Towards a bulk dual of the unitary Fermi gas O(N)-like vs BCS-like models

Xavier BEKAERT

Laboratoire de Mathématiques et Physique Théorique (Tours)

19 April 2012 @ Vienna

based on joint work with E. Meunier and S. Moroz

Phys. Rev. D (2012) [arXiv:1111.1082 [hep-th]] JHEP **1202** (2012) 113 [arXiv:1111.3656 [hep-th]]

・ロト ・ 同ト ・ ヨト ・ ヨト

Outline

- O The unitary Fermi gas
 - What is it?
 - How to describe and how to prepare one?
 - Why is it of theoretical interest?
 - What might be an educated guess for its bulk dual?
- Q Relativistic vs non-relativistic higher-spin holography
 - O(N)-like vs BCS-like models
 - Higher-spin holography
 - Relativistic vs non-relativistic currents
- O Relativistic vs non-relativistic higher-spin symmetries
 - Conformal vs Schrödinger algebras
 - Relativistic vs non-relativistic singletons (massless vs massive fields)
 - Vasiliev vs Weyl algebras
 - Light-like reduction and light-cone formalism
- Summary and outlook

・吊り イラト イラト

Relativistic vs non-relativistic higher-spin holography Relativistic vs non-relativistic higher-spin symmetries Conclusion What is the unitary Fermi gas? BEC-BCS crossover The unitary Fermi gas as a non-relativistic CFT

What is the unitary Fermi gas?

The underlying motivation is the quest for a holographic dual description of the unitary Fermi gas (Son, Balasubramanian, McGreevy; 2008).

 \Rightarrow What is the unitary Fermi gas?

イロト イポト イラト イラト

Relativistic vs non-relativistic higher-spin holography Relativistic vs non-relativistic higher-spin symmetries Conclusion What is the unitary Fermi gas? BEC-BCS crossover The unitary Fermi gas as a non-relativistic CFT

What is the unitary Fermi gas?

Definition (simplified)

• gas: dilute many-body system

 $\textbf{Dilute} \Leftrightarrow \text{interaction range} \ll \text{mean interparticle distance}$

 \Rightarrow (essentially) two-body scattering

• (cold): low-energy scattering

Low-energy

 $\Leftrightarrow interaction \ range \ll relative-momentum \ de \ Broglie \ wavelength$

 \Rightarrow (approximately) contact interaction

・ロト ・ 同ト ・ ヨト ・ ヨト ・

Relativistic vs non-relativistic higher-spin holography Relativistic vs non-relativistic higher-spin symmetries Conclusion What is the unitary Fermi gas? BEC-BCS crossover The unitary Fermi gas as a non-relativistic CFT

What is the unitary Fermi gas?

Definition (simplified)

• Fermi: fermionic particles

Cold many-body system of fermions

 \Rightarrow relative-momentum de Broglie wavelength \approx Fermi wavelength \approx mean interparticle distance

Two-body contact interactions

 \Rightarrow (at least) two species of fermions in order to have interactions

Examples:

- BCS supraconductors: electrons with spin "up" or "down"
- ultracold gases: fermionic atoms (& electrically neutral ⇒ odd number of neutrons) in two hyperfine states (e.g. alkali ⁶Li or ⁴⁰K)

・ロト ・同ト ・ヨト ・ヨト

Relativistic vs non-relativistic higher-spin holography Relativistic vs non-relativistic higher-spin symmetries Conclusion What is the unitary Fermi gas? BEC-BCS crossover The unitary Fermi gas as a non-relativistic CFT

What is the unitary Fermi gas?

Definition (simplified)

• unitary: maximal (modulus of) scattering (amplitude) compatible with unitarity

low-energy two-body scattering \Rightarrow s-wave dominates and the unitarity bound on the scattering amplitude is saturated in the

unitarity regime

 \Leftrightarrow relative-momentum de Broglie wavelength \ll |scattering length|

Reminder: The low-energy scattering matrix for the s-wave is

$$S = 1 + 2iT \approx \frac{\lambda - ia}{\lambda + ia}$$

where $\lambda = \text{relative-momentum de Broglie wavelength (>0) and } a = \text{scattering length.}$ Therefore, $0 \leq |T| \leq 1$ in general, while $|T| \stackrel{\lambda \gg |a|}{\approx} 0$ and $|T| \stackrel{\lambda \ll |a|}{\approx} 1$.

イロト イポト イヨト イヨト

Relativistic vs non-relativistic higher-spin holography Relativistic vs non-relativistic higher-spin symmetries Conclusion What is the unitary Fermi gas? BEC-BCS crossover The unitary Fermi gas as a non-relativistic CFT

What is the unitary Fermi gas?

Definition (simplified)

 \Rightarrow unitary Fermi gas: cold many-body system of fermions with

interaction range \ll interparticle distance \ll |scattering length|

(I) < ((()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) <

Relativistic vs non-relativistic higher-spin holography Relativistic vs non-relativistic higher-spin symmetries Conclusion What is the unitary Fermi gas? BEC-BCS crossover The unitary Fermi gas as a non-relativistic CFT

What is the unitary Fermi gas?

How to describe and how to prepare a unitary Fermi gas?

イロト イポト イヨト イヨト

Э

Relativistic vs non-relativistic higher-spin holography Relativistic vs non-relativistic higher-spin symmetries Conclusion What is the unitary Fermi gas? BEC-BCS crossover The unitary Fermi gas as a non-relativistic CFT

BCS model

Many-body system with two-body contact interactions between two-component fermions \iff **BCS model**

$$S[\psi; u] = \int dt \int d\mathbf{x} \left[\sum_{\alpha=\uparrow,\downarrow} \psi_{\alpha}^* \left(i\partial_t + \frac{\Delta}{2m} + \mu \right) \psi_{\alpha} - u_0 \, \psi_{\downarrow}^* \psi_{\uparrow}^* \psi_{\uparrow} \psi_{\downarrow} \right]$$

Attractive (repulsive) interaction for negative (positive) coupling constant.

Terminology: We chose to refer to the above field theory as BCS *model* because the corresponding Hamiltonian is sometimes called "BCS Hamiltonian" in the condensed matter litterature. In order to avoid confusion let us stress that, strictly speaking, in the BCS *theory* of supraconductivity one must further minimal couple the fermions to an external U(1) vector gauge field.

Relativistic vs non-relativistic higher-spin holography Relativistic vs non-relativistic higher-spin symmetries Conclusion What is the unitary Fermi gas? BEC-BCS crossover The unitary Fermi gas as a non-relativistic CFT

BCS model

Low-energy scattering theory for an attractive short-range potential states that the sign of the scattering length caracterises the existence of a (shallow, i.e. nearly zero-energy) two-body bound state in vacuum.

Scatt length	Bound state	Interaction	Gas
> 0	Э	Binding	Dimers
< 0	∄	Pairing	Cooper pairs
= 0	No	No	Ideal
$\pm\infty$	Zero energy	Feshbach resonance	Unitary

Experimentally, the interaction strength (and thus the scattering length) can be controlled very accurately by tuning an external magnetic field, so a unitary gas can be prepared via fine tuning.

・ロト ・ 同ト ・ ヨト ・ ヨト ・

Relativistic vs non-relativistic higher-spin holography Relativistic vs non-relativistic higher-spin symmetries Conclusion What is the unitary Fermi gas? BEC-BCS crossover The unitary Fermi gas as a non-relativistic CFT

BEC-BCS crossover

Why is the unitary Fermi gas of theoretical interest?

X. Bekaert Towards a bulk dual of the unitary Fermi gas

Relativistic vs non-relativistic higher-spin holography Relativistic vs non-relativistic higher-spin symmetries Conclusion What is the unitary Fermi gas? BEC-BCS crossover The unitary Fermi gas as a non-relativistic CFT

BEC-BCS crossover

(Leggett, 1980) The ground state of the BCS model is always a superfluid (i.e. spontaneous breaking of rigid U(1) symmetry).

Regime	interparticle/scattering length	Pair condensate
BEC	≫1	Tightly-bound pairs (dimers)
Unitarity	≈ 0	Crossover
BCS	≪ −1	Long-range (Cooper) pairs

X. Bekaert Towards a bulk dual of the unitary Fermi gas

Relativistic vs non-relativistic higher-spin holography Relativistic vs non-relativistic higher-spin symmetries Conclusion What is the unitary Fermi gas? BEC-BCS crossover The unitary Fermi gas as a non-relativistic CFT

BEC-BCS crossover

Hopefully, the unitarity regime might provide an analytically tractable model of

- BEC-BCS crossover (interparticle distance $\ll |scattering | ength |$),
- High-temperature superfluidity (critical temperature close to Fermi temperature),
- Second-order quantum phase transition (at zero temperature),
- etc.

イロト イポト イラト イラト

-

The unitary Fermi gas as a non-relativistic CFT

For simplicity, one assumes from now to be **at zero density and temperature**.

- \Rightarrow The only length parameter in the BCS model is the scattering length.
- \Rightarrow There is no length parameter if the scattering length is zero or infinite.

In fact, the ideal and the unitary Fermi gases appear to be scale-invariant: they are the **2 renormalisation group fixed points of the BCS model** (Nikolic & Sachdev, 2006).

 \Rightarrow Technical definition of the ideal/unitary Fermi gase used here.

イロト イポト イラト イラト

Relativistic vs non-relativistic higher-spin holography Relativistic vs non-relativistic higher-spin symmetries Conclusion

The unitary Fermi gas as a non-relativistic CFT

Therefore, the unitary Fermi gas is a tantalising example of non-relativistic conformal field theory:

- "simple" interactions (two-body contact interactions of two-component fermions, i.e. BCS model),
- though challenging (strongly interacting, i.e. no small parameter).
- ⇒ What might be an educated guess for the bulk dual of the ideal/unitary Fermi gases? (Son, 2008)

・ロト ・ 同ト ・ 三ト ・ 三ト ・

BCS-like model

A semi-classical description on the bulk side should correspond to a large-N limit on the boundary side.

Fortunately, a large-N extension of the BCS model is available in the condensed matter litterature (Nikolic & Sachdev, Veillette & Sheehy & Radzihovsky; 2006):

BCS-like model with N "flavors"

$$S[\psi; u, N] = \int dt \int d\mathbf{x} \left[\sum_{\alpha = \uparrow, \downarrow} \vec{\psi}_{\alpha}^* \cdot \left(i\partial_t + \frac{\Delta}{2m} + \mu \right) \vec{\psi}_{\alpha} - \frac{u_0}{N} |\vec{\psi}_{\uparrow} \cdot \vec{\psi}_{\downarrow}|^2 \right]$$

where $\vec{\psi}_{\alpha}$ denotes an vector-like multiplet of 2N massive non-relativistic fermions. The large-N limit corresponds to the mean field approximation.

イボト イラト イラト

BCS-like model

Applying the general observation of (Gubser & Klebanov, 2003) on double-trace deformations of CFTs to the BCS-like model,

(BeMeMo, 2011) In the large-N limit, the free energies of the ideal and the unitary Fermi gases are related by a Legendre transformation (with respect to the source for the Cooper pair, and modulo proper rescalings).

Therefore,

- Many properties of the unitary Fermi gas in the mean field approximation can be derived from the ideal Fermi gas.
- The two fixed points have the same infinite set of conserved currents and symmetries, most of which are broken by 1/N corrections in the interacting theory.
- Both fixed points should correspond to different choices of boundary conditions for the *same* bulk theory (holographic degeneracy).

イロト イポト イラト イラト

O(N)-like vs BCS-like models Higher-spin holography Higher-spin conserved currents

O(N)-like vs BCS-like models

Many properties of the BCS-like model are reminiscent from the O(N) model, so let us compare these models in details.

O(N)-like vs BCS-like models Higher-spin holography Higher-spin conserved currents

O(N)-like vs BCS-like models

Models	O(N)-like	BCS-like
Space-time	Relativistic	Non-relativistic
Kinetic operator	$\Box - M^2$	$i\partial_t + \frac{\Delta}{2m} + \mu$
Scale-free	Massless $M = 0$	Zero chem pot $\mu=0$
Fundamental fields	Bosons $ec{\phi}$	Fermions $ec{\psi}_{\uparrow}$, $ec{\psi}_{\downarrow}$
N components	Real [or complex]	Complex (up/down)
Quartic interaction	$(ec{\phi^*}\cdotec{\phi})^2$	$ert ec{\psi_{\uparrow}} \cdot ec{\psi_{\downarrow}} ert^2$
Internal symmetry	$O(N) [\subset U(N)]$	$U(2) [\subset U(1) \times Sp(2N)]$
Composite field	Particle density $ec{\phi}^*\cdotec{\phi}$	Copper pair $ec{\psi}_{\uparrow} \cdot ec{\psi}_{\downarrow}$
Dimension	D = d + 2 (spacetime)	d = D - 2 (space)
Non-triv fixed pt	Wilson-Fisher	Unitary Fermi gas
Kinematical sym	Conformal $\mathfrak{o}(d+2,2)$	Schrödinger $\mathfrak{sch}(d)$
Higher-spin sym	Vasiliev	Weyl

O(N)-like vs BCS-like models Higher-spin holography Higher-spin conserved currents

O(N)-like vs BCS-like models

Engineering scale dimensions of elementary fields ($\vec{\phi}$ vs $\vec{\psi}_{\alpha}$):

$$\Delta^{\text{elementary}} = (D-2)/2 = d/2$$

Bare and dressed (large-N approx vs vacuum exact) scale dimensions of composite two-body field $(\vec{\phi}^* \cdot \vec{\phi} \text{ vs } \vec{\psi}_{\uparrow} \cdot \vec{\psi}_{\downarrow})$ at the fixed points:

$$\Delta^{\mathsf{free}} = 2 \,\Delta^{\mathsf{elementary}} = D - 2 = d \,, \qquad \Delta^{\mathsf{int}} = 2$$

(Non)relativistic scale and space(time) dimensions ($\Delta_+ \geqslant \Delta_-$) relation:

$$\Delta_+ + \Delta_- = \Delta^{\mathsf{free}} + \Delta^{\mathsf{int}} = D = d + 2$$

Δ composite	Fixed point
Δ^{free}	Gaussian
Δ^{int}	Non-trivial
Δ_+	IR
Δ_{-}	UV

▲ 国 ▶ < </p>

O(N)-like vs BCS-like models Higher-spin holography Higher-spin conserved currents

O(N)-like vs BCS-like models

D	Δ_{-}	Δ_+	Property
D = 2	Δ^{free}	Δ^{int}	saturation of unitarity bound (line of fixed pts)
2 < D < 4	Δ^{free}	Δ^{int}	pair of admissible fixed pts (asymptotic freedom)
D=4	$\Delta^{free} = \Delta^{int}$	$\Delta^{int} = \Delta^{free}$	fusion of fixed pts (triviality)
4 < D < 6	-	Δ^{free}	only single admissible fixed pt (unstable int)
D = 6	-	Δ^{free}	saturation of unitarity bound
D > 6	-	Δ^{free}	only single admissible fixed pt (non-unitary int)

D = 3: free/critical O(N) models

Э

O(N)-like vs BCS-like models Higher-spin holography Higher-spin conserved currents

O(N)-like vs BCS-like models

d	Δ_{-}	Δ_+	Property
d = 0	Δ^{free}	Δ^{int}	saturation of unitarity bound
0 < d < 2	Δ^{free}	Δ^{int}	pair of admissible fixed pts (asymptotic freedom)
d = 2	$\Delta^{free} = \Delta^{int}$	$\Delta^{int} = \Delta^{free}$	fusion of fixed pts (triviality)
2 < d < 4	Δ^{int}	Δ^{free}	pair of admissible fixed pts (asymptotic safety)
d = 4	Δ^{int}	Δ^{free}	saturation of unitarity bound
d > 4	_	Δ^{free}	only single admissible fixed pt (non-unitary int)

d = 1 or 3: ideal/unitary Fermi gases (repulsive or attractive interactions)

э

O(N)-like vs BCS-like models Higher-spin holography Higher-spin conserved currents

O(N)-like vs BCS-like models

Renormalisation group flow of the BCS model

イロト イポト イヨト イヨト

Э

Source of inspiration: higher-spin holography

Growing body of evidence (Petkou-Sezgin-Sundell, 2003; Giombi-Yin, 2010; Maldacena-Zhiboedov, 2011) that the bulk dual of the free/critical O(N) models should be Vasiliev's minimal higher-spin gravity on AdS_4 (Sezgin-Sundell/Klebanov-Polyakov conjecture, 2002/2003).

Moreover, bosonic higher-spin gravity has been constructed for any dimension and for any internal classical compact group (Vasiliev, 2003).

Thus, the bulk dual of O(N)-like models in D dimensions should be Vasiliev's higher-spin gravity on AdS_{D+1} .

⇒ What might be an educated guess for the bulk dual of the ideal/unitary Fermi gases?

A higher-spin theory? (Son, 2008)

In order to make this idea more precise, let us review the higher-spin holography.

・ロト ・同ト ・ヨト ・ヨト

O(N)-like vs BCS-like models Higher-spin holography Higher-spin conserved currents

Higher-spin holography

Δ composite	AdS bdy cond & symmetry	CFT fixed pt
Δ^{free}	Unbroken higher-spin	Gaussian
Δ^{int}	Broken higher-spin	Non-trivial
Δ_+	Standard (''Dirichlet'')	IR
Δ_{-}	Exotic ("Neumann")	UV

Scaling dimension of the collective field

э

O(N)-like vs BCS-like models Higher-spin holography Higher-spin conserved currents

Higher-spin holography

Dictionary	AdS_{D+1}	CFT_D
Bulk/Boundary	Vasiliev theory	U(N) model
Symmetric phase	Unbroken	Free
Broken phase	Broken	Critical
Field/Operator	Symmetric tensor	Symmetric tensor
	fundamental	composite
	gauge field:	conserved current:
	adjoint-valued	fund \otimes antifund
Examples	Singlet scalar	Particle density
	U(1) vector	Charge current
	Metric tensor	Energy-momentum-stress
	Higher-spin fields	Higher-spin currents

Holographic dictionary

イロト イポト イヨト イヨト

Э

O(N)-like vs BCS-like models Higher-spin holography Higher-spin conserved currents

Higher-spin conserved currents

Set of symmetric currents of all ranks (Berends, Burgers, van Dam; 1986)

$$J^{AB}_{\mu_1\dots\mu_s}(x) = i^s \phi^{A*}(x) \stackrel{\leftrightarrow}{\partial}_{\mu_1} \cdots \stackrel{\leftrightarrow}{\partial}_{\mu_s} \phi^B(x)$$
$$(A, B = 1, \dots, N; \ \mu = 0, \dots, D - 1)$$

Features:

•
$$\mathfrak{u}(N)$$
-valued, $J_{AB}^* = J_{BA}$

- ullet Bilinear in the scalar fields ϕ and its conjugate
- Number of derivatives = Rank
- Conserved (on-shell) for $s \ge 1$

$$\partial^{\mu}J^{AB}_{\mu_{1}...\mu_{s}}(x) \approx 0$$

where the weak equality \approx stands for ''on the free mass shell", i.e. modulo $\Box \phi(x) \approx 0.$

イロト イポト イラト イラト

O(N)-like vs BCS-like models Higher-spin holography Higher-spin conserved currents

Higher-spin conserved currents

The Berends-Burgers-vanDam currents can be packed in the generating function

$$J^{AB}(x,q) := \sum_{s \ge 0} \frac{1}{s!} q^{\mu_1} \dots q^{\mu_s} J^{AB}_{\mu_1 \dots \mu_s}(x)$$

= $\phi^*(x - iq) \cdot \phi(x + iq) = |\phi(x + iq)|^2$

which is a bi-local function of the scalar field, c.f. the collective field of (Das, Jevicki; 2003) and (de Mello Koch, Jevicki, Jin, Rodrigues; 2010).

ヨト イヨト

Non-relativistic higher-spin currents

For U(N) model, one usually focuses on composite fields which are singlets of the internal symmetry group, as the particle density

$$J = \vec{\phi}^* \cdot \vec{\phi} = J^* \,.$$

The generic U(N)-singlet bilocal (ϕ^* and ϕ at distinct points) composite field generates all the traceless conserved symmetric currents, which are the Noether currents for the higher-spin symmetries of the free massless scalar field ("singleton").

O(N)-like vs BCS-like models Higher-spin holography Higher-spin conserved currents

Non-relativistic higher-spin currents

For BCS-like models, one would instead focus on composite fields which are flavor-singlets but form the adjoint multiplet of the internal symmetry subgroup U(2):

$$J = \left(\begin{array}{cc} -\vec{\psi}_{\uparrow}^{\star} \cdot \vec{\psi}_{\uparrow} & \vec{\psi}_{\downarrow} \cdot \vec{\psi}_{\downarrow} \\ \vec{\psi}_{\downarrow}^{\star} \cdot \vec{\psi}_{\uparrow}^{\star} & \vec{\psi}_{\downarrow}^{\star} \cdot \vec{\psi}_{\downarrow} \end{array} \right) = J^{\dagger}$$

because it includes the Cooper pair field $ec{\psi}_{\uparrow}\cdotec{\psi}_{\downarrow}.$

(BeMeMo, 2011) The above O(N)-singlet bilocal (ψ 's at distinct points) composite field generates all U(1)-neutral non-relativistic currents of all integer spins generalising the up/down particle numbers $\vec{\psi}^*_{\alpha} \cdot \vec{\psi}_{\alpha}$ together with U(1)-charged tensors generalising the Cooper pair $\vec{\psi}_{\uparrow} \cdot \vec{\psi}_{\downarrow}$.

・ロト ・ 同ト ・ 三ト ・ 三ト ・

O(N)-like vs BCS-like models Higher-spin holography Higher-spin conserved currents

Non-relativistic higher-spin currents

For BCS-like models, one would instead focus on composite fields which are flavor-singlets but form the adjoint multiplet of the internal symmetry subgroup U(2):

$$J = \left(\begin{array}{cc} -\vec{\psi}_{\uparrow}^{*} \cdot \vec{\psi}_{\uparrow} & \vec{\psi}_{\downarrow} \cdot \vec{\psi}_{\downarrow} \\ \vec{\psi}_{\downarrow}^{*} \cdot \vec{\psi}_{\uparrow}^{*} & \vec{\psi}_{\downarrow}^{*} \cdot \vec{\psi}_{\downarrow} \end{array} \right) = J^{\dagger}$$

because it includes the Cooper pair field $ec{\psi}_{\uparrow}\cdotec{\psi}_{\downarrow}.$

 $\Rightarrow A \text{ bulk/boundary dictionary would identify these } \mathfrak{u}(2)\text{-valued} \\ \text{non-relativistic symmetric "currents" of all integer spins as the boundary } \\ \text{data of a tower of } \mathfrak{u}(2)\text{-valued higher-spin bulk gauge fields.} \end{cases}$

Of which higher-spin symmetries are they Noether currents?

・ロト ・ 同ト ・ ヨト ・ ヨト ・

Conformal vs Schrödinger algebras Vasiliev vs Weyl algebras Light-like reduction and light-cone formalism

What are non-relativistic singletons?

Vasiliev bosonic higher-spin algebras are known to be maximal symmetry algebras of free relativistic singletons.

 \Rightarrow What are free non-relativistic singletons? What are their maximal symmetry algebras?

・ロト ・ 同ト ・ ヨト ・ ヨト …

What are non-relativistic singletons?

Group-theoretical definitions

Free relativistic singleton

UIR of the Poincaré algebra that can be lifted to a UIR of the conformal algebra.

 $\Leftrightarrow {\sf Helicity\ representation\ labeled\ by\ zero\ mass\ and\ by\ spin\ ({\sf Angelopoulos,\ Flato,\ Fronsdal,\ Sternheimer,\ 1980}).$

Free non-relativistic singleton

UIR of the Bargmann (= centrally extended Galilei) algebra that can be lifted to a UIR of the Schrödinger algebra.

 \Leftrightarrow Massive representations labeled by zero internal energy and by spin (Perroud, 1977).

In other words, the free non-relativistic singletons can be identified with the solutions of free Schrödinger equation with zero chemical potential

$$\left(i\partial_t + \frac{\Delta}{2m}\right)\psi(t,\mathbf{x}) = 0$$

Conformal vs Schrödinger algebras Vasiliev vs Weyl algebras Light-like reduction and light-cone formalism

Schrödinger algebra

Schrödinger algebra: $\mathfrak{sch}(d) = \mathfrak{h}_d \ni (\mathfrak{o}(d) \oplus \mathfrak{sl}(2,\mathbb{R}))$

Standard representation as order-one differential operators acting on wave functions $\psi(t,\mathbf{x})$

イロト イポト イヨト イヨト

Conformal vs Schrödinger algebras Vasiliev vs Weyl algebras Light-like reduction and light-cone formalism

Rigid symmetries: relativistic vs non-relativistic

Schrödinger algebra:
$$\mathfrak{sch}(d) = \mathfrak{h}_d \ni (\mathfrak{o}(d) \oplus \mathfrak{sl}(2, \mathbb{R}))$$

 \mathfrak{h}_d :

$$\hat{P}_i = -i\partial_i, \qquad \hat{K}_i = mx_i + it\partial_i, \qquad \hat{m} = m,$$

$$\hat{M}_{ij} = -i(x_i\partial_j - x_j\partial_i),$$

 $\mathfrak{sl}(2,\mathbb{R})$:

 $\mathfrak{o}(d)$:

$$\begin{split} \hat{P}_t &= i\partial_t, \\ \hat{D} &= i\left(2\,t\,\partial_t + x^i\partial_i + \frac{d}{2}\right), \\ \hat{C} &= i\left(t^2\partial_t + t\left(x^i\partial_i + \frac{d}{2}\right)\right) + \frac{m}{2}\,x^2. \end{split}$$

Conformal vs Schrödinger algebras Vasiliev vs Weyl algebras Light-like reduction and light-cone formalism

Rigid symmetries: maximal algebra

Theorem: (Eastwood, 2002) The maximal algebra of infinitesimal symmetry generators for a free massless scalar field, i.e. differential operators \hat{A} such that $\Box \hat{A} = \hat{B} \Box$ and modulo trivial generators $\hat{A} = \hat{C} \Box$, is generated algebraically by the conformal Killing vectors.

The maximal Lie algebra of symmetries for conformal scalar field in a flat D-dimensional spacetime is isomorphic to the gauge algebra of Vasiliev higher-spin gravity around AdS_{D+1} (Vasiliev, 2003).

\Rightarrow What is its non-relativistic analogue?

イロト イポト イラト イラト

Rigid symmetries: maximal algebra

Theorem: The maximal algebra of infinitesimal symmetry generators for a free non-relativistic massive scalar field, i.e. differential operators \hat{A} such that

$$\left(i\partial_t + \frac{\Delta}{2m}\right)\hat{A} = \hat{B}\left(i\partial_t + \frac{\Delta}{2m}\right)$$

and modulo trivial generators $\hat{A} = \hat{C}(i\partial_t + \frac{\Delta}{2m})$, is generated algebraically by the space translations and by the Galilean boosts.

 \Rightarrow This maximal Lie algebra of symmetries for non-relativistic particle on a flat *d*-dimensional space is isomorphic to the Weyl algebra of quantum observables.

Remark: This isomorphism also follows as a corollary from the general results on global symmetries of $Sp(2d, \mathbb{R})$ -covariant unfolded equations (Vasiliev, 2001) upon the identification of the space coordinates with the twistor variables and of the time coordinate with the trace of the $sp(2d, \mathbb{R})$ -matrix coordinates.

イロト イポト イラト イラト

Rigid symmetries: relativistic vs non-relativistic

Schrödinger algebra: $\mathfrak{sch}(d) = \mathfrak{h}_d \ni (\mathfrak{o}(d) \oplus \mathfrak{sl}(2,\mathbb{R}))$

Observation: (M. Valenzuela, 2009) Alternative representation as degree-two polynomials in the momenta and Galilean boost generators acting on wave functions solutions of free Schrödinger equation $(i\partial_t + \frac{\Delta}{2m})\psi(t, \mathbf{x}) = 0.$

イロト イポト イヨト イヨト

Conformal vs Schrödinger algebras Vasiliev vs Weyl algebras Light-like reduction and light-cone formalism

Rigid symmetries: relativistic vs non-relativistic

Schrödinger algebra:
$$\mathfrak{sch}(d) = \mathfrak{h}_d \ni (\mathfrak{o}(d) \oplus \mathfrak{sl}(2, \mathbb{R}))$$

 \mathfrak{h}_d :

$$\hat{P}_i = \hat{P}_i(-t), \qquad \hat{K}_i = m\hat{X}_i(-t), \qquad \hat{m} = m,$$

$$\hat{M}_{ij} = \hat{X}^{i}(-t)\hat{P}^{j}(-t) - \hat{X}^{j}(-t)\hat{P}^{i}(-t),$$

 $\mathfrak{sl}(2,\mathbb{R}):$

 $\mathfrak{o}(d)$:

$$\hat{P}_{t} = \frac{\hat{P}^{2}(-t)}{2m},$$
$$\hat{D} = -\hat{X}^{i}(-t)\hat{P}_{i}(-t) + \frac{d}{2},$$
$$\hat{C} = \frac{m}{2}\hat{X}^{2}(-t).$$

Rigid symmetries: relativistic vs non-relativistic

Weyl algebra: $\mathfrak{A}(d) = \mathcal{U}(\mathfrak{h}_d)$

Higher-derivative generators:

The Weyl algebra of infinitesimal symmetry generators for the free non-relativistic particle is generated algebraically by the space translation and the Galilean boost generators.

・ロト ・ 同ト ・ 三ト ・ 三ト ・

Rigid symmetries: relativistic vs non-relativistic

Weyl algebra: $\mathfrak{A}(d) = \mathcal{U}(\mathfrak{h}_d)$

Maximal symmetry algebra: (idea of the proof)

Acting with any time-reversed (Heisenberg picture) observable $\hat{A}(\hat{\mathbf{X}}(-t), \hat{\mathbf{P}}(-t))$ on a time-evolved (Schrödinger picture) state $\psi(t, \mathbf{x})$ is equivalent to acting with any initial observable $\hat{A}(\hat{\mathbf{X}}(0), \hat{\mathbf{P}}(0))$ on the initial state $\psi(0, \mathbf{x})$.

Therefore any quantum observable of $\mathfrak{A}(d)$ maps solutions on solutions of the Schrödinger equation.

イロト イポト イラト イラト

Conformal vs Schrödinger algebras Vasiliev vs Weyl algebras Light-like reduction and light-cone formalism

Light-like dimensional reduction

Main idea behind the light-like dimensional reduction:

The kinetic operator of a relativistic theory

$$\Box - M^2 = -2\partial_+\partial_- + \Delta - M^2$$

when acting on eigenmodes of a light-like component of the momentum,

$$\Psi(x) = e^{-imx^-}\psi(x^+, x^i),$$

is proportional to the kinetic Schrödinger operator of a non-relativistic theory

$$i\partial_t + \Delta/2m + \mu$$

via the identification $x^+=t$ and $M^2=-\mu/2m.$

・ロト ・ 同ト ・ 三ト ・ 三ト ・

Conformal vs Schrödinger algebras Vasiliev vs Weyl algebras Light-like reduction and light-cone formalism

Light-like dimensional reduction

Main idea behind the light-like dimensional reduction:

(Group theory) The quadratic Casimir operators of the Poincaré and the Bargmann algebras are related

$$\hat{P}^{\mu}\hat{P}_{\mu}/2 = -\hat{P}_{+}\hat{P}_{-} + \hat{P}^{i}\hat{P}_{i}/2 = -\hat{m}\hat{P}_{t} + \hat{P}^{i}\hat{P}_{i}/2$$

upon the standard light-cone identification of the non-relativistic mass and Hamiltonian operators

$$\hat{P}_{+} = \hat{m}, \qquad \hat{P}_{-} = \hat{P}_{t}.$$

The Bargmann (Schrödinger) algebra is isomorphic to the subalgebra of the Poincaré (conformal) algebra that commutes with $\hat{P}_{+} = \hat{m}$.

イロト イポト イラト イラト

Conformal vs Schrödinger algebras Vasiliev vs Weyl algebras Light-like reduction and light-cone formalism

Rigid symmetries: relativistic vs non-relativistic

Embedding diagram

 $\mathfrak{o}(d+2,2) \subset \text{Vasiliev algebra (d+2,2)}$ $\cup \qquad \cup$ $\mathfrak{sch}(d) \subset \text{Weyl algebra (d)}$

where the embeddings stand for:

- ⊂: first-order generator subalgebra
- \cup : centraliser subalgebra of $\hat{P}_+ = \hat{m}$.

・ 同 ト ・ ヨ ト ・ ヨ ト …

Summary Proposal Outlook

Conclusion

Summary and outlook

X. Bekaert Towards a bulk dual of the unitary Fermi gas

イロト イポト イヨト イヨト

Э

Summary

Some hints toward a bulk dual of ideal/unitary Fermi gases **Boundary side**:

- Similarities between the free/critical O(N) models and the ideal/unitary Fermi gases.
- Non-relativistic symmetries (Schrödinger and Weyl alg) embedded in relativistic symmetries (respectively, conformal and Vasiliev alg).
- Uniform treatment of generating functionals for relativistic (or not) scalar theories with quartic (two-body) contact interaction, e.g. O(N)-like (or BCS-like) models.
- Non-relativistic theories as light-like dimensional reduction of relativistic theories, in the semi-classical (mean-field) regime.

イロト イポト イラト イラト

Summary

Some hints toward a bulk dual of ideal/unitary Fermi gases **Bulk side:**

- Sezgin-Sundell/Klebanov-Polyakov conjecture (2002/2003) & its various tests (Petkou, 2003; Sezgin and Sundell, 2003; Giombi and Yin, 2010)
- Newton-Cartan gravity as light-like dimensional reduction of Einstein-Cartan gravity (Duval et al, 1985; Julia and Nicolai, 1995)
- AdS/CFT dictionary in the light-cone formalism (Metsaev, 1999)

< <p>I > < <p>I > <</p>

化原因 化原因

Summary Proposal Outlook

Proposal

Towards an educated guess for the bulk dual of ideal/unitary Fermi gases At least in the large-N (mean field) approximation, the following diagram may commute (c.f. Goldberger, Barbon-Fuertes, Lin-Wu, 2008):

HS on AdS spacetime (d+3) \leftrightarrow CFT on flat spacetime (d+2)

 $\downarrow\uparrow$ $\downarrow\uparrow$

NRHS on space-time (d+2) $\ \leftrightarrow \$ NRCFT on flat space-time (d+1)

where the arrows stand for:

- ↔ holographic duality (Sezgin-Sundell-Klebanov-Polyakov like)
- \downarrow light-like reduction (Bargmann framework)
- \uparrow light-like oxydation (Eisenhart lift)

イロト イポト イラト イラト

Summary Proposal Outlook

Proposal

Towards an educated guess for the bulk dual of ideal/unitary Fermi gases At least in the large-N (mean field) approximation, the following diagram may commute (c.f. Goldberger, Barbon-Fuertes, Lin-Wu, 2008):

HS on AdS spacetime (d+3) \leftrightarrow CFT on flat spacetime (d+2)

 $\downarrow\uparrow$ $\downarrow\uparrow$

NRHS on space-time (d+2) \leftrightarrow NRCFT on flat space-time (d+1)

with

- d = 1: free/critical O(N) models
- d = 1, 3: ideal/unitary Fermi gases

4 E K 4 E K

Proposal

A candidate for the holographic description of fermions at unitarity is the light-like reduction of a Vasiliev higher-spin gravity. More precisely,

The O(N)-invariant sector of the large-N ideal/unitary Fermi gas in d spatial dimensions might be dual to the light-like dimensional reduction of the Vasiliev bosonic theory on AdS_{d+3} with U(2) internal symmetry.

In particular, the gravity dual of the "physical" three-dimensional (d = 3) two-component (N = 1) UV-stable $(\Delta_{-} = 2)$ unitary Fermi gas would be the light-like reduction of Vasiliev theory describing interacting $\mathfrak{u}(2)$ -valued higher-spin gauge fields on AdS_6 with exotic boundary condition for the bulk scalar field dual to the Cooper pair.

・吊り イラト イラト

Proposal

By construction,

- spectrum of fields/operators
- (un)broken symmetries
- two-point functions

are matched (at tree level, i.e. large-N).

Summary Proposal Outlook

Open issues

Many issues remain open:

- Clarify the representation theory of Schrödinger algebra (Perroud, 1977) e.g.
 - holographic dictionary from AdS/CFT in the light-cone formalism (Metsaev, 1999),
 - status of non-relativistic massless representations,
 - non-relativistic analogue of Flato-Frønsdal theorem.
- Perform the light-like reduction of Vasiliev equations, e.g.
 - explicit them in light-cone gauge, and/or
 - generalise the works (Duval et al, 1985; Julia and Nicolai, 1995).
- Check the proposal beyond two-point functions.
- Etc ...

イロト イポト イラト イラト

		The unitary Fermi gas
Relativistic vs	non-relativistic	higher-spin holography
Relativistic vs	non-relativistic	higher-spin symmetries
		Conclusion

Summary Proposal Outlook

Thank you for your attention

イロト イロト イヨト イヨト 三日