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Why Higher-Derivative Gravity ?

Einstein Gravity is the unique field theory of interacting massless
spin-2 particles around a given spacetime background that
mediates the gravitational force

Problem: Gravity is perturbative non-renormalizable

L ∼ R + a
(

Rµν
ab
)2

+ b (Rµν)
2 + c R2 :

renormalizable but not unitary
Stelle (1977)

massless spin 2 and massive spin 2 have opposite sign !
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Special Case

• In three dimensions there is no massless spin 2 !

⇒ “New Massive Gravity”

Hohm, Townsend + E.B. (2009)

• Can this be extended to higher dimensions ?
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What is Massive Gravity?

• Massive Gravity is an IR modification of Einstein gravity that
describes a massive spin-2 particle via an explicit mass term
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Why Massive Gravity?

• Cosmological Constant Problem

• modified gravitational force

V (r) ∼ 1

r
→ V (r) ∼ e−mr

r

• characteristic length scale

r =
1

m

de Rham, Gabadadze and Tolley (2011)
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In the first part of this talk I will discuss

Higher-Derivative Gravity

At the end I will come back to

Massive Gravity
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Underlying Trick

• Higher-Derivative Gravity theories can be constructed

starting from Second-Order Derivative FP equations and

solving for differential subsidiary conditions

• This requires fields with zero massless degrees of freedom



Introduction General Procedure Higher-Derivative Gravity Massive Gravity A Common Origin Conclusions

Massless Degrees of Freedom
cp. to Henneaux, Kleinschmidt and Nicolai (2011) and talk by Alkalaev

field S ∼

gauge parameters λ1 ∼ λ2 ∼

gauge transformation δ = ∂ +
∂

curvature R(S) ∼ ∂

∂
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Zero Massless D.O.F.

“Einstein tensor” G (S) ∼ ⋆ ⋆
∂

∂

Requirement : G (S) ∼ ⇒ E.O.M. : G (S) = 0

two columns : p + q = D − 1

Example : p = q = 1 ,D = 3 , S ∼
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“Boosting Up the Derivatives”

Second-Order Derivative Generalized FP

Curtright (1980)

(
�−m2

)
S = 0 , S tr = 0 , ∂ · S = 0

∂ · S = 0 ⇒ S = G (T )

(
�−m2

)
G (T ) = 0 , G (T )tr = 0

Higher-Derivative Gauge Theory
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Example: p-forms

Condition : rank dual curvature = p →

p = 1
2(D − 1)
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1-forms in 3D

Rµν(S) = 2∂[µSν] , Gµ(S) =
1
2ǫµ

νρRνρ(S)

L = 1
2ǫ

µνρ Sµ Rνρ(S) : zero d.o.f.

Proca :
(
�−m2

)
Sµ = 0 , ∂µSµ = 0

• boosting up Proca: Sµ = Gµ(T ) →
(
�−m2

)
Gµ(T ) = 0

• Integrating E.O.M. to action leads to ghosts

• This is a general feature of 3D odd spin
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I will not discuss the parity-odd 3D TME and 3D TMG theories

These are based on a factorisation of the 3D Klein-Gordon operator

Now on to spin two !
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3D Einstein-Hilbert Gravity

Deser, Jackiw, ’t Hooft (1984)

There are no massless gravitons : “trivial” gravity

Adding higher-derivative terms leads to “massive gravitons”
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Free Fierz-Pauli

•
(
�−m2

)
h̃µν = 0 , ηµν h̃µν = 0 , ∂µh̃µν = 0

• LFP = 1
2 h̃

µνG lin
µν (h̃) +

1
2m

2
(

h̃µν h̃µν − h̃2
)

, h̃ ≡ ηµν h̃µν

no obvious non-linear extension !

number of propagating modes is 1
2D(D + 1)− 1− D =

{
5 for 4D
2 for 3D

Note : the numbers become 2 (4D) and 0 (3D) for m = 0
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Higher-Derivative Extension in 3D

∂µh̃µν = 0 ⇒ h̃µν = ǫµ
αβǫν

γδ∂α∂γhβδ ≡ Gµν(h)

(
�−m2

)
G lin
µν(h) = 0 , R lin(h) = 0

Non-linear generalization : gµν = ηµν + hµν ⇒

L =
√−g

[

−R − 1

2m2

(

RµνRµν −
3

8
R2

)]

“New Massive Gravity” : unitary !
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Mode Analysis

• Take NMG with metric gµν , cosmological constant Λ and
coefficient σ = ±1 in front of R

• lower number of derivatives from 4 to 2 by introducing an
auxiliary symmetric tensor fµν

• after linearization and diagonalization the two fields describe a
massless spin 2 with coefficient σ̄ = σ − Λ

2m2 and a massive
spin 2 with mass M2 = −m2σ̄

• special cases:

• 3D NMG Hohm, Townsend + E.B. (2009)

• D ≥ 3 “chiral/critical gravity” for special value of Λ

Li, Song, Strominger (2008); Lü and Pope (2011)
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Chiral/Critical Gravity

See talk by Porrati

• a massive graviton disappears but a log mode re-appears

• In general one ends up with a non-unitary theory

• are there unitary truncations ?
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What did we learn?

• two theories can be equivalent at the linearized level (FP and
boosted FP) but only one of them allows for a unique
non-linear extension i.e. interactions !

• we need massive spin 2 whose massless limit describes 0 d.o.f.

Example : in 3D

• what about 4D?
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New Massive Gravity in 4D

An alternative approach to 4D Massive Gravity ?
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Generalized spin-2 FP

standard spin-2 :

describes







5 d.o.f. m 6= 0

2 d.o.f. m = 0

generalized spin-2 :

describes







5 d.o.f. m 6= 0

0 d.o.f. m = 0
Curtright (1980)
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Connection-metric Duality

• Use first-order form with independent fields eµ
a and ωµ

ab

• linearize around Minkowski: eµ
a = δµ

a + hµ
a

and add a FP mass term −m2(hµνhνµ − h2) →

L ∼ “ h ∂ω + ω2 ”−m2(hµνhνµ − h2)

• solve for ω → spin-2 FP in terms of h and auxiliary h[µν]

• solve for hµν and write ωµ
ab = 1

2ǫ
abcd h̃µcd → generalized

spin-2 FP in terms of h̃ after elimination of auxiliary h̃[µcd]
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Massive versus Massless Duality

Massive duality : ↔

Lmassive dual =
1

2
h̃µν,ρ Gµν,ρ(h̃)−

1

2
m2

(

h̃µν,ρh̃µν,ρ − 2h̃µh̃µ

)

• massless limit describes zero d.o.f. : “trivial” gravity

Massless duality : ↔
West (2001)

• Dual Einstein gravity describes two d.o.f.

Duality and taking massless limit do not commute !
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Boosting up the Derivatives

• start with generalized spin-2 FP in terms of

and subsidiary conditions

h̃µν,ρ η
νρ = 0 , ∂ρ h̃ρµ,ν = 0

• solve for ∂ρ h̃ρµ,ν = 0 → h̃µν,ρ = Gµν,ρ(h) → “NMG in 4D” :

LNMG ∼ −1
2h

µν,ρGµν,ρ(h) +
1

2m2
hµν,ρ Cµν,ρ(h)
︸ ︷︷ ︸

“conformal invariance”

• mode analysis →

LNMG ∼ massless spin 2 plus massive spin 2
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Interactions ?

cp. to Bekaert, Boulanger, Cnockaert (2005)

• compare to Einstein-Schrödinger theory

L′

ES =
√

− det g [gµνRµν(Γ)− 2Λ] ⇔ LES =
√

| detR(µν)(Γ)|

gµν = (D−2)
2Λ R(µν)(Γ)

• consider non-trivial background or couple to matter

hµν,ρ “
(
ǫ∂T

)
”µν,ρ or “

(
ǫ∂h

)
”µν Tµν

Curtright and Freund (1980)
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4D “Trivial” Gravity

avoids no-go theorem !

Example : in 3D

• Chern-Simons formulation L ∼ AdA+ A3 :
(
eµ

a, ωµ
a
)

Achúcarro and Townsend (1986); Witten (1988)

first-order formulation of 4D “trivial” gravity :

•
(
Tµν

a ,Ωµ
a
)

Zinoviev (2003); Alkalaev, Shaynkman and Vasiliev (2003)

• interactions via CS formulation ?
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Issues with Massive Gravity

• no symmetry principle

• fine-tuning is needed

• reference metric at non-linear level “gµνgµν = 1”

Question : does massive gravity reduce to GR for m → 0 ?

Problem : 5 6= 2 !

FP : 5 → 2 + 2X + 0

• this is the vDVZ discontinuity (1970)
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The Vainshtein Radius

Vainshtein : vDVZ discontinuity is artifact of linear approximation

• linear approximation of GR can be trusted for

r > rS ∼ M

M2
P

rS ∼ 1 km

• in massive gravity extra attractive force is screened for

r < rV ∼
(

M

m4M2
P

)1/5
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Other Issues

• instabilities: Boulware-Deser ghost (1972) φ(φ�2φ)

• the extent of the quantum regime

The most promising model in the market is the

de Rham, Gabadadze, Tolley model (2011)
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Higher Derivative versus Massive Gravity

Both 3D NMG and 4D Massive Gravity stem from a

general class of bi-gravity models !

Bañados and Theisen (2009); Hassan and Rosen (2011); Paulos and Tolley (2012)

• 4D Massive Gravity: promote fixed reference metric to
dynamical metric

• 3D NMG: exchange higher derivatives for auxiliary symmetric
tensor
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Summary

• we discussed a general procedure for constructing

Higher-Derivative Gravity Theories

• we investigated a new massive modification of 4D gravity

• Higher-Derivative gravity and Massive gravity have common
origin
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Open Issues

• Interactions ?

• Can the class of bi-gravity models be extended to poly-gravity
models or bi-metric models of different symmetry type ?

• Extension to Higher Spins ?
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ICTP-SAIFR Workshop

Higher-Spin and Higher-Curvature Gravity

as a New Playground for AdS/CFT

organizers :

E.A. Bergshoeff, G. Giribet, M. Henneaux, J. Zanelli

To be held :

November 4 - November 7, 2013
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