

Der Wissenschaftsfonds.

Beyond AdS Holography in 3d Higher Spin Gravity

Michael Gary with: R. Rashkov D. Grumiller H. Afshar M. Riegler JHEP 1203 (2012) 022 [arXiv:1201.0013] Work in Progress

mgary@hep.itp.tuwien.ac.at

ESI Workshop on Higher Spin Gravity 17.04.2012

Overview

* Motivation

- * Intro to Higher Spin Theories in 3D
- * Boundary Conditions & Asymptotics beyond Brown-Henneaux AdS/CFT
- * Canonical Analysis
- * Conclusions & Future Directions

Why Higher Spin?

* Between pure Einstein Gravity and String Theory
* Related to tensionless limit of String Theory
* In some cases dual to soluble/free field theories

Why Non-AdS?

* Want to understand more generic holography
* Would like holographic duals for flat space, dS

- * Some CFT applications require non-AdS asymptotics
 * Cold Atoms
 - * Other non-relativistic systems

Why in 3D?

* Dual 2D CFTs are often solvable

* 3D Gravity is topological * No local DoF * Can be formulated as a Chern-Simons Theory

Non-Principal Embeddings?

* Puzzle relating to RG flow in Kraus *et al.** Flow from low to high central charge
* Triggered by deformation - state or new theory?
* What aspects of geometry are gauge invariant?
* Gauge transformations apparently change number of horizons - are they small, large, singular?

Geometry

- * Take space-time to have topology of a solid cylinder
- * Often useful to choose coordinates Q, x[±]
- * $\partial \mathcal{M}$ has topology $S^1 \times \mathbb{R}$

M. Gary - Beyond AdS Holography in 3d Higher Spin Gravity - ESI Workshop on Higher Spin Gravity - 17.04.2012

CS-Gravity in 3D

* Gravity in AdS₃ can be formulated as sl₂×sl₂ Chern-Simons theory

*
$$S_{\text{bulk}} = \frac{k}{4\pi} \int_{\mathcal{M}} \text{tr} \left[CS(A) - CS(\bar{A}) \right]$$

 $CS(A) = A \wedge dA + \frac{2}{3}A \wedge A \wedge A$
 $\delta S_{\text{bulk}} \propto \int_{\partial \mathcal{M}} \text{tr} \left[A_{+} \wedge \delta A_{-} - A_{-} \wedge \delta A_{+} \right] - (\text{bar})$

* Vielbein: $e = A - \overline{A}$ Spin-connection: $\omega = A + \overline{A}$

Metric:
$$g_{\mu\nu} = \frac{1}{2} \operatorname{tr} \left[e_{\mu} e_{\nu} \right]$$

CS-Gravity in 3D

* Supplement bulk action by boundary term $S = S_{\text{bulk}} + \frac{k}{8\pi} \int_{\partial \mathcal{M}} \text{tr} \left[A \wedge A + \overline{A} \wedge \overline{A} \right]$

* Variation:
$$\delta S \propto \int_{\partial \mathcal{M}} \operatorname{tr} \left[A_+ \wedge \delta A_- \right] - (\operatorname{bar})$$

* Allows for more general boundary conditions

M. Gary - Beyond AdS Holography in 3d Higher Spin Gravity - ESI Workshop on Higher Spin Gravity - 17.04.2012

Generalizing to HS

- * Enlarge gauge group sl_2 to sl_N
- * Vielbein becomes Zuvielbein $e^a_{\mu} = A^a_{\mu} \bar{A}^a_{\mu}$ $g_{\mu\nu} = \frac{1}{2} \operatorname{tr} \left[(A - \bar{A})_{\mu} (A - \bar{A})_{\nu} \right]$
- * Definition of trace depends on choice of gravitational sector (choice of embedding of sl_2 into sl_N)
- * Asymptotic symmetry algebra enhanced from Virasoro to W-algebra

Embedding sl_2 in sl_N

* Choose an embedding sl₂→ sl_N, label generators L₀, L_±
* Other generators W_h labeled by sl₂ weight [W_h, L₀] = hW_h
* More generally, [L_n, W^{l[a]}_m] = (nl - m)W^{l[a]}_{n+m}

* Embeddings given by partitions of N (with a condition)
* 3 = 3, 2+1
* 4 = 4, 3+1, 2+2, 2+1+1

Embeddings of sl₂ in sl₄

* Principal embedding: 4 = 4* sl_2 multiplets: $3 \oplus 5 \oplus 7$ *4 = 3 + I* sl_2 multiplets: $\mathbf{3} \oplus \mathbf{3} \oplus \mathbf{3} \oplus \mathbf{5} \oplus \mathbf{I}$ * 4 = 2 + 2 * sl_2 multiplets: $3 \oplus 3 \oplus 3 \oplus 3 \oplus 3 \oplus 1 \oplus 1 \oplus 1$ **★** 4=2 + I + I

M. Gary - Beyond AdS Holography in 3d Higher Spin Gravity - ESI Workshop on Higher Spin Gravity - 17.04.2012

AdS Beyond Brown-Henneaux

- * Brown-Henneaux is an allowed set of boundary conditions that leads to non-trivial asymptotic symmetry algebra
- * Unknown if most general allowed boundary conditions for higher spin AdS theories
- * Possibility that looser boundary conditions allow more states should explore
 - * See for example AdS / log CFT

ASSITUAL FIRM THEOREMAN

AdS Beyond Brown-Henneaux

* Consider an embedding with generators $W_{\pm h}$ such that $h > 0, h \neq 1$, and tr $[W_h W_{-h}] \neq 0$

* Connection

$$A = L_0 d\rho + \left[e^{\rho} L_+ + e^{h\rho} w_+(x^+) W_h \right] dx^+$$

$$\bar{A} = -L_0 d\rho + \left[e^{\rho} L_- + e^{h\rho} w_-(x^-) W_{-h} \right] dx^-$$

* Metric given by $ds^2 = a_0 d\rho^2 + [a_1 e^{2\rho} + a_2 e^{2h\rho} w_+(x^+) w_-(x^-)] dx^+ dx^-$ Fefferman-Graham expansion goes beyond B-H

$AdS_2 \times R$ Geometry

* Metric: ds² = dρ² - ae^{2ρ}dt² + dx²
* AdS₂ × R or H₂ × R depending on sign of a
* Applications to condensed matter
* Strange Metals seem to be dual to AdS₂ × R², closely related to high-T_c superconductors

AdS₂ × R Background

* Embedding with at least one sl₂ singlet S with $tr[S^2] \neq 0$.

* Connection $A = L_0 d\rho + a_1 e^{\rho} L_+ dt$ $\bar{A} = -L_0 d\rho + e^{\rho} L_- dt + S dx$ * Metric $g_{\rho\rho} = 2 \text{tr} L_0^2$ $g_{tt} = -a_1 \text{tr} (L_+ L_-) e^{2\rho}$ $g_{xx} = \frac{1}{2} \text{tr} S^2$

Schrödinger Spacetime

* Metric: $ds^2 = \ell^2 \left[\frac{dr^2 \pm 2dtd\xi}{r^2} - \frac{dt^2}{r^{2z}} \right]$

* Applications to holography of systems with anisotropic scaling exponents.

- * Strongly correlated electrons & other nonrelativistic condensed matter systems at quantum critical points
- * Similar applications for asymptotic Lifshitz geometries

M. Gary - Beyond AdS Holography in 3d Higher Spin Gravity - ESI Workshop on Higher Spin Gravity - 17.04.2012

Schrödinger Background

- * Generators $W_{\pm z}$ with sl2 weight $\pm z$ such that $[W_{-z}, L_{-}] = 0$ and tr $(W_{+z}W_{-z}) \neq 0$.
- * Connection $A = L_0 + (a_1 e^{\rho} L_+ + a_2 e^{z\rho} W_z) dt$ $\bar{A} = -L_0 + e^{z\rho} W_{-z} dt + e^{\rho} L_- d\xi$
- * Metric: set $r = e^{-z\rho}$

$$ds^{2} = \ell^{2} \left[\frac{dr^{2} \pm 2dtd\xi}{r^{2}} - \frac{dt^{2}}{r^{2z}} \right]$$

M. Gary - Beyond AdS Holography in 3d Higher Spin Gravity - ESI Workshop on Higher Spin Gravity - 17.04.2012

Lifshitz Background

- * Generators $W_{\pm z}$ with sl2 weight $\pm z$ such that $[W_{-z}, L_{-}] = 0$ and tr $(W_{+z}W_{-z}) \neq 0$.
- * Connection $A = L_0 d\rho + a_1 e^{z\rho} W_z dt + e^{\rho} L_+ dx$ $\bar{A} = -L_0 d\rho + e^{z\rho} W_{-z} dt + a_2 e^{\rho} L_- dx$

* Metric: set
$$r = e^{-z\rho}$$

$$ds^2 = \ell^2 \left[\frac{dr^2 + dx^2}{r^2} - \frac{dt^2}{r^{2z}} \right]$$

Warped AdS

* Space-like WAdS Metric:

$$ds^{2} = \frac{\ell^{2}}{\nu^{2} + 3} \left(d\rho^{2} - \cosh^{2} \rho \ dt^{2} + \frac{4\nu^{2}}{\nu^{2} + 3} \left(dx + \sinh \rho \ dt \right)^{2} \right)$$

- * Stretched: $v^2 > I$
- * Squashed: $v^2 < I$
- * Null-warped AdS: $v^2 \rightarrow I$

M. Gary - Beyond AdS Holography in 3d Higher Spin Gravity - ESI Workshop on Higher Spin Gravity - 17.04.2012

Applications of WAdS

Generalization of AdS with less symmetry
 # sl₂ × sl₂ reduced to sl₂ × U(I)

* Similarities to Kerr/CFT correspondence
 * Application of holography to more realistic gravitational systems

WAdS Background

* Generators $W_{\pm\frac{1}{2}}$, S with $\operatorname{tr}\left(W_{\frac{1}{2}}W_{-\frac{1}{2}}\right) \neq 0$ $\operatorname{tr}S^2 \neq 0$.

* Connection $A = L_0 d\rho + \left(a_1 e^{\rho} L_+ + a_2 e^{\rho/2} W_{\frac{1}{2}}\right) dx^+$ $\bar{A} = -L_0 d\rho + e^{\rho} L_- dx^+ + \left(e^{\rho/2} W_{-\frac{1}{2}} + \mu S\right) dx^-$

* Metric $g_{\rho\rho} = 2 \operatorname{tr} L_0^2$ $g_{++} = -a_1 e^{2\rho} \operatorname{tr} (L_+ L_-)$

 $g_{+-} = -\frac{a_2 a_3}{2} e^{\rho} \operatorname{tr} (L_+ L_-)$ $g_{--} = \mu^2 \frac{a_4}{2} \operatorname{tr} (L_+ L_-)$

M. Gary - Beyond AdS Holography in 3d Higher Spin Gravity - ESI Workshop on Higher Spin Gravity - 17.04.2012

Canonical Analysis

Canonical Analysis underway Necessary to understand asymptotic symmetry

algebra and charges

* To go beyond AdS, necessary to perform analysis without partial gauge-fixing

* New surprises already for sl₂ case

Canonical Anlysis

- * Define canonical variables
- * Determine constraints and algebra
- * Construct Dirac bracket {, }_{DB}
- * Use Castellani procedure to find gauge generator
- * Find charges by demanding variation of gauge generator is functionally differentiable

Canonical Analysis

- * Make an Ansatz for boundary conditions * Fall-off for each component of the connection A_{μ}^{a}
- * Find boundary condition preserving gauge transformations $\delta A = d\epsilon + [A, \epsilon]$
- * Compute canonical charges $Q \propto \lim_{\rho \to \infty} \oint d\phi \operatorname{tr} [\epsilon A_{\phi}]$
 - * Need to be finite, conserved, and integrable
 - * Charges should be state-dependent for non-trivial theory

sl₂ Canonical Analysis

***** Boundary conditions

- $\begin{aligned} A^{1}_{\rho} &= \mathcal{O}\left(e^{-\rho}\right) & A^{0}_{\rho} &= 1 + \mathcal{O}\left(e^{-2\rho}\right) & A^{-1}_{\rho} &= \mathcal{O}\left(e^{-3\rho}\right) \\ A^{1}_{+} &= e^{\rho} + \mathcal{O}\left(e^{-\rho}\right) & A^{0}_{+} &= \mathcal{O}\left(e^{-2\rho}\right) & A^{-1}_{+} &= a(x^{+})e^{-\rho} + \mathcal{O}\left(e^{-3\rho}\right) \\ A^{1}_{-} &= \mathcal{O}\left(e^{-\rho}\right) & A^{0}_{-} &= \mathcal{O}\left(e^{-2\rho}\right) & A^{-1}_{-} &= \mathcal{O}\left(e^{-3\rho}\right) \end{aligned}$
- * Boundary condition preserving gauge transformations $\epsilon^{1} = \epsilon(x^{+})e^{\rho} + \mathcal{O}(e^{-\rho})$ $\epsilon^{0} = -\epsilon'(x^{+}) + \mathcal{O}(e^{-2\rho})$ $\epsilon^{-1} = \left[\frac{1}{2}\partial_{+}^{2} + a(x^{+})\right]\epsilon(x^{+})e^{-\rho} + \mathcal{O}(e^{-3\rho})$

sl₂ Canonical Analysis

* Un-integrated canonical charges

$$\delta Q = -\frac{k}{\pi} \left[\epsilon(x^{+})a(x^{+}) - \epsilon''(x^{+}) \right]$$

* Integrated canonical charges $Q = -\frac{k}{\pi} \oint d\phi \ \epsilon(x^+)a(x^+)$

* Charge is chiral, even though g++ can depend on x-

M. Gary - Beyond AdS Holography in 3d Higher Spin Gravity - ESI Workshop on Higher Spin Gravity - 17.04.2012

 * Asymptotic symmetry algebras of non-AdS geometries?
 * Expect generalizations of W-algebra to include current algebras, Schrödinger algebra, Galilean conformal algebra, etc.

- * Relations between embeddings?
 * RG flow or something else
- * Understand geometry & higher spin symmetries
 * Causal structure vs. larger gauge symmetry

Conclusions

- * Straightforward to go beyond standard AdS holography with Brown-Henneaux boundary conditions
 - * non Brown-Henneaux AdS
 - * AdS₂ × R
 - * Schrödinger/Lifschitz
 - * WAdS

* Canonical analysis underway, necessary to understand

- * Asymptotic symmetry algebra
- * Central charges
- * Valid boundary conditions

Thank You