

## BMS3 (Carrollian) field theories from a bound in the coupling of current-current deformations of CFT2

Ricardo Troncoso (CECs \& USS) Valdivia, Chile
In collaboration with : Pulastya Parekh (CECs \& USS) Valdivia, Chile David Tempo (UCT) Temuco, Chile
based on arXiv 2307.06367 [hep-th] (JHEP)

Carroll Workshop (3 ${ }^{\text {rd }}$ edition)
[ Thessaloniki, Oct. 2023 ]

## Conformal symmetries in D dimensions

Diffeomorphisms preserving flat spacetime, up to local scalings

$$
d s^{2} \rightarrow \Omega^{2} d s^{2}
$$

Conformal Killing eq. :

$$
\nabla_{\mu} \xi_{\nu}+\nabla_{\nu} \xi_{\mu}=\lambda g_{\mu \nu}
$$

D > 2 :

$$
J_{\mu \nu}, P_{\mu} ; D, K_{\mu}
$$

Isomorphic to $s o(D, 2): \frac{(D+2)(D+1)}{2}$ generators

## Conformal symmetries in 2D

Infinite-dimensional algebra :
Two copies of the Witt (or centerless Virasoro) algebra
Isomorphic to $\operatorname{Diff}\left(S^{1}\right) \oplus \operatorname{Diff}\left(S^{1}\right)$

$$
\begin{aligned}
& {\left[L_{m}, L_{n}\right]=(m-n) L_{m+n}} \\
& {\left[\bar{L}_{m}, \bar{L}_{n}\right]=(m-n) \bar{L}_{m+n}}
\end{aligned}
$$

with $\left[L_{m}, \bar{L}_{n}\right]=0$ and $m, n \in Z$

## Ultra \& non-relativistic limits

Another accident in 2D :
ultra \& non-relativistic limits are isomorphic !

relativistic

non-relativistic (Galilean)
$c \rightarrow \infty$
ultra-relativistic (Carrollian)

$$
c \rightarrow 0
$$

## Ultra \& non-relativistic limits

Another accident in 2D :
ultra \& non-relativistic limits are isomorphic !

Corresponding algebras are isomorphic $\mathrm{GCA}_{2} \approx \mathrm{CCA}_{2}$

Additional curiosity :
ultra/non-relativistic algebras isomorphic to BMS3
[ asymptotic symmetries of asymptotically flat spacetimes in 3D ]

In sum :
$\mathrm{GCA}_{2} \approx \mathrm{CCA}_{2} \approx \mathrm{BMS}_{3}$

## BMS3 algebra

Semidirect sum of Witt algebra and supertranslations

$$
\begin{aligned}
{\left[J_{m}, J_{n}\right] } & =(m-n) J_{m+n} \\
{\left[J_{m}, P_{n}\right] } & =(m-n) P_{m+n} \\
\text { where }\left[P_{m}, P_{n}\right] & =0
\end{aligned}
$$

Appears in different contexts, e.g., tensionless limit of strings Admits unitary representations

## Inonu-Wigner contractions

Conformal and BMS3 algebras are not isomorphic

$$
P_{m}=\frac{1}{\ell}\left(L_{m}+\bar{L}_{-m}\right) \quad J_{m}=L_{m}-\bar{L}_{-m}
$$

In the limit $\ell \rightarrow \infty$ BMS $_{3}$ is recovered

$$
P_{m}=\ell\left(L_{m}-\bar{L}_{m}\right), J_{m}=L_{m}+\bar{L}_{m}
$$

In the limit $\quad \ell \rightarrow 0 \quad$ BMS $_{3}$ is also recovered
$\ell:$ regarded as the inverse of the speed of light

## Outline

- Introduction:
- current-current $(j \cdot \bar{j}) \& \sqrt{T T}$ deformations of CFT2's
- BMS3 field theories from finite $j \cdot \bar{j}$ deformations
- Coupling precisely fixed, up to a sign
- 2 inequivalent ones : electric-like and magnetic-like
- Finite $j \cdot \bar{j}$ deformations of the bosonic string
- Electric-like deformation
[ standard tensionless limit (Carrollian electric-type) ]
- Magnetic-like deformation
[ new action : nonstandard limits in the tension ( zero or infinity !)]


## Outline

- BMS3 deformations from limiting cases of continuous exactly (integrably) marginal $j \cdot \bar{j}$ deformations
- SO(1,1) automorphism of the currents
- Bound in the coupling (def. parameter)
- Ending remarks
- Beyond the bound: "Euclidean CFT2's" [ not thermal!]
- Deformations \& the Polyakov action


## Introduction

- Continuous $j \cdot \bar{j}$ deformations

Chaudhuri, Schwartz [ PLB 1989]

- Deformations by "integrably marginal" operators [ exactly marginal ]
- Lagrangian deformed by addition of op. of conf. dim. $(1,1)$
- Continuous coupling (deformation parameter)
- Preserves conformal symmetry
- CFT2's with (left \& right) Kac-Moody currents [(anti)-holomorphic)]

$$
\left[J_{m}^{a}, J_{n}^{b}\right]=f_{c}^{a b} J_{m+n}^{c}+n g^{a b} \delta_{m+n, 0} \quad \text { same for } \bar{J}_{m}^{a}
$$

## Introduction

- Continuous $j \cdot \bar{j}$ deformations

Deformations of the form

$$
g \tilde{c}_{I J} J^{I} \bar{J}^{J}
$$

integrably marginal iff :
$J^{I}, \bar{J}^{J}$ stand for the subset of Abelian currents (Cartan subalgebra)
(Abelian currents preserved under the deformation)

- Valid to all orders in the def. parameter ( finite $g$ )
- holds for finite values in certain classes of CFT2
- True for arbitrarily large $g$ ?
- CFT2 moduli spaces with boundary in case of a bound in $g$ ?
- Simple example (single free boson) yields a bound!


## Introduction

- Example taken from overlapping case of $j \cdot \bar{j} \& \sqrt{T \bar{T}}$ deformations of CFT2

Finite :
[ Rodriguez, Tempo, Troncoso, arxiv:2106.09750 (JHEP) ]
Continuous:
[ Tempo, Troncoso, arxiv:2210.00059 (JHEP) ]

- QFT2 $\sqrt{T \bar{T}}$ deformation from a Lagrangian flow eq. :
[ Conti, Romano, Tateo [2206.03415] (JHEP)]
[ Ferko, Sfondrini, Smith, Tartaglino-Mazzucchelli [2206.10515] (PRL) ]
[ Babaei-Aghbolagh, Babaei Velni, Yekta, Mohammadzadeh [2206.12677] (PRD)]
( also Hou [2208.05391] (JHEP) )


## Conformal algebra in 2D (continuum)

$$
\begin{aligned}
& {\left[L_{m}, L_{n}\right]=(m-n) L_{m+n}} \\
& \left.\left[\bar{L}_{m}, \bar{L}_{n}\right]=(m-n) \bar{L}_{m+n}\right]
\end{aligned}
$$

with $\left[L_{m}, \bar{L}_{n}\right]=0$ and $m, n \in Z$
Fourier modes:

$$
L_{m}=\int d \phi \bar{T}(\phi) e^{-i m \phi}, \bar{L}_{m}=\int d \phi T(\phi) e^{i m \phi}
$$

Equivalently :

$$
\begin{aligned}
\{T(\varphi), T(\theta)\} & =\left(2 T(\varphi) \partial_{\varphi}+\partial_{\varphi} T(\varphi)\right) \delta(\varphi-\theta) \\
\{\bar{T}(\varphi), \bar{T}(\theta)\} & =-\left(2 \bar{T}(\varphi) \partial_{\varphi}+\partial_{\varphi} \bar{T}(\varphi)\right) \delta(\varphi-\theta)
\end{aligned}
$$

with $\left\{T(\phi), \bar{T}\left(\phi^{\prime}\right)\right\}=0$, and $[\cdot, \cdot]=i\{\cdot, \cdot\}$

## Introduction

- Example taken from overlapping case of $j \cdot \bar{j} \& \sqrt{T \bar{T}}$ deformations
[ Rodriguez, Tempo, Troncoso, arxiv:2106.09750 (JHEP)]
[ Tempo, Troncoso, arxiv:2210.00059 (JHEP) ]


## Brief review of $\sqrt{T \bar{T}}$ deformations

- BMS3 from a nonlinear map of the conformal algebra in 2D

$$
H_{( \pm)}=T+\bar{T} \pm 2 \sqrt{T \bar{T}} \quad ; \quad P=\bar{T}-T
$$

- Not marginal, but still conformal defs. ( ultrarelativistic CFTs!)
- Both sets $\left\{H_{(+)}, P\right\}$ and $\left\{H_{(-)}, P\right\}$ fulfill the BMS3 algebra
- [ no limiting process involved!]
- Related by $H_{(+)} H_{(-)}=P^{2}$
[discrete nonlinear automorphism of BMS3]


## Introduction

Brief review of $\sqrt{T \bar{T}}$ deformations
BMS3 generators from a limiting case :

- Continuous nonlinear automorphism of the conformal algebra in 2D

$$
H_{(\alpha)}=\cosh (\alpha)(T+\bar{T})+2 \sinh (\alpha) \sqrt{T \bar{T}}
$$

Conformal algebra is preserved

- Then rescaling $\quad \tilde{H}_{(\alpha)}:=\frac{H_{(\alpha)}}{\cosh (\alpha)}=T+\bar{T}+2 \tanh (\alpha) \sqrt{T \bar{T}}$

$$
\text { when } \alpha \rightarrow \pm \infty \quad \tilde{H}_{( \pm \infty)}=H_{( \pm)}
$$

BMS3 supertranslation generators recovered
[ def. with coupling $g= \pm 2$ ]

## Introduction

The continuous deformation

$$
I_{(\alpha)}=I_{(0)}+2 \tanh (\alpha) \int d \tilde{t} d \phi \sqrt{T \bar{T}}
$$

generically preserves the conformal symmetry
unless, $\alpha \rightarrow \pm \infty(g= \pm 2)$

$$
I_{( \pm)}=I_{(0)} \pm 2 \int d \tilde{t} d \phi \sqrt{T \bar{T}}
$$

Marginal def. becomes nontrivial (2 different ultrarelativistic regimes)
[ Conformal symmetry deforms to BMS3 ]
[ Conformal Carrolian field theory $(c \rightarrow 0)$ ] $\quad \mathrm{GCA}_{2} \approx \mathrm{CCA}_{2} \approx \mathrm{BMS}_{3}$

## Introduction

$\sqrt{T \bar{T}}$-deformed single free boson

$$
\begin{gathered}
I_{(0)}[\varphi]=-\frac{1}{2} \int d^{2} x \sqrt{-g} \partial_{\mu} \varphi \partial^{\mu} \varphi \\
T=j^{2} ; \bar{T}=\bar{j}^{2}
\end{gathered}
$$

Hence

$$
\sqrt{T \bar{T}}= \pm J \bar{J}
$$

Continuous $\sqrt{T \bar{T}}$ deformation remains conformal
Trivial: just a rescaling of the action : $I_{(\alpha)}=e^{\alpha} I_{(0)}$
Lagrangian flow $\sqrt{T \bar{T}}$-deformation for the free boson
[ Conti, Romano, Tateo [2206.03415] (JHEP) ]
[ Ferko, Sfondrini, Smith, Tartaglino-Mazzucchelli [2206.10515] (PRL) ]
[ Babaei-Aghbolagh, Babaei Velni, Yekta, Mohammadzadeh [2206.12677] (PRD)]
( also Hou [2208.05391] (JHEP) )

## Introduction

In sum: $\sqrt{T \bar{T}}$-deformed single free boson

$$
I_{(0)}[\varphi]=-\frac{1}{2} \int d^{2} x \sqrt{-g} \partial_{\mu} \varphi \partial^{\mu} \varphi \quad \sqrt{T \bar{T}}=j \bar{j}
$$

- Generic deformation : [ Tempo, Troncoso, arxiv:2210.00059 (JHEP) ]
- Bound in the coupling $|g| \leq 2$
- If $|g|<2$, the conformal symmetry remains [ trivial deformation ]
- when saturated ( $g= \pm 2$ ) one obtains

$$
I_{(+)}=\int d x^{2}\left(\pi \dot{\varphi}-\pi^{2}\right) \quad I_{(-)}=\int d x^{2}\left(\pi \dot{\varphi}-\varphi^{\prime 2}\right)
$$

[ Rodriguez, Tempo, Troncoso, arxiv:2106.09750 (JHEP) ]
Carrollian limits $(c \rightarrow 0)$ of electric \& magnetic type [Henneaux, Salgado-Rebolledo, arxiv: 2109.06708 (JHEP) ]

- We aim to extend the result fom $\mathbf{N}+\mathbf{N}$ abelian currents
- Some previous results along these lines in
[ Bagchi, Banerjee, Muraki, arxiv: 2205.05094 (JHEP) ]
[ "infinite boosts" spanned by certain degenerate (non-invertible) linear transformations acting on the coordinates ]
[ different approach here: agreement for some results on electric-like deformations ]


## Bosonic toroidal CFT2's

- Starting point:

N chiral \& antichiral (holomorphic \& antiholomorphic) abelian currents :

$$
\begin{gathered}
\left\{j^{I}(x), j^{J}(y)\right\}=-g^{I J} \partial_{x} \delta(x-y) \\
\left\{\bar{j}^{I}(x), \bar{j}^{J}(y)\right\}=g^{I J} \partial_{x} \delta(x-y)
\end{gathered}
$$

Stress-energy tensor components :

$$
\bar{T}=\bar{j}^{2} \quad T=j^{2}
$$

Hereafter: $A \cdot B=g_{I J} A^{I} B^{J}$ and $A^{2}=g_{I J} A^{I} A^{J}$
Mode expansion: $\quad j^{I}(\phi)=\frac{1}{2} \sum_{n} \bar{j}_{n}^{I} e^{-i n \phi} \quad \bar{j}^{I}(\phi)=\frac{1}{2} \sum_{n} j_{n}^{I} e^{i n \phi}$

$$
T(\phi)=\frac{1}{2} \sum \bar{L}_{n} e^{-i n \phi} \quad \bar{T}(\phi)=\frac{1}{2} \sum_{n} L_{n} e^{i n \phi}
$$

- Thus,

$$
L_{n}=\frac{1}{2} \sum_{k} j_{n-k} \cdot j_{k}
$$

(similarly for $\bar{L}_{n}$ )

## Conformal algebra with currents

Thus,

$$
L_{n}=\frac{1}{2} \sum_{k} j_{n-k} \cdot j_{k} \quad \bar{L}_{k}=\frac{1}{2} \sum_{n} \bar{j}_{n} \cdot \bar{j}_{k-n}
$$

- Algebra: 2 copies of the semidirect sum of Witt with currents

$$
\begin{aligned}
{\left[L_{m}, L_{n}\right] } & =(m-n) L_{m+n} \\
{\left[L_{n}, j_{m}^{I}\right] } & =-m j_{m+n}^{I} \\
{\left[j_{n}^{I}, j_{m}^{J}\right] } & =n g^{\mu \nu} \delta_{m+n, 0}
\end{aligned}
$$

$\bar{L}_{m}$ and $\bar{j}_{m}^{I}$ fulfill the same algebra

Here and afterwards: $[\cdot, \cdot]=i\{\cdot, \cdot\}$

## Change of basis

Energy $H=\bar{T}+T$; Momentum density $\quad P=\bar{T}-T$
Also $k_{( \pm)}^{I}=\bar{j}^{I} \pm j^{I}$

- Remarks: Under parity $(\sigma \rightarrow-\sigma) j^{I}$ and $\overline{j^{I}}$ are swapped

$$
k_{(+)}^{I} \rightarrow k_{(+)}^{I}(\text { even }), k_{(-)}^{I} \rightarrow-k_{(-)}^{I}(\text { odd })
$$

- Note that: $\quad H=j^{2}+\bar{j}^{2}=\frac{1}{2}\left(k_{(+)}^{2}+k_{(-)}^{2}\right)$

$$
P=j^{2}-\bar{j}^{2}=k_{(+)} \cdot k_{(-)}
$$

- In modes :

$$
\begin{aligned}
& H_{n}=L_{n}+\bar{L}_{-n} \quad P_{n}=L_{n}-\bar{L}_{-n} \\
& k_{( \pm) n}^{I}=j_{n}^{I} \pm \bar{j}_{-n}^{I}
\end{aligned}
$$

## Algebra in the energy-momentum basis

$$
H_{n}=\frac{1}{4} \sum_{m} k_{(+) n-m} \cdot k_{(+) m}+\frac{1}{4} \sum_{m} k_{(-) n-m} \cdot k_{(-) m} \quad P_{n}=\frac{1}{2} \sum_{m} k_{(+) n-m} \cdot k_{(-) m}
$$

- In the base $\quad H_{n}=L_{n}+\bar{L}_{-n} \quad P_{n}=L_{n}-\bar{L}_{-n} \quad k_{( \pm) n}^{I}=j_{n}^{I} \pm \bar{j}_{-n}^{I}$

The algebra reads ( semidirect sum of conf. with currents )

$$
\begin{aligned}
& {\left[P_{m}, P_{n}\right]=(m-n) P_{m+n},} \\
& {\left[P_{m}, H_{n}\right]=(m-n) H_{m+n},} \\
& {\left[H_{m}, H_{n}\right]=(m-n) P_{m+n},} \\
& {\left[k_{(+) m}^{I}, k_{(-) n}^{J}\right]=2 m g^{I J} \delta_{m+n, 0},} \\
& {\left[k_{( \pm) m}^{I}, k_{( \pm) n}^{J}\right]=0}
\end{aligned}
$$

$$
\begin{aligned}
{\left[P, k_{( \pm) m}^{I}\right] } & =-m k_{( \pm) m+n}^{I} \\
{\left[H_{n}, k_{(+) m}^{I}\right] } & =-m k_{(-) m+n}^{I} \\
{\left[H_{n}, k_{(-) m}^{I}\right] } & =-m k_{(+) m+n}^{I}
\end{aligned}
$$

## BMS3 from finite $j \cdot \bar{j}$ deformations

Consider 2 inequivalent finite $j \cdot \bar{j}$ deformations of $\mathbf{H}$, $H_{(+)}$and $H_{(-)}$:

$$
H_{( \pm)}=T+\bar{T} \pm 2 j \cdot \bar{j}
$$

equivalently:

$$
H_{( \pm)}=k_{( \pm)}^{2}
$$

In modes:

$$
\begin{aligned}
& H_{( \pm) n}=L_{n}+\bar{L}_{-n} \pm \sum_{k} j_{n+k} \cdot \bar{j}_{k} \\
& H_{( \pm) n}=\frac{1}{2} \sum_{m} k_{( \pm) n-m} \cdot k_{( \pm) m}
\end{aligned}
$$

$H_{(+)}$: electric-like ; $\quad H_{(-)}$: magnetic-like
[ Energy density from square of vector or pseudovector ]

## BMS3 from finite $j \cdot \bar{j}$ deformations

Both sets: $\quad\left\{H_{(+)} ; P, k_{(+)}^{I}, k_{(-)}^{I}\right\}$ (electric-like) and

$$
\left\{H_{(-)} ; P, k_{(+)}^{I}, k_{(-)}^{I}\right\} \quad \text { (magnetic-like) }
$$

yield to the BMS3 algebra

## Algebra (both cases):

$$
\begin{aligned}
{\left[P_{m}, P_{n}\right] } & =(m-n) P_{m+n}, \\
{\left[P_{m}, H_{( \pm) n}\right] } & =(m-n) H_{( \pm) m+n}, \\
{\left[H_{( \pm) m}, H_{( \pm) n}\right] } & =0 \\
{\left[k_{(+) m}^{I}, k_{(-) n}^{J}\right] } & =2 m g^{I J} \delta_{m+n, 0}, \\
{\left[k_{( \pm) m}^{I}, k_{( \pm) n}^{J}\right] } & =0
\end{aligned}
$$

$$
\begin{aligned}
{\left[P, k_{( \pm) m}^{I}\right] } & =-m k_{( \pm) m+n}^{I} \\
{\left[H_{( \pm) n}, k_{( \pm) m}^{I}\right] } & =0 \\
{\left[H_{(+) n}, k_{(-) m}^{I}\right] } & =-2 m k_{(+) m+n}^{I}, \\
{\left[H_{(-) n}, k_{(+) m}^{I}\right] } & =-2 m k_{(-) m+n}^{I},
\end{aligned}
$$

## BMS3 from finite $j \cdot \bar{j}$ deformations

Therefore : $\quad I_{C F T}=\int d^{2} x(\Pi \dot{\Phi}-H) \quad$ [ conformal gauge ]
$\Phi$ and $\Pi$ collectively denote the fields and their momenta

Finite $j \cdot \bar{j}$ electric- \& magnetic-like deformed actions
with $\quad H_{( \pm)}=H \pm 2 j \cdot \bar{j}$, are inv. under BMS3

$$
I_{B M S}^{( \pm)}=\int d^{2} x\left(\Pi \dot{\Phi}-H_{( \pm)}\right)
$$

## BMS3 from finite $j \cdot \bar{j}$ deformations

$$
\begin{aligned}
I_{C F T} & =\int d^{2} x(\Pi \dot{\Phi}-H) \\
I_{B M S}^{( \pm)} & =\int d^{2} x\left(\Pi \dot{\Phi}-H_{( \pm)}\right)
\end{aligned} \quad H_{( \pm)}=H \pm 2 j \cdot \bar{j}
$$

No limiting process involved!
Advantage: quantization can be carried out from the same rep. space of the original currents $j_{n}^{I}, \bar{j}_{n}^{I}$

## Finite $j \cdot \bar{j}$ deformations: bosonic string

- Polyakov action :

$$
I=-\frac{T}{2} \int d^{2} \sigma \sqrt{-h} h^{\alpha \beta} \partial_{\alpha} X \cdot \partial_{\beta} X
$$

- Hamiltonian action :

$$
I=\int d^{2} \sigma\left[\Pi \cdot \dot{X}-N H-N_{\phi} P\right]
$$

- Constraints \& field eqs. :

$$
\begin{aligned}
H & =\frac{1}{2 T}\left(\Pi^{2}+T^{2} X^{\prime 2}\right) \\
P & =\Pi \cdot X^{\prime}
\end{aligned}
$$

$$
\dot{X}^{\mu}=\frac{1}{T} N \Pi^{\mu}+N^{\phi} X^{\mu \prime},
$$

$$
\dot{\Pi}_{\mu}=T\left(N X_{\mu}^{\prime}\right)^{\prime}+\left(N^{\phi} \Pi_{\mu}\right)^{\prime}
$$

## Finite $j \cdot \bar{j}$ deformations: bosonic string

$$
I=\int d^{2} \sigma\left[\Pi \cdot \dot{X}-N H-N_{\phi} P\right] \quad H=\frac{1}{2 T}\left(\Pi^{2}+T^{2} X^{\prime 2}\right),
$$

- Currents :

$$
j^{\mu}=\frac{1}{2 \sqrt{T}}\left(\Pi^{\mu}-T X^{\mu \prime}\right) \quad \bar{j}^{\mu}=\frac{1}{2 \sqrt{T}}\left(\Pi^{\mu}+T X^{\mu \prime}\right)
$$

conserved on-shell

$$
\dot{j}_{ \pm}^{\mu}=\left[\left(N^{\phi} \pm N\right) j_{ \pm}^{\mu}\right]^{\prime}
$$

- Note that

$$
k_{( \pm)}^{I}=\bar{j}^{I} \pm j^{I}
$$

$$
\begin{aligned}
k_{(+)}^{\mu} & =\frac{1}{\sqrt{T}} \Pi^{\mu} \\
k_{(-)}^{\mu} & =\sqrt{T} X^{\mu \prime}
\end{aligned}
$$

## Bosonic string: finite def. [electric-like]

$$
H=\frac{1}{2 T}\left(\Pi^{2}+T^{2} X^{\prime 2}\right) \quad j \cdot \bar{j}=\frac{1}{4 T}\left(\Pi^{2}-T^{2} X^{\prime 2}\right) \quad k_{(+)}^{\mu}=\frac{1}{\sqrt{T}} \Pi^{\mu}
$$

- Hamiltonian :

$$
H_{(+)}=H+2 j \cdot \bar{j}=k_{(+)}^{2}=\frac{1}{T} \Pi^{2}
$$

- Electric-like action :

$$
I_{(+)}=\int d^{2} \sigma\left[\Pi \cdot \dot{X}-N H_{(+)}-N^{\phi} P\right]
$$

$$
I_{(+)}=\int d^{2} \sigma\left[\Pi \cdot \dot{X}-N_{(+)} \Pi^{2}-N^{\phi} P\right]
$$

with $N_{(+)}=N T^{-1}$ [ tension gauged away ]

Standard tensionless string
Recovered from the electric-like deformation

## Bosonic string: tensionless limit

$$
I_{(+)}=\int d^{2} \sigma\left[\Pi \cdot \dot{X}-N_{(+)} \Pi^{2}-N^{\phi} P\right]
$$

Standard tensionless string recovered from the electric-like def.

$$
I=\int d^{2} \sigma\left[\Pi \cdot \dot{X}-N H-N_{\phi} P\right] \quad \begin{aligned}
& H=\frac{1}{2 T}\left(\Pi^{2}+T^{2} X^{\prime 2}\right), \\
& P=\Pi \cdot X^{\prime},
\end{aligned}
$$

Rescaling lapse as $N=2 \tilde{N}_{(+)} T$, and then $T \rightarrow 0$
One obtains $I_{(+)}$with $\tilde{N}_{(+)}$[ compare with $N_{(+)}=N T^{-1}$ ]
[ tension is gauged away in a different form ]

- Similar limit as that in of Henneaux \& Salgado-Rebolledo: [ arxiv: 2109.06708 (JHEP) ]
Electric-like action (tensionless string) can also be seen to agree with the Carrolian limit $(c \rightarrow 0)$ of electric-type


## [Electric-like] $j \cdot \bar{j}$ string def.: Lagrangian

- Remarks about

$$
I_{(+)}=\int d^{2} \sigma\left[\Pi \cdot \dot{X}-N_{(+)} \Pi^{2}-N^{\phi} \Pi \cdot X^{\prime}\right]
$$

replacing $\Pi^{\mu}=\frac{1}{2 N_{(+)}}\left(\dot{X}^{\mu}-N^{\phi} X^{\prime \mu}\right)$ back into the Hamilt. action:

$$
\begin{aligned}
I_{(+)} & =\int d^{2} \sigma \frac{1}{4 N_{(+)}}\left[\dot{X}-N_{\phi} X^{\prime \prime}\right]^{2} \\
& =\int d^{2} \sigma \mathscr{V}^{\alpha} \mathscr{V}^{\beta} \partial_{\alpha} X \cdot \partial_{\beta} X .
\end{aligned}
$$

- Lagrangian action in terms of a vector density of weight $1 / 2$

$$
\mathscr{V}^{\alpha}=\frac{1}{2 \sqrt{N_{(+)}}}\binom{1}{-N_{\phi}} \quad: \text { Preserved under BMS }
$$

Diffeomorphisms $\xi=\xi^{\mu} \partial_{\mu}$ close in the Lie bracket according to $\mathrm{BMS}_{3}$

## Bosonic string: fin. def. [magnetic-like]

$$
H=\frac{1}{2 T}\left(\Pi^{2}+T^{2} X^{\prime 2}\right) \quad j \cdot \bar{j}=\frac{1}{4 T}\left(\Pi^{2}-T^{2} X^{\prime 2}\right) \quad k_{(-)}^{\mu}=\sqrt{T} X^{\mu \prime}
$$

- Hamiltonian :

$$
H_{(-)}=H-2 j \cdot \bar{j}=k_{(-)}^{2}=T X^{\prime 2}
$$

- Magnetic-like action :

$$
I_{(-)}=\int d^{2} \sigma\left[\Pi \cdot \dot{X}-N H_{(-)}-N^{\phi} P\right]
$$

$$
I_{(-)}=\int d^{2} \sigma\left[\Pi \cdot \dot{X}-N_{(-)} X^{\prime 2}-N^{\sigma} \Pi \cdot X^{\prime}\right]
$$

with $\quad N_{(-)}=N T \quad$ [ tension gauged away again!]

Magnetic-like deformation :
New action is also devoid of tension
Still relativistic, but with "inner Carrollian structure"

## [Magnetic-like] $j \cdot \bar{j}$ string def.: remarks

$$
I_{(-)}=\int d^{2} \sigma\left[\Pi \cdot \dot{X}-N_{(-)} X^{\prime 2}-N^{\sigma} \Pi \cdot X^{\prime}\right]
$$

Intrinsically Hamiltonian : $\Pi$ cannot be expressed in terms of $\dot{X}$ ( (or $X^{\prime}$ )
"Self-interacting null particle"

$$
\dot{X}^{\mu}-N^{\phi} X^{\mu \prime}=0
$$

Field eqs :

$$
\dot{\Pi}^{\mu}-2\left(N_{(-)} X^{\mu \prime}\right)^{\prime}-\left(N^{\phi} \Pi^{\mu}\right)^{\prime}=0
$$

Choosing the gauge so that $N_{(-)}$and $N^{\sigma}$ are constants

$$
X^{\mu}=X^{\mu}(\tilde{\sigma})
$$

Describes a curve! $\quad \tilde{\sigma}=\sigma+N^{\sigma} \tau$

## Constraints :

$$
\begin{aligned}
H_{(-)} & =X^{\prime 2}=0, \\
P & =\Pi \cdot X^{\prime}=0,
\end{aligned}
$$

$\tilde{\sigma}$ is an affine parameter
also :

$$
\begin{aligned}
& \Pi^{\mu}=Y^{\mu}+2 N_{(-)} X^{\mu \prime \prime} \tau \\
& \text { with } Y \cdot X^{\prime}=0 \text { and } Y^{\mu}=Y^{\mu}(\tilde{\sigma})
\end{aligned}
$$

## [Magnetic-like] $j \cdot \bar{j}$ string def. from limits

$$
I_{(-)}=\int d^{2} \sigma\left[\Pi \cdot \dot{X}-N_{(-)} X^{\prime 2}-N^{\sigma} \Pi \cdot X^{\prime}\right]
$$

Recovered from a nonstandard limits in the tension

- Different tensionless limit :
- Rescale $X^{\mu} \rightarrow T^{-1} X^{\mu}, \Pi^{\mu} \rightarrow T \Pi^{\mu}$ \& $N=2 T \tilde{N}_{(-)}$ when $T \rightarrow 0$, one obtains $I_{(-)}$[ with $\tilde{N}_{(-)}$]
[ compare with $N_{(-)}=N T$; tension gauged away differently ]
Field eqs. \& BMS3 constraints recovered
Generic solution of the magnetic-like action also smoothly obtained !
Shares some similarity with Carrollian limit of "magnetic type" $(c \rightarrow 0)$ following the lines of [ Henneaux \& Salgado-Rebolledo, arxiv: 2109.06708 (JHEP) ] plus with a suitable rescaling of the lapse


## [Magnetic-like] $j \cdot \bar{j}$ string def. from limits

$$
I_{(-)}=\int d^{2} \sigma\left[\Pi \cdot \dot{X}-N_{(-)} X^{\prime 2}-N^{\sigma} \Pi \cdot X^{\prime}\right]
$$

## Another interesting limit :

Rescale only the lapse as $N=2 \mathcal{T}^{-1} \hat{N}_{(-)}$
[ no rescaling of fields \& momenta ]
When $T \rightarrow \infty$, action $I_{(-)}$is recovered with $N_{(-)} \rightarrow \hat{N}_{(-)}$
Appealing possibility:
String length goes to zero -> null curve instead of a surface!
Also works well for field eqs. \& constraints
However: generic solution not smoothly recovered
Further aspects in progress

## Continuous integrably marginal $j \cdot \bar{j}$ deformations

Abelian currents algebra :

$$
\begin{gathered}
\left\{j^{I}(x), j^{J}(y)\right\}=-g^{I J} \partial_{x} \delta(x-y) \\
\left\{\bar{j}^{I}(x), \bar{j}^{J}(y)\right\}=g^{I J} \partial_{x} \delta(x-y)
\end{gathered}
$$

with $g_{I J}=\delta_{I J}$ admits an $O(N, N)$ automorphism
$P=j^{2}-\bar{j}^{2}$ : clearly inv. under $O(N, N)$ [ whole set of automorphisms ]
$H=j^{2}+\bar{j}^{2}$ : only inv. under $O(N) \otimes O(N)$ subset

Deformations yielding spectral flow ( changing $H$ ) then go along

$$
\frac{O(N, N)}{O(N) \otimes O(N)}
$$

For our purposes: relevant subset is $S O(1,1)$

## Continuous integrably marginal $j \cdot \bar{j}$ deformations

Under $S O(1,1)$, currents transform according to :

$$
\begin{aligned}
& j_{(\alpha)}^{\mu}=j^{\mu} \cosh \left(\frac{\alpha}{2}\right)+\bar{j}^{\mu} \sinh \left(\frac{\alpha}{2}\right) \\
& \bar{j}_{(\alpha)}^{\mu}=\bar{j}^{\mu} \cosh \left(\frac{\alpha}{2}\right)+j^{\mu} \sinh \left(\frac{\alpha}{2}\right)
\end{aligned}
$$

- Hence, $T_{(\alpha)}=j_{(\alpha)}^{2}$ and $\bar{T}_{(\alpha)}=\bar{j}_{(\alpha)}^{2}$ also fulfill the conformal algebra
- Note that:

$$
\begin{aligned}
& T_{(\alpha)}=\cosh ^{2}\left(\frac{\alpha}{2}\right) T+\sinh ^{2}\left(\frac{\alpha}{2}\right) \bar{T}+\sinh (\alpha) j \cdot \bar{j} \\
& \bar{T}_{(\alpha)}=\cosh ^{2}\left(\frac{\alpha}{2}\right) \bar{T}+\sinh ^{2}\left(\frac{\alpha}{2}\right) T+\sinh (\alpha) j \cdot \bar{j}
\end{aligned}
$$

Automorphism induces a mixing of left \& right sectors

## Continuous integrably marginal $j \cdot \bar{j}$ deformations

In terms of

$$
\begin{aligned}
\bar{T}_{(\alpha)} & =\frac{1}{2}\left(H_{(\alpha)}+P\right) \\
T_{(\alpha)} & =\frac{1}{2}\left(H_{(\alpha)}-P\right)
\end{aligned}
$$

energy \& momentum densities:

$$
P_{(\alpha)}=\bar{j}_{(\alpha)}^{2}-j_{(\alpha)}^{2}=P \quad: \text { invariant [ has to be ] }
$$

$$
H_{(\alpha)}=j_{(\alpha)}^{2}+\bar{j}_{(\alpha)}^{2}=\cosh (\alpha) H+2 \sinh (\alpha) j \cdot \bar{j}
$$

In the energy-momentum basis : $k_{(\alpha)( \pm)}^{I}=\bar{j}_{(\alpha)}^{I} \pm j_{(\alpha)}^{I}$
so that

$$
k_{(\alpha)( \pm)}^{I}=e^{ \pm \alpha / 2} k_{( \pm)}^{I}
$$

The original algebra does not change : [ trivial deformation ]
[ both sets $\left\{H_{(\alpha)} ; P, k_{(\alpha)(+)}^{I}, k_{(-)}^{I}\right\} \boldsymbol{\&}\left\{H ; P, k_{(+)}^{I}, k_{(-)}^{I}\right\}$ : same algebra ]

## Int. marginal $j \cdot \bar{j}$ deformations: limiting cases

Useful to rescale $H_{(\alpha)}=\cosh (\alpha) H+2 \sinh (\alpha) j \cdot \bar{j}$
according to : $\quad \tilde{\mathcal{H}}_{(\alpha)}:=\frac{H_{(\alpha)}}{\cosh (\alpha)}=H+2 \tanh (\alpha) j \cdot \bar{j}$
equivalently :

$$
\tilde{\mathcal{H}}_{(\alpha)}=\frac{1}{2}(1+\tanh (\alpha)) k_{(+)}^{2}+\frac{1}{2}(1-\tanh (\alpha)) k_{(-)}^{2}
$$

Relevant commutators :

$$
\begin{aligned}
{\left[J_{m}, \tilde{\mathcal{H}}_{(\alpha) n}\right] } & =(m-n) \tilde{\mathcal{H}}_{(\alpha) m+n}, \\
{\left[\tilde{\mathcal{H}}_{(\alpha) m}, \tilde{\mathcal{H}}_{(\alpha) n}\right] } & =\cosh ^{-2}(\alpha)(m-n) J_{m+n} \\
{\left[\tilde{\mathcal{H}}_{(\alpha) n}, k_{(+) m}^{\mu}\right] } & =-(1-\tanh (\alpha)) m k_{(-) m+n}^{\mu} \\
{\left[\tilde{\mathcal{H}}_{(\alpha) n}, k_{(-) m}^{\mu}\right] } & =-(1+\tanh (\alpha)) m k_{(+) m+n}^{\mu}
\end{aligned}
$$

when $\alpha \rightarrow \pm \infty$ one recovers the BMS $_{3}$ algebra with currents

## Int. marginal $j \cdot \bar{j}$ deformations: limiting cases

$$
\tilde{\mathcal{H}}_{(\alpha)}=\frac{1}{2}(1+\tanh (\alpha)) k_{(+)}^{2}+\frac{1}{2}(1-\tanh (\alpha)) k_{(-)}^{2}
$$

$$
\left.\left.\begin{array}{rlrl}
{\left[J_{m}, \tilde{\mathcal{H}}_{(\alpha) n}\right]} & =(m-n) \tilde{\mathcal{H}}_{(\alpha) m+n}, & & {\left[\tilde{\mathcal{H}}_{(\alpha) n}, k_{(+) m}^{\mu}\right]}
\end{array}\right)=-(1-\tanh (\alpha)) m k_{(-) m+n}^{\mu}\right)
$$

when $\alpha \rightarrow \pm \infty$ one recovers the $\mathrm{BMS}_{3}$ algebra with currents

$$
\left.\begin{array}{rlrl}
{\left[P_{m}, P_{n}\right]} & =(m-n) P_{m+n}, & {\left[P, k_{( \pm) m}^{I}\right]} & =-m k_{( \pm) m+n}^{I}, \\
{\left[P_{m}, H_{( \pm) n}\right]} & =(m-n) H_{( \pm) m+n}, & & {\left[H_{( \pm) n}, k_{( \pm) m}^{I}\right]}
\end{array}=0,\right\}
$$

electric- \& magnetic-like generators recovered

$$
\tilde{\mathcal{H}}_{( \pm \infty)}=H_{( \pm)}=H \pm 2 j \cdot \bar{j}=k_{( \pm)}^{2}
$$

Full conformal symmetry retained, in 2 alternative ultrarelativistic regimes

## Ending remarks

- Beyond the bound : $|g|>2$

After a suitable rescaling of $H_{(g)}=H+g j \cdot \bar{j}$
Euclidean version of the conformal algebra with currents :

$$
\left[\tilde{\mathcal{H}}_{(g) m}, \tilde{\mathcal{H}}_{(g) n}\right]=-(m-n) J_{m+n}
$$

[ sign change at r.h.s.]

However, not a thermal version of the original (undeformed) CFT2
For a generic gauge choice (not conformal gauge) :

$$
I_{(g)}=\int d^{2} \sigma\left[\Pi \cdot \dot{X}-N \tilde{\mathcal{H}}_{(g)}-N^{\phi} P\right]
$$

[ missing additional "i" in the action: not a thermal theory !]
[ deformation does not implement the corresponding Wick rotation ]

## Ending remarks

- Deformations \& the Polyakov action

$$
I=-\frac{T}{2} \int d^{2} \sigma \sqrt{-h} h^{\alpha \beta} \partial_{\alpha} X \cdot \partial_{\beta} X
$$

- Deformed Hamiltonian action : $\quad I_{(g)}=\int d^{2} \sigma\left[\Pi \cdot \dot{X}-N H_{(g)}-N_{\phi} P\right]$

$$
H_{(g)}=H+g j \cdot \bar{j}
$$

$$
H=\frac{1}{2 T}\left(\Pi^{2}+T^{2} X^{\prime 2}\right)
$$

$$
P=\Pi \cdot X^{\prime},
$$

$$
j \cdot \bar{j}=\frac{1}{4 T}\left(\Pi^{2}-T^{2} X^{\prime 2}\right)
$$

$$
I_{(g)}=\int d^{2} \sigma\left[\Pi \cdot \dot{X}-\frac{N}{2 T}\left\{\left(1+\frac{g}{2}\right) \Pi^{2}+\left(1-\frac{g}{2}\right) T^{2} X^{\prime 2}\right\}-N_{\phi} \Pi \cdot X^{\prime}\right]
$$

## Enoling ram zirkg

Deformed Hamiltonian action

$$
I_{(g)}=\int d^{2} \sigma\left[\Pi \cdot \dot{X}-\frac{N}{2 T}\left\{\left(1+\frac{g}{2}\right) \Pi^{2}+\left(1-\frac{g}{2}\right) T^{2} X^{\prime 2}\right\}-N_{\phi} \Pi \cdot X^{\prime}\right]
$$

$\Pi^{\mu}=\frac{T}{N}\left(1+\frac{g}{2}\right)^{-1}\left(\dot{X}^{\mu}-N_{\phi} X^{\prime \mu}\right)$

Warning for $g=-2$ :
[ not well-defined for magnetic-like BMS 3 ]

Back into the Hamiltonian action : [ Lagrangian action ]

$$
\left.I_{(g)}=-\frac{T}{2}\left(1+\frac{g}{2}\right)^{-1} \int d^{2} \sigma N^{-1}\left[-\dot{X}^{2}+2 N_{\phi} \dot{X} \cdot X^{\prime}-\left\{N_{\phi}^{2}-\left(1-\frac{g^{2}}{4}\right) N^{2}\right\} X^{\prime 2}\right]\right]
$$

Inverse wordsheet metric \& metric determinant :

$$
h^{\alpha \beta}=\left(\begin{array}{cc}
-1 & N_{\phi} \\
N_{\phi}-\left[N_{\phi}^{2}-\left(1-\frac{g^{2}}{4}\right) N^{2}\right]
\end{array}\right) \quad h=-\left(1-\frac{g^{2}}{4}\right)^{-1} N^{-2}
$$

## Enoling ram zirkg

$$
\begin{array}{ll}
\left.I_{(g)}=-\frac{T}{2}\left(1+\frac{g}{2}\right)^{-1} \int d^{2} \sigma N^{-1}\left[-\dot{X}^{2}+2 N_{\phi} \dot{X} \cdot X^{\prime}-\left\{N_{\phi}^{2}-\left(1-\frac{g^{2}}{4}\right) N^{2}\right\} X^{\prime 2}\right]\right] \\
h^{\alpha \beta}=\binom{-1}{N_{\phi}-\left[N_{\phi}^{2}-\left(1-\frac{g^{2}}{4}\right) N^{2}\right]} \quad h=-\left(1-\frac{g^{2}}{4}\right)^{-1} N^{-2}
\end{array}
$$

Three cases : sign(h)
$|g|<2$ Lorentzian metric : $\sqrt{\left(1-\frac{g^{2}}{4}\right)} \sqrt{-h}=N^{-1}$

Same Polyakov action

$$
I_{(g)}=-\frac{T_{(g)}}{2} \int d^{2} \sigma \sqrt{h} h^{\alpha \beta} \partial_{\alpha} X \cdot \partial_{\beta} X
$$

[ just rescaling tension ]

$$
T_{(g)}=T \sqrt{\frac{2-g}{2+g}} \quad g=2 \tanh \alpha
$$

equivalently

$$
T_{(\alpha)}=T e^{-\alpha}
$$

[ parameter of the $S O(1,1)$ automorphism ]

## Ending remarks

$$
\begin{aligned}
& \left.I_{(g)}=-\frac{T}{2}\left(1+\frac{g}{2}\right)^{-1} \int d^{2} \sigma N^{-1}\left[-\dot{X}^{2}+2 N_{\phi} \dot{X} \cdot X^{\prime}-\left\{N_{\phi}^{2}-\left(1-\frac{g^{2}}{4}\right) N^{2}\right\} X^{\prime 2}\right]\right] \\
& h^{\alpha \beta}=\binom{-1}{N_{\phi}-\left[N_{\phi}^{2}-\left(1-\frac{g^{2}}{4}\right) N^{2}\right]} \quad h=-\left(1-\frac{g^{2}}{4}\right)^{-1} N^{-2}
\end{aligned}
$$

Three cases : sign(h)
$|g|=2$ Degenerate metric : $h=0$

- For $g=2$ : tension can be gauged away
[ electric-like deformation $=$ tensionless string ]
- Note that the analysis is not valid for $g=-2$ !
[ Magnetic-like deformation cannot be attained from this Lagrangian action ]


## Ending remarks

$$
\begin{aligned}
& \left.I_{(g)}=-\frac{T}{2}\left(1+\frac{g}{2}\right)^{-1} \int d^{2} \sigma N^{-1}\left[-\dot{X}^{2}+2 N_{\phi} \dot{X} \cdot X^{\prime}-\left\{N_{\phi}^{2}-\left(1-\frac{g^{2}}{4}\right) N^{2}\right\} X^{\prime 2}\right]\right] \\
& h^{\alpha \beta}=\binom{-1}{N_{\phi}-\left[N_{\phi}^{2}-\left(1-\frac{g^{2}}{4}\right) N^{2}\right]} \quad h=-\left(1-\frac{g^{2}}{4}\right)^{-1} N^{-2}
\end{aligned}
$$

Three cases :
$|g|>2 \quad$ Euclidean metric : $\quad \sqrt{\left(\frac{g^{2}}{4}-1\right)} \sqrt{h}=N^{-1}$
" Euclidean" Polyakov action : $\quad I_{(g)}=-\frac{T_{(g)}^{E}}{2} \int d^{2} \sigma \sqrt{h} h^{\alpha \beta} \partial_{\alpha} X \cdot \partial_{\beta} X$
[ just rescaling tension ]

$$
T_{(g)}^{E}=T \sqrt{\frac{g-2}{g+2}}
$$

Missing overall " i " : not a thermal theory [ deformation does not implement the Wick rotation ]

