

BMS₃ (Carrollian) field theories from a bound in the coupling of current-current deformations of CFT₂

Ricardo Troncoso (CECs & USS) Valdivia, Chile

In collaboration with : Pulastya Parekh (CECs & USS) Valdivia, Chile David Tempo (UCT) Temuco, Chile

based on arXiv 2307.06367 [hep-th] (JHEP)

Carroll Workshop (3rd edition)

[Thessaloniki, Oct. 2023]

Conformal symmetries in D dimensions

Diffeomorphisms preserving flat spacetime, up to local scalings

$$ds^2 \to \Omega^2 ds^2$$

Conformal Killing eq. : ∇_{μ}

$$\xi_{\nu} + \nabla_{\nu}\xi_{\mu} = \lambda g_{\mu\nu}$$

D > 2:
$$J_{\mu\nu} , P_{\mu} ; D , K_{\mu}$$

Isomorphic to
$$so(D,2)$$
 : $\frac{(D+2)(D+1)}{2}$ generators

Conformal symmetries in 2D

Infinite-dimensional algebra :

Two copies of the Witt (or centerless Virasoro) algebra

Isomorphic to $\operatorname{Diff}(S^1) \oplus \operatorname{Diff}(S^1)$

$$[L_m, L_n] = (m-n) L_{m+n}$$
$$[\bar{L}_m, \bar{L}_n] = (m-n) \bar{L}_{m+n}$$

with $[L_m, \bar{L}_n] = 0$ and $m, n \in \mathbb{Z}$

Ultra & non-relativistic limits

Another accident in 2D :

ultra & non-relativistic limits are isomorphic !

Ultra & non-relativistic limits

Another accident in 2D :

ultra & non-relativistic limits are isomorphic !

Corresponding algebras are isomorphic $GCA_2 \approx CCA_2$

Additional curiosity :

ultra/non-relativistic algebras isomorphic to BMS3

[asymptotic symmetries of asymptotically flat spacetimes in 3D]

In sum :

Semidirect sum of Witt algebra and supertranslations

$$[J_m, J_n] = (m - n) J_{m+n}$$
$$[J_m, P_n] = (m - n) P_{m+n}$$
where $[P_m, P_n] = 0$

Appears in different contexts, e.g., tensionless limit of strings Admits unitary representations

Inonu-Wigner contractions

Conformal and BMS3 algebras are not isomorphic

$$P_m = \frac{1}{\ell} \left(L_m + \bar{L}_{-m} \right) \quad J_m = L_m - \bar{L}_{-m}$$

In the limit $\ \ell
ightarrow \infty\,$ BMS3 is recovered

$$P_m = \ell \left(L_m - \bar{L}_m \right), \ J_m = L_m + \bar{L}_m$$

In the limit $\ell
ightarrow 0\,$ BMS3 is also recovered

 ℓ : regarded as the inverse of the speed of light

Outline

- Introduction:
 - current-current ($j\cdot \bar{j}$) & $\sqrt{T\bar{T}}$ deformations of CFT2's
- BMS3 field theories from finite $j \cdot \overline{j}$ deformations
 - Coupling precisely fixed, up to a sign
 - 2 inequivalent ones : electric-like and magnetic-like

Finite $j \cdot \overline{j}$ deformations of the bosonic string

- Electric-like deformation

[standard tensionless limit (Carrollian electric-type)]

- Magnetic-like deformation

[new action : nonstandard limits in the tension (zero or infinity !)]

- BMS3 deformations from limiting cases of continuous exactly (integrably) marginal $j \cdot \bar{j}$ deformations
 - SO(1,1) automorphism of the currents
 - Bound in the coupling (def. parameter)
 - Ending remarks
 - Beyond the bound: "Euclidean CFT2's" [not thermal !]
 - Deformations & the Polyakov action

Continuous $j \cdot ar{j}$ deformations

```
Chaudhuri, Schwartz [PLB 1989]
```

Deformations by "integrably marginal" operators [exactly marginal]

- Lagrangian deformed by addition of op. of conf. dim. (1,1)
- Continuous coupling (deformation parameter)
- Preserves conformal symmetry
- CFT2's with (left & right) Kac-Moody currents [(anti)-holomorphic)]

$$[J_m^a, J_n^b] = f^{ab}_{\ c} J^c_{m+n} + ng^{ab} \delta_{m+n,0} \quad \text{same for } \bar{J}^a_m$$

Continuous $j\cdot \overline{j}$ deformations

Deformations of the form
$$g \; ilde{c}_{IJ} \; J^I ar{J}^J$$

integrably marginal iff :

 J^{I}, \bar{J}^{J} stand for the subset of Abelian currents (Cartan subalgebra)

(Abelian currents preserved under the deformation)

- Valid to all orders in the def. parameter (finite g)
- holds for finite values in certain classes of CFT2
- True for arbitrarily large g ?
- CFT₂ moduli spaces with boundary in case of a bound in g ?
- Simple example (single free boson) yields a bound !

Example taken from overlapping case of $\,j\,\cdot\,ar{j}\,$ & $\sqrt{Tar{T}}\,$ deformations of CFT2

Finite :

[Rodriguez, Tempo, Troncoso, arxiv:2106.09750 (JHEP)]

Continuous :

[Tempo, Troncoso, arxiv:2210.00059 (JHEP)]

QFT₂ \sqrt{TT} deformation from a Lagrangian flow eq. : [Conti, Romano, Tateo [2206.03415] (JHEP)] [Ferko, Sfondrini, Smith, Tartaglino-Mazzucchelli [2206.10515] (PRL)] [Babaei-Aghbolagh, Babaei Velni, Yekta, Mohammadzadeh [2206.12677] (PRD)] (also Hou [2208.05391] (JHEP))

Conformal algebra in 2D (continuum)

$$[L_m, L_n] = (m-n) L_{m+n}$$
$$[\bar{L}_m, \bar{L}_n] = (m-n) \bar{L}_{m+n}$$

with
$$[L_m, \bar{L}_n] = 0$$
 and $m, n \in \mathbb{Z}$

Fourier modes :

$$L_m = \int d\phi \bar{T}(\phi) e^{-im\phi}, \ \bar{L}_m = \int d\phi T(\phi) e^{im\phi}$$

Equivalently :

$$\{T(\varphi), T(\theta)\} = (2T(\varphi)\partial_{\varphi} + \partial_{\varphi}T(\varphi))\delta(\varphi - \theta), \\ \{\bar{T}(\varphi), \bar{T}(\theta)\} = -(2\bar{T}(\varphi)\partial_{\varphi} + \partial_{\varphi}\bar{T}(\varphi))\delta(\varphi - \theta)$$

with $\{T(\phi), \overline{T}(\phi')\} = 0$, and $[\cdot, \cdot] = i\{\cdot, \cdot\}$

Example taken from overlapping case of $\,j\,\cdot\,ar{j}\,$ & $\sqrt{Tar{T}}\,$ deformations

[Rodriguez, Tempo, Troncoso, arxiv:2106.09750 (JHEP)] [Tempo, Troncoso, arxiv:2210.00059 (JHEP)]

Brief review of $\sqrt{T\bar{T}}$ deformations

- BMS₃ from a nonlinear map of the conformal algebra in 2D

$$H_{(\pm)} = T + \bar{T} \pm 2\sqrt{T\bar{T}} \; ; \; P = \bar{T} - T$$

- Not marginal, but still conformal defs. (ultrarelativistic CFTs !)
- Both sets $\{H_{(+)}, P\}$ and $\{H_{(-)}, P\}$ fulfill the BMS3 algebra
- [no limiting process involved !]
- Related by $H_{(+)}H_{(-)} = P^2$

[discrete nonlinear automorphism of BMS3]

Brief review of $\sqrt{T\bar{T}}~~{\rm deformations}$

BMS₃ generators from a limiting case :

- Continuous nonlinear automorphism of the conformal algebra in 2D

$$H_{(\alpha)} = \cosh(\alpha) \left(T + \bar{T}\right) + 2\sinh(\alpha) \sqrt{T\bar{T}}$$

Conformal algebra is preserved

Then rescaling
$$\tilde{H}_{(\alpha)} := \frac{H_{(\alpha)}}{\cosh(\alpha)} = T + \bar{T} + 2 \tanh(\alpha) \sqrt{T\bar{T}}$$

when $\alpha \to \pm \infty$ $\tilde{H}_{(\pm \infty)} = H_{(\pm)}$

BMS3 supertranslation generators recovered [def. with coupling $g = \pm 2$]

The continuous deformation

$$I_{(\alpha)} = I_{(0)} + 2 \tanh(\alpha) \int d\tilde{t} d\phi \sqrt{T\bar{T}}$$

generically preserves the conformal symmetry

unless, $\alpha \to \pm \infty$ ($g = \pm 2$)

$$I_{(\pm)} = I_{(0)} \pm 2 \int d\tilde{t} d\phi \sqrt{T\bar{T}}$$

Marginal def. becomes nontrivial (2 different ultrarelativistic regimes)

[Conformal symmetry deforms to BMS3]

[Conformal Carrolian field theory $(c \rightarrow 0)$] GCA₂ \approx CCA₂ \approx BMS₃

 $\sqrt{T\bar{T}}\mbox{-deformed single free boson}$

$$\begin{split} I_{(0)}\left[\varphi\right] &= -\frac{1}{2} \int d^2 x \sqrt{-g} \partial_\mu \varphi \partial^\mu \varphi \\ T &= j^2 \; ; \; \bar{T} = \bar{j}^2 \\ \sqrt{T\bar{T}} &= \pm J\bar{J} \end{split}$$

Hence

Continuous $\sqrt{T\bar{T}}$ deformation remains conformal Trivial: just a rescaling of the action : $[I_{(\alpha)} = e^{\alpha}I_{(0)}]$ Lagrangian flow $\sqrt{T\bar{T}}$ -deformation for the free boson [Conti, Romano, Tateo [2206.03415] (JHEP)] [Ferko, Sfondrini, Smith, Tartaglino-Mazzucchelli [2206.10515] (PRL)] [Babaei-Aghbolagh, Babaei Velni, Yekta, Mohammadzadeh [2206.12677] (PRD)] (also Hou [2208.05391] (JHEP))

In sum: $\sqrt{T\bar{T}}$ -deformed single free boson

$$I_{(0)}\left[\varphi\right] = -\frac{1}{2} \int d^2x \sqrt{-g} \partial_\mu \varphi \partial^\mu \varphi \qquad \qquad \sqrt{T\bar{T}} = j\bar{j}$$

- Generic deformation : [Tempo, Troncoso, arxiv:2210.00059 (JHEP)]
- Bound in the coupling $|g| \leq 2$
 - If |g| < 2, the conformal symmetry remains [trivial deformation]
 - when saturated ($g = \pm 2$) one obtains

$$I_{(+)} = \int dx^2 \left(\pi \dot{\varphi} - \pi^2 \right) \qquad I_{(-)} = \int dx^2 \left(\pi \dot{\varphi} - \varphi'^2 \right)$$

[Rodriguez, Tempo, Troncoso, arxiv:2106.09750 (JHEP)]

Carrollian limits $(c \rightarrow 0)$ of electric & magnetic type [Henneaux, Salgado-Rebolledo, arxiv: 2109.06708 (JHEP)]

- We aim to extend the result fom N + N abelian currents
- Some previous results along these lines in

[Bagchi, Banerjee, Muraki, arxiv: 2205.05094 (JHEP)]

["infinite boosts" spanned by certain degenerate (non-invertible) linear transformations acting on the coordinates]

[different approach here: agreement for some results on electric-like deformations]

Bosonic toroidal CFT2's

- Starting point:

N chiral & antichiral (holomorphic & antiholomorphic) abelian currents :

$$\left\{j^{I}(x), j^{J}(y)\right\} = -g^{IJ}\partial_{x}\delta(x-y)$$
$$\left\{\bar{j}^{I}(x), \bar{j}^{J}(y)\right\} = g^{IJ}\partial_{x}\delta(x-y)$$

Stress-energy tensor components :

$$\bar{T} = \bar{j}^2 \quad T = j^2$$

Hereafter: $A \cdot B = g_{IJ}A^{I}B^{J}$ and $A^{2} = g_{IJ}A^{I}A^{J}$ Mode expansion: $j^{I}(\phi) = \frac{1}{2}\sum_{n} \bar{j}_{n}^{I}e^{-in\phi}$ $\bar{j}^{I}(\phi) = \frac{1}{2}\sum_{n} j_{n}^{I}e^{in\phi}$ $T(\phi) = \frac{1}{2}\sum_{n} \bar{L}_{n}e^{-in\phi}$ $\bar{T}(\phi) = \frac{1}{2}\sum_{n} L_{n}e^{in\phi}$ Thus, $L_{n} = \frac{1}{2}\sum_{k} j_{n-k} \cdot j_{k}$ (similarly for \bar{L}_{n})

Conformal algebra with currents

Thus,

$$L_n = \frac{1}{2} \sum_k j_{n-k} \cdot j_k \qquad \qquad \bar{L}_k = \frac{1}{2} \sum_n \bar{j}_n \cdot \bar{j}_{k-n}$$

- Algebra: 2 copies of the semidirect sum of Witt with currents

$$[L_m, L_n] = (m - n) L_{m+n}$$
$$[L_n, j_m^I] = -m j_{m+n}^I$$
$$[j_n^I, j_m^J] = n g^{\mu\nu} \delta_{m+n,0}$$

$$\bar{L}_m$$
 and \bar{j}_m^I fulfill the same algebra

Here and afterwards: $[\cdot, \cdot] = i \{\cdot, \cdot\}$

Energy $H = \overline{T} + T$; Momentum density $P = \overline{T} - T$ Also $k^{I}_{(\pm)} = \overline{j}^{I} \pm j^{I}$

- **Remarks :** Under parity $(\sigma \rightarrow -\sigma) j^I$ and $\bar{j^I}$ are swapped

$$k_{(+)}^{I} \to k_{(+)}^{I} \text{ (even)}, \ k_{(-)}^{I} \to -k_{(-)}^{I} \text{ (odd)}$$

- Note that : $H = j^2 + \bar{j}^2 = \frac{1}{2} \left(k_{(+)}^2 + k_{(-)}^2 \right)$ $P = j^2 - \bar{j}^2 = k_{(+)} \cdot k_{(-)}$

- In modes :

$$H_n = L_n + \bar{L}_{-n} \qquad P_n = L_n - \bar{L}_{-n}$$

$$k^I_{(\pm)n}=j^I_n\pm \bar{j}^I_{-n}$$

Algebra in the energy-momentum basis

$$H_n = \frac{1}{4} \sum_m k_{(+)n-m} \cdot k_{(+)m} + \frac{1}{4} \sum_m k_{(-)n-m} \cdot k_{(-)m} \qquad P_n = \frac{1}{2} \sum_m k_{(+)n-m} \cdot k_{(-)m}$$

- In the base $H_n = L_n + \bar{L}_{-n}$ $P_n = L_n - \bar{L}_{-n}$ $k^{I}_{(\pm)n} = j^{I}_n \pm \bar{j}^{I}_{-n}$

The algebra reads (semidirect sum of conf. with currents)

$$[P_m, P_n] = (m - n) P_{m+n} ,$$

$$[P_m, H_n] = (m - n) H_{m+n} ,$$

$$[H_m, H_n] = (m - n) P_{m+n} ,$$

$$\begin{bmatrix} P, k_{(\pm)m}^I \end{bmatrix} = -mk_{(\pm)m+n}^I$$
$$\begin{bmatrix} H_n, k_{(+)m}^I \end{bmatrix} = -mk_{(-)m+n}^I$$
$$\begin{bmatrix} H_n, k_{(-)m}^I \end{bmatrix} = -mk_{(+)m+n}^I$$

$$\begin{bmatrix} k_{(+)m}^I, k_{(-)n}^J \end{bmatrix} = 2mg^{IJ}\delta_{m+n,0} ,$$
$$\begin{bmatrix} k_{(\pm)m}^I, k_{(\pm)n}^J \end{bmatrix} = 0$$

Consider 2 inequivalent finite $j \cdot \overline{j}$ deformations of H, $H_{(+)}$ and $H_{(-)}$:

$$H_{(\pm)} = T + \bar{T} \pm 2j \cdot \bar{j}$$

 $H_{(\pm)} = k_{(\pm)}^2$

equivalently:

In modes:
$$H_{(\pm)n} = L_n + \bar{L}_{-n} \pm \sum_k j_{n+k} \cdot \bar{j}_k$$
$$H_{(\pm)n} = \frac{1}{2} \sum_m k_{(\pm)n-m} \cdot k_{(\pm)m}$$

 $H_{(+)}$: electric-like ; $H_{(-)}$: magnetic-like [Energy density from square of vector or pseudovector]

Both sets:
$$\{H_{(+)}; P, k^I_{(+)}, k^I_{(-)}\}$$
 (electric-like)and $\{H_{(-)}; P, k^I_{(+)}, k^I_{(-)}\}$ (magnetic-like)

yield to the BMS3 algebra

Algebra (both cases):

$$[P_m, P_n] = (m - n) P_{m+n} ,$$

$$[P_m, H_{(\pm)n}] = (m - n) H_{(\pm)m+n} ,$$

$$[H_{(\pm)m}, H_{(\pm)n}] = 0 ,$$

$$\begin{bmatrix} k_{(\pm)m}^I, k_{(-)n}^J \end{bmatrix} = 2mg^{IJ}\delta_{m+n,0} ,$$
$$\begin{bmatrix} k_{(\pm)m}^I, k_{(\pm)n}^J \end{bmatrix} = 0$$

$$\begin{bmatrix} P, k_{(\pm)m}^{I} \end{bmatrix} = -mk_{(\pm)m+n}^{I} ,$$
$$\begin{bmatrix} H_{(\pm)n}, k_{(\pm)m}^{I} \end{bmatrix} = 0 ,$$
$$\begin{bmatrix} H_{(+)n}, k_{(-)m}^{I} \end{bmatrix} = -2mk_{(+)m+n}^{I} ,$$
$$\begin{bmatrix} H_{(-)n}, k_{(+)m}^{I} \end{bmatrix} = -2mk_{(-)m+n}^{I} ,$$

Therefore:
$$I_{CFT} = \int d^2x \left(\Pi \dot{\Phi} - H\right)$$
 [

conformal gauge]

 Φ and Π collectively denote the fields and their momenta

Finite $j \cdot \overline{j}$ electric- & magnetic-like deformed actions

with $H_{(\pm)} = H \pm 2j \cdot ar{j}$, are inv. under BMS3

0

$$I_{BMS}^{(\pm)} = \int d^2x \, \left(\Pi \dot{\Phi} - H_{(\pm)}\right)$$

$$I_{CFT} = \int d^2 x \, \left(\Pi \dot{\Phi} - H\right)$$
$$I_{BMS}^{(\pm)} = \int d^2 x \, \left(\Pi \dot{\Phi} - H_{(\pm)}\right) \qquad \qquad H_{(\pm)} = H \pm 2j \cdot \bar{j}$$

No limiting process involved !

Advantage: quantization can be carried out from the same

rep. space of the original currents j_n^I , \overline{j}_n^I

Finite $j \cdot \overline{j}$ deformations: bosonic string

Polyakov action :

-

$$I = -\frac{T}{2} \int d^2 \sigma \, \sqrt{-h} h^{\alpha\beta} \partial_\alpha X \cdot \partial_\beta X$$

Hamiltonian action :

$$I = \int d^2 \sigma \, \left[\Pi \cdot \dot{X} - NH - N_{\phi} P \right]$$

Constraints & field eqs. :

$$H = \frac{1}{2T} \left(\Pi^2 + T^2 X'^2 \right) , \qquad \dot{X}^{\mu} = \frac{1}{T} N \Pi^{\mu} + N^{\phi} X^{\mu'} ,$$
$$P = \Pi \cdot X' , \qquad \dot{\Pi}_{\mu} = T \left(N X'_{\mu} \right)' + \left(N^{\phi} \Pi_{\mu} \right)'$$

Finite $j \cdot \overline{j}$ deformations: bosonic string

$$I = \int d^2 \sigma \left[\Pi \cdot \dot{X} - NH - N_{\phi} P \right] \qquad \qquad H = \frac{1}{2T} \left(\Pi^2 + T^2 X'^2 \right) ,$$
$$P = \Pi \cdot X' ,$$

- Currents :

$$j^{\mu} = \frac{1}{2\sqrt{T}} \left(\Pi^{\mu} - TX^{\mu'} \right) \qquad \bar{j}^{\mu} = \frac{1}{2\sqrt{T}} \left(\Pi^{\mu} + TX^{\mu'} \right)$$

conserved on-shell

$$\dot{j}^{\mu}_{\pm} = \left[\left(N^{\phi} \pm N \right) j^{\mu}_{\pm} \right]'$$

Note that

$$k^I_{(\pm)}=\bar{j}^I\pm j^I$$

$$k^{\mu}_{(+)} = \frac{1}{\sqrt{T}} \Pi^{\mu}$$

 $k^{\mu}_{(-)} = \sqrt{T} X^{\mu'}$

Bosonic string: finite def. [electric-like]

$$H = \frac{1}{2T} \left(\Pi^2 + T^2 X'^2 \right) \qquad j \cdot \bar{j} = \frac{1}{4T} \left(\Pi^2 - T^2 X'^2 \right) \qquad k^{\mu}_{(+)} = \frac{1}{\sqrt{T}} \Pi^{\mu}$$

- Hamiltonian : $H_{(+)} = H + 2j \cdot \overline{j} = k_{(+)}^2 = \frac{1}{T} \Pi^2$
- Electric-like action : $I_{(+)} = \int d^2 \sigma \left[\Pi \cdot \dot{X} N H_{(+)} N^{\phi} P \right]$

$$I_{(+)} = \int d^2\sigma \left[\Pi \cdot \dot{X} - N_{(+)} \Pi^2 - N^{\phi} P \right]$$

with $N_{(+)} = NT^{-1}$ [tension gauged away]

Standard tensionless string

Recovered from the electric-like deformation

Bosonic string: tensionless limit

$$I_{(+)} = \int d^2\sigma \left[\Pi \cdot \dot{X} - N_{(+)} \Pi^2 - N^{\phi} P \right]$$

Standard tensionless string recovered from the electric-like def.

$$I = \int d^2 \sigma \left[\Pi \cdot \dot{X} - NH - N_{\phi} P \right] \qquad \qquad H = \frac{1}{2T} \left(\Pi^2 + T^2 X'^2 \right) ,$$
$$P = \Pi \cdot X' ,$$

Rescaling lapse as $N = 2\tilde{N}_{(+)}T$, and then $T \to 0$ One obtains $I_{(+)}$ with $\tilde{N}_{(+)}$ [compare with $N_{(+)} = NT^{-1}$] [tension is gauged away in a different form]

- Similar limit as that in of Henneaux & Salgado-Rebolledo: [arxiv: 2109.06708 (JHEP)]

Electric-like action (tensionless string) can also be seen to agree with the Carrolian limit ($c \rightarrow 0$) of electric-type

[Electric-like] $j \cdot \overline{j}$ string def.: Lagrangian

- Remarks about $I_{(+)} = \int d^2 \sigma \left[\Pi \cdot \dot{X} - N_{(+)} \Pi^2 - N^{\phi} \Pi \cdot X' \right]$

replacing $\Pi^{\mu} = \frac{1}{2N_{(+)}} (\dot{X}^{\mu} - N^{\phi} X'^{\mu})$ back into the Hamilt. action :

$$I_{(+)} = \int d^2 \sigma \frac{1}{4N_{(+)}} \left[\dot{X} - N_{\phi} X' \right]^2$$
$$= \int d^2 \sigma \ \mathscr{V}^{\alpha} \mathscr{V}^{\beta} \partial_{\alpha} X \cdot \partial_{\beta} X.$$

Lagrangian action in terms of a vector density of weight ¹/₂

$$\mathscr{V}^{lpha} = rac{1}{2\sqrt{N_{(+)}}} egin{pmatrix} 1 \ -N_{\phi} \end{pmatrix}$$
 : Preserved under BMS3 diffs. $(\mathcal{L}_{\xi}\mathscr{V}^{lpha} = 0)$

Diffeomorphisms $\xi = \xi^{\mu} \partial_{\mu}$ close in the Lie bracket according to BMS₃

Bosonic string: fin. def. [magnetic-like]

$$H = \frac{1}{2T} \left(\Pi^2 + T^2 X'^2 \right) \qquad j \cdot \bar{j} = \frac{1}{4T} \left(\Pi^2 - T^2 X'^2 \right) \qquad k^{\mu}_{(-)} = \sqrt{T} X^{\mu}$$

- Hamiltonian :

$$H_{(-)} = H - 2j \cdot \bar{j} = k_{(-)}^2 = TX'^2$$

- Magnetic-like action : $I_{(-)} = \int d^2 \sigma \left[\Pi \cdot \dot{X} - N H_{(-)} - N^{\phi} P \right]$

$$I_{(-)} = \int d^2\sigma \left[\Pi \cdot \dot{X} - N_{(-)} X^{\prime 2} - N^{\sigma} \Pi \cdot X^{\prime} \right]$$

with $N_{(-)} = NT$ [tension gauged away again !]

Magnetic-like deformation :

New action is also devoid of tension

Still relativistic, but with "inner Carrollian structure"

[Magnetic-like] $j \cdot \overline{j}$ string def.: remarks

$$I_{(-)} = \int d^2\sigma \left[\Pi \cdot \dot{X} - N_{(-)} X^{\prime 2} - N^{\sigma} \Pi \cdot X^{\prime} \right]$$

Intrinsically Hamiltonian : \prod cannot be expressed in terms of \dot{X} (nor X')

" Self-interacting null particle "	$\dot{X}^{\mu} - N^{\phi} X^{\mu\prime} = 0$
Field eqs :	$\dot{\Pi}^{\mu} - 2\left(N_{(-)}X^{\mu\prime}\right)' - \left(N^{\phi}\Pi^{\mu}\right)' = 0$
Choosing the gauge so that $N_{(-)}$ and	N^{σ} are constants $X^{\mu} = X^{\mu}(\tilde{\sigma})$
Describes a curve ! $\tilde{\sigma} = \sigma + N^{\sigma} \tau$	
Constraints :	$H_{(-)} = X'^2 = 0$,
Null curve: [not a geodesic in generation $\tilde{\sigma}$ is an affine parameter	al] $P = \Pi \cdot X' = 0 ,$
also : $\Pi^{\mu} = Y^{\mu} + 2N_{(-)}X^{\mu \prime \prime} au$	
with $Y \cdot X' = 0$ and Y^{μ}	$=Y^{\mu}\left(\tilde{\sigma}\right)$

[Magnetic-like] $j \cdot \overline{j}$ string def. from limits

$$I_{(-)} = \int d^2\sigma \left[\Pi \cdot \dot{X} - N_{(-)} X^{\prime 2} - N^{\sigma} \Pi \cdot X^{\prime} \right]$$

Recovered from a nonstandard limits in the tension

- Different tensionless limit :

- Rescale
$$X^{\mu} \to T^{-1}X^{\mu}, \ \Pi^{\mu} \to T\Pi^{\mu}$$
 & $N = 2T\tilde{N}_{(-)}$

when $T \to 0$, one obtains $I_{(-)}$ [with $\tilde{N}_{(-)}$]

[compare with $N_{(-)} = NT$; tension gauged away differently]

Field eqs. & BMS3 constraints recovered

Generic solution of the magnetic-like action also smoothly obtained !

Shares some similarity with Carrollian limit of "magnetic type" $(c \rightarrow 0)$

following the lines of [Henneaux & Salgado-Rebolledo, arxiv: 2109.06708 (JHEP)] plus with a suitable rescaling of the lapse

[Magnetic-like] $j \cdot \overline{j}$ string def. from limits

$$I_{(-)} = \int d^2\sigma \left[\Pi \cdot \dot{X} - N_{(-)} X^{\prime 2} - N^{\sigma} \Pi \cdot X^{\prime} \right]$$

Another interesting limit :

Rescale only the lapse as
$$N = 2\mathcal{T}^{-1}\hat{N}_{(-)}$$

[no rescaling of fields & momenta]

When $T \to \infty$, action $I_{(-)}$ is recovered with $N_{(-)} \to \hat{N}_{(-)}$

Appealing possibility:

String length goes to zero -> null curve instead of a surface !

Also works well for field eqs. & constraints

However: generic solution not smoothly recovered

Further aspects in progress

Continuous integrably marginal $j \cdot \overline{j}$ deformations

Abelian currents algebra :

$$\left\{j^{I}(x), j^{J}(y)\right\} = -g^{IJ}\partial_{x}\delta(x-y)$$
$$\left\{\bar{j}^{I}(x), \bar{j}^{J}(y)\right\} = g^{IJ}\partial_{x}\delta(x-y)$$

with $g_{IJ} = \delta_{IJ}$ admits an O(N, N) automorphism

 $P = j^2 - \overline{j}^2$: clearly inv. under O(N, N) [whole set of automorphisms] $H = j^2 + \overline{j}^2$: only inv. under $O(N) \otimes O(N)$ subset

Deformations yielding spectral flow (changing H) then go along $\frac{O\left(N,N\right)}{O\left(N\right)\otimes O\left(N\right)}$

For our purposes: relevant subset is SO(1,1)

Continuous integrably marginal $j \cdot \overline{j}$ deformations

Under SO(1,1) , currents transform according to :

$$j^{\mu}_{(\alpha)} = j^{\mu} \cosh\left(\frac{\alpha}{2}\right) + \bar{j}^{\mu} \sinh\left(\frac{\alpha}{2}\right)$$
$$\bar{j}^{\mu}_{(\alpha)} = \bar{j}^{\mu} \cosh\left(\frac{\alpha}{2}\right) + j^{\mu} \sinh\left(\frac{\alpha}{2}\right)$$

- Hence, $T_{(\alpha)} = j_{(\alpha)}^2$ and $\bar{T}_{(\alpha)} = \bar{j}_{(\alpha)}^2$ also fulfill the conformal algebra
- Note that :

$$T_{(\alpha)} = \cosh^2\left(\frac{\alpha}{2}\right)T + \sinh^2\left(\frac{\alpha}{2}\right)\bar{T} + \sinh(\alpha)j\cdot\bar{j}$$
$$\bar{T}_{(\alpha)} = \cosh^2\left(\frac{\alpha}{2}\right)\bar{T} + \sinh^2\left(\frac{\alpha}{2}\right)T + \sinh(\alpha)j\cdot\bar{j}$$

Automorphism induces a mixing of left & right sectors

Continuous integrably marginal $j \cdot \overline{j}$ deformations

In terms of energy & momentum densities:

$$\bar{T}_{(\alpha)} = \frac{1}{2} \left(H_{(\alpha)} + P \right)$$
$$T_{(\alpha)} = \frac{1}{2} \left(H_{(\alpha)} - P \right)$$

$$P_{(\alpha)}=ar{j}_{(\alpha)}^2-j_{(\alpha)}^2=P$$
 : invariant [has to be]

$$H_{(\alpha)} = j_{(\alpha)}^2 + \bar{j}_{(\alpha)}^2 = \cosh(\alpha)H + 2\sinh(\alpha)j\cdot\bar{j}$$

In the energy-momentum basis : $k^{I}_{(\alpha)(\pm)} = \bar{j}^{I}_{(\alpha)} \pm j^{I}_{(\alpha)}$

so that

$$k^{I}_{(\alpha)(\pm)} = e^{\pm \alpha/2} k^{I}_{(\pm)}$$

The original algebra does not change : [trivial deformation] [both sets $\{H_{(\alpha)}; P, k^I_{(\alpha)(+)}, k^I_{(-)}\}$ & $\{H; P, k^I_{(+)}, k^I_{(-)}\}$: same algebra]

Int. marginal $j \cdot \overline{j}$ deformations: limiting cases

Useful to rescale
$$H_{(\alpha)} = \cosh(\alpha) H + 2\sinh(\alpha) j \cdot \overline{j}$$

according to : $\tilde{\mathcal{H}}_{(\alpha)} := \frac{H_{(\alpha)}}{\cosh(\alpha)} = H + 2\tanh(\alpha) j \cdot \overline{j}$
equivalently : $\tilde{\mathcal{H}}_{(\alpha)} = \frac{1}{2} (1 + \tanh(\alpha)) k_{(+)}^2 + \frac{1}{2} (1 - \tanh(\alpha)) k_{(-)}^2$

Relevant commutators :
$$\begin{bmatrix} J_m, \tilde{\mathcal{H}}_{(\alpha)n} \end{bmatrix} = (m-n) \tilde{\mathcal{H}}_{(\alpha)m+n} ,$$
$$\begin{bmatrix} \tilde{\mathcal{H}}_{(\alpha)m}, \tilde{\mathcal{H}}_{(\alpha)n} \end{bmatrix} = \cosh^{-2} (\alpha) (m-n) J_{m+n} \\\\\begin{bmatrix} \tilde{\mathcal{H}}_{(\alpha)n}, k^{\mu}_{(+)m} \end{bmatrix} = -(1-\tanh(\alpha)) m k^{\mu}_{(-)m+n} \\\\\begin{bmatrix} \tilde{\mathcal{H}}_{(\alpha)n}, k^{\mu}_{(-)m} \end{bmatrix} = -(1+\tanh(\alpha)) m k^{\mu}_{(+)m+n}$$

when $\alpha \to \pm \infty$ one recovers the BMS3 algebra with currents

Int. marginal $j \cdot \overline{j}$ deformations: limiting cases

$$\tilde{\mathcal{H}}_{(\alpha)} = \frac{1}{2} \left(1 + \tanh(\alpha) \right) k_{(+)}^2 + \frac{1}{2} \left(1 - \tanh(\alpha) \right) k_{(-)}^2$$

$$\begin{bmatrix} J_m, \tilde{\mathcal{H}}_{(\alpha)n} \end{bmatrix} = (m-n) \tilde{\mathcal{H}}_{(\alpha)m+n}, \qquad \begin{bmatrix} \tilde{\mathcal{H}}_{(\alpha)n}, k^{\mu}_{(+)m} \end{bmatrix} = -(1-\tanh(\alpha)) m k^{\mu}_{(-)m+n} \\ \begin{bmatrix} \tilde{\mathcal{H}}_{(\alpha)m}, \tilde{\mathcal{H}}_{(\alpha)n} \end{bmatrix} = \cosh^{-2}(\alpha) (m-n) J_{m+n} \qquad \begin{bmatrix} \tilde{\mathcal{H}}_{(\alpha)n}, k^{\mu}_{(-)m} \end{bmatrix} = -(1+\tanh(\alpha)) m k^{\mu}_{(+)m+n}$$

when $\alpha \to \pm \infty$ one recovers the BMS3 algebra with currents

$$\begin{bmatrix} P_m, P_n \end{bmatrix} = (m-n) P_{m+n}, \qquad \begin{bmatrix} P, k_{(\pm)m}^I \end{bmatrix} = -mk_{(\pm)m+n}^I,$$

$$\begin{bmatrix} P_m, H_{(\pm)n} \end{bmatrix} = (m-n) H_{(\pm)m+n}, \qquad \begin{bmatrix} H_{(\pm)m}, k_{(\pm)m}^I \end{bmatrix} = 0,$$

$$\begin{bmatrix} I_{(\pm)m}, k_{(\pm)n}^J \end{bmatrix} = 2mg^{IJ}\delta_{m+n,0}, \qquad \begin{bmatrix} H_{(\pm)m}, k_{(\pm)m}^I \end{bmatrix} = -2mk_{(\pm)m+n}^I,$$

$$\begin{bmatrix} I_{(\pm)m}, k_{(\pm)m}^I \end{bmatrix} = 0$$

$$\begin{bmatrix} I_{(\pm)m}, k_{(\pm)m}^I \end{bmatrix} = 0$$

electric- & magnetic-like generators recovered

$$\tilde{\mathcal{H}}_{(\pm\infty)} = H_{(\pm)} = H \pm 2j \cdot \bar{j} = k_{(\pm)}^2$$

Full conformal symmetry retained, in 2 alternative ultrarelativistic regimes

Beyond the bound : |g|>2

After a suitable rescaling of $H_{(g)} = H + g \ j \cdot \overline{j}$

Euclidean version of the conformal algebra with currents :

$$\left[\tilde{\mathcal{H}}_{(g)m}, \tilde{\mathcal{H}}_{(g)n}\right] = -(m-n)J_{m+n}$$

[sign change at r.h.s.]

However, not a thermal version of the original (undeformed) CFT2

For a generic gauge choice (not conformal gauge) :

$$I_{(g)} = \int d^2\sigma \left[\Pi \cdot \dot{X} - N \tilde{\mathcal{H}}_{(g)} - N^{\phi} P \right]$$

[missing additional "i" in the action: not a thermal theory !] [deformation does not implement the corresponding Wick rotation] -

Deformations & the Polyakov action

$$I = -\frac{T}{2} \int d^2 \sigma \, \sqrt{-h} h^{\alpha\beta} \partial_\alpha X \cdot \partial_\beta X$$

Deformed Hamiltonian action :

$$I_{(g)} = \int d^2\sigma \,\left[\Pi \cdot \dot{X} - NH_{(g)} - N_{\phi}P\right]$$

$$H_{(g)} = H + g \ j \cdot \overline{j}$$

$$H = \frac{1}{2T} \left(\Pi^2 + T^2 X'^2 \right) ,$$
$$P = \Pi \cdot X' ,$$
$$j \cdot \bar{j} = \frac{1}{4T} \left(\Pi^2 - T^2 X'^2 \right)$$

$$I_{(g)} = \int d^2 \sigma \, \left[\Pi \cdot \dot{X} - \frac{N}{2T} \left\{ \left(1 + \frac{g}{2} \right) \Pi^2 + \left(1 - \frac{g}{2} \right) T^2 X'^2 \right\} - N_\phi \Pi \cdot X' \right]$$

Deformed Hamiltonian action

$$I_{(g)} = \int d^2 \sigma \,\left[\Pi \cdot \dot{X} - \frac{N}{2T} \left\{ \left(1 + \frac{g}{2} \right) \Pi^2 + \left(1 - \frac{g}{2} \right) T^2 X'^2 \right\} - N_\phi \Pi \cdot X' \right]$$

$$\Pi^{\mu} = \frac{T}{N} \left(1 + \frac{g}{2} \right)^{-1} \left(\dot{X}^{\mu} - N_{\phi} X^{\prime \mu} \right)$$

Warning for g = -2 : [not well-defined for magnetic-like BMS₃]

Back into the Hamiltonian action : [Lagrangian action]

$$I_{(g)} = -\frac{T}{2} \left(1 + \frac{g}{2} \right)^{-1} \int d^2 \sigma \ N^{-1} \left[-\dot{X}^2 + 2N_\phi \dot{X} \cdot X' - \left\{ N_\phi^2 - \left(1 - \frac{g^2}{4} \right) N^2 \right\} X'^2 \right] \right]$$

Inverse wordsheet metric & metric determinant :

$$h^{\alpha\beta} = \begin{pmatrix} -1 & N_{\phi} \\ N_{\phi} - \left[N_{\phi}^2 - \left(1 - \frac{g^2}{4} \right) N^2 \right] \end{pmatrix} \qquad h = -\left(1 - \frac{g^2}{4} \right)^{-1} N^{-2}$$

$$I_{(g)} = -\frac{T}{2} \left(1 + \frac{g}{2} \right)^{-1} \int d^2 \sigma \ N^{-1} \left[-\dot{X}^2 + 2N_\phi \dot{X} \cdot X' - \left\{ N_\phi^2 - \left(1 - \frac{g^2}{4} \right) N^2 \right\} X'^2 \right] \right]$$
$$h^{\alpha\beta} = \begin{pmatrix} -1 & N_\phi \\ N_\phi - \left[N_\phi^2 - \left(1 - \frac{g^2}{4} \right) N^2 \right] \end{pmatrix} \qquad h = -\left(1 - \frac{g^2}{4} \right)^{-1} N^{-2}$$

Three cases : sign(h)

$$|g| < 2$$
 Lorentzian metric : $\sqrt{\left(1 - \frac{g^2}{4}\right)}\sqrt{-h} = N^{-1}$

Same Polyakov action

[just rescaling tension]

equivalently

$$I_{(g)} = -\frac{T_{(g)}}{2} \int d^2 \sigma \ \sqrt{h} h^{\alpha\beta} \partial_\alpha X \cdot \partial_\beta X$$

$$T_{(g)} = T\sqrt{\frac{2-g}{2+g}}$$

 $T_{(\alpha)} = Te^{-\alpha}$

 $g = 2 \tanh \alpha$

[parameter of the SO(1,1) automorphism]

$$I_{(g)} = -\frac{T}{2} \left(1 + \frac{g}{2} \right)^{-1} \int d^2 \sigma \ N^{-1} \left[-\dot{X}^2 + 2N_\phi \dot{X} \cdot X' - \left\{ N_\phi^2 - \left(1 - \frac{g^2}{4} \right) N^2 \right\} X'^2 \right] \right]$$
$$h^{\alpha\beta} = \begin{pmatrix} -1 & N_\phi \\ N_\phi - \left[N_\phi^2 - \left(1 - \frac{g^2}{4} \right) N^2 \right] \end{pmatrix} \qquad h = -\left(1 - \frac{g^2}{4} \right)^{-1} N^{-2}$$

Three cases : sign(h)

$$|g|=2$$
 Degenerate metric : $h=0$

For g = 2 : tension can be gauged away

[electric-like deformation = tensionless string]

Note that the analysis is not valid for g = -2 !

[Magnetic-like deformation cannot be attained from this Lagrangian action]

$$I_{(g)} = -\frac{T}{2} \left(1 + \frac{g}{2} \right)^{-1} \int d^2 \sigma \ N^{-1} \left[-\dot{X}^2 + 2N_\phi \dot{X} \cdot X' - \left\{ N_\phi^2 - \left(1 - \frac{g^2}{4} \right) N^2 \right\} X'^2 \right] \right]$$
$$h^{\alpha\beta} = \begin{pmatrix} -1 & N_\phi \\ N_\phi - \left[N_\phi^2 - \left(1 - \frac{g^2}{4} \right) N^2 \right] \end{pmatrix} \qquad h = -\left(1 - \frac{g^2}{4} \right)^{-1} N^{-2}$$

Three cases :

Euclidean metric :

$$\sqrt{\left(\frac{g^2}{4} - 1\right)}\sqrt{h} = N^{-1}$$

" Euclidean " Polyakov action :

$$I_{(g)} = -\frac{T_{(g)}^E}{2} \int d^2 \sigma \ \sqrt{h} h^{\alpha\beta} \partial_\alpha X \cdot \partial_\beta X$$

[just rescaling tension]

$$T_{(g)}^E = T\sqrt{\frac{g-2}{g+2}}$$

Missing overall " i " : not a thermal theory [deformation does not implement the Wick rotation]