symmetries:
» spherical, HS generalization of Schwarzschild bh

» cylindrical, HS counterpart of GR Melvin solution (regular everywhere)
» biaxial (building blocks of the previous two, “almost type-D”)

and other ones whose physical interpretation and GR analogues are yet to be found.

* Singular? Not obvious, not at the level of invariants nor master-fields.
1) A closed 2-form charge could detect singularities

2) Divergent curvature invariants with infinitely many excitations
A HS-invariant characterization of bhs is yet to be found.

* Must gain a better understanding of HS invariants and evaluate more of them.
143 el EFs s s eee ~ ~ 1 —~
[HS “metrics” ¢, , =Tr, [M*E(M *---*Eus)] B = W]

* Multi-body solutions? [Preliminary analysis of consistency of a 2-body problem
by evaluating 0-form invariants for ®(x) + ®(y). Cross terms fall off as
V ((1+r?)"V2; n). Hierarchy of excitations ?]

i . : 30
* Thermodynamics in invariants? Horizon? Trapped surfaces?...



Conclusions & Outlook

e Study the boundary duals of such solutions. Many interesting questions:
» What are the dual configurations in U(N)/O(N) vector models?

» Hawking-Page phase transitions? (Shenker-Yin '11 = No uncharged bhs in Type A
minimal model)

» Are spacetime boundary conditions (partly) encoded in (Y,Z)-space
behaviour? [Distiction small/large gauge transformation and superselection

sectors]

* Role of Z-space in non-perturbative sector of the theory . In particular,
“Z-space vacua”, topologically non-trivial flat Z-connections.

* Solutions mixing AdS massless particle state + soliton-like state.
[Particles alone are inconsistent as solutions of the full egs., backreaction forces

addition of non-perturbative states|
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