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In this talk, | would like to present a duality between certain analytic
models of heavy-ion collisions and Carroll hydrodynamics, which arises in
the ¢ — 0O limit of relativistic hydrodynamics.

Ultrarelativistic heavy-ion collisions, such as between Pb-Pb or Au-Au
ions, are used to create extreme energy densities and temperatures, that
can “melt” the colliding nucleons into free quarks and gluons = QGP.

Remarkably, the QGP behaves like an almost perfect fluid!
Specific viscosity ~ 0.1 — 0.2 very close to the KSS bound n/s = 1/4n =~ 0.082
The state of our universe for the first few microseconds after its big bang birth.
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® The spacetime evolution of the QGP has some symmetries:
a. Approximate boost invariance
b. Approximate rotation invariance along the beam axis

Using these symmetries (and some more), one can construct analytic models
for the hydrodynamics of the QGP.

Bjorken flow: boost invariance + translation invariance in the transverse
plane.!

Gubser flow: boost invariance + rotation invariance + conformal invariance
in the transverse plane.?3

These phenomenological assumptions fix the four-velocity profile of the
fluid, which can then be used in the hydrodynamic equations for the flow.

Duality with Carroll hydrodynamics maps these assumptions into geometric
properties of the manifold on which the Carroll fluid lives, yielding the
same hydrodynamics equations!

Dynamics of QGP: a new entry into the Carrollian kaleidoscope.

. D. Bjorken, Phys. Rev. D 27, 140 (1983)
2S.S. Gubser, Phys. Rev. D 82, 085027 (2010)
3S. S. Gubser and A. Yarom, Nucl. Phys. B 846, 469 (2011)
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Bjorken Flow

® The setup: choose z to be the beam axis, and x, y as the transverse plane.
e Simplify: assume the collision happens at t =0 and z = 0.
® Work in Milne coordinates:

1 t
T=Vt2—272, pzilog( +Z). X, y

t—2z

® Minkowski metric: ds? = —d1? 4 t2dp? + dx? + dy?
At

surfaces of constant T lines of constant p

: Milne Patch

—: Milne Horizon

ultrarelativistic
heavy ions
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Demanding invariance of the fluid flow u* under a spacetime transformation
generated by ¢ = &#d, means £:u" = 0.

Bjorken flow: u¥ boost inv. + translation & rotation inv. in transverse plane
= uv" =(1,0,0,0)

Perfect fluid energy-momentum tensor: T+ = (e + P)u”u* + Pg"".
Hydrodynamic equations: V, T#" = 0.
With the Bjorken flow profile, hydro equation becomes:

de _ _e+P
dr — T

Given an equation of state P = P(e), one can compute the evolution of the
energy density of the QGP.
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Gubser Flow

® At the extreme energies of the QGP, the dynamics is approximately
conformal.

® Symmetries: boost inv. + rotation inv. about beam axis + conf. inv. under
&L =04+ q2 (2xx”6u — X"x,,@x) ,
& =0, + ¢° (2yx"9, — x"x,0,) .
Here g is a tunable parameter with dim = L1,
® Along with the generator of rotations &q = xd, — ydx, &, & form an
S0(3)q subgroup of the full conformal group SO(4, 2).
(61, &2 = —46% &,
[&1, Giot] = &2,
[$2, &rot] = — 41

The SO(3),4 group above commutes with the SO(1, 1) subgroup of SO(4, 2)
corresponding to boosts along the z-axis, generated by &yeost = 20 + t0,.
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Conf. inv. of the flow:
1 1
££1 ut = _Z (vvgl‘_/) ul’, £‘{2ull = _Z (VVEQV) u.
Note that the generators &, a = 1,2 are conformal isometries for the
background metric, justifying the requirement above
1 a
£e.8iv = 5 (Vad3) G-
With these symmetry assumptions the fluid velocity becomes
u! = (coshk(t, r), 0, sinh k(7, r), 0)
2¢°1r
L+q3(r2+r2)]

Interestingly, the flow now has a nontrivial radial dependence!

k(7, r) = tanh ™! [

Use the conformal eqn. of state: P = ¢/3.
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® The hydro equations ¥V, T#" = 0 are now given by

de  4e [cosh2k-2 sinh2k
e
de  4e [cosh2k-1 sinh2k
e |

® They admit the solution
€0 (29)%3
4B 1 + 2q2(12 + r2) + g*(12 — r2)2P4B3°
As with the velocity profile, we now have an interesting dependence on the
radial coordinate r in the energy density as well.

e(r,r) =



Gubser flow on dS3 x R background

® One can recast Gubser flow on a dS3 x R background as well.

® Perform a Weyl rescaling ds?> — ds?/72 on the flat metric in Milne
coordinates, followed by the transformation (t, r) — (¢, ), where

1-q*(r* - r?)
2qt1

2z
1+ q%(2—1r?)°
® The metric becomes ds? = —d¢? + cosh® ¢ (dy? + sin® ¢ d¢?) + dp?.

® This is the metric on dS3 x R, where (g, ¢, ¢) are coordinates on the
three-dimensional global de Sitter spacetime.

sinh¢ = — , tany =

® The SO(3), conformal symmetry of Milne is now an exact isometry,
associated with the spherical symmetry of the S2 parametrized by ¢, ¢.

® Demanding invariance under boosts and rotation gives u* = (1,0, 0, 0).

® The hydro equation for Gubser flow now becomes

[ dce = —%tanhc ]

This has the solution: €(g) = €o/(cosh ¢)¥3.
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Carroll Hydrodynamics

Definition: the ¢ — 0 limit of relativistic hydrodynamics.

The Papapetrou-Randers parametrization makes the ¢ — O limit quite
transparent.’-2

ds® = g, dx"dx" = —c*(Qdt — bidx')? + a;jdx’dx/,

242
00:_1;;1)' go;:gio:%bi' gl = all.

Q, bj, aj; are functions of (t, x).
b? = b'b;, where the index on b; can be raised using aV.

® The ¢ — 0 limit gives a Carroll manifold with a degenerate metric:
. 1
de® = hy,dx"dx’ = a;(t,x)dx'dx/, v = Qe d:, hyuv' =0.
® Define Carroll covariant temporal and spatial derivatives:
A 1 A b;
atzadt, [7',50,—{—63,5

L. Ciambelli et al, JHEP 1807 (2018) 165 and Class. Quantum Grav. 35 (2018) 165001
2A. C. Petkou et al, JHEP 2209 (2022) 162 11/20



® Consider now a perfect fluid on this background, with EM tensor

utuY

T" = (e + P) + Pgh”.

c2
® A convenient parametrization for the fluid velocity is u = yd, + yv'd;,
where
1+c26-B . c20p
"Tovicep U 1tcs B
Here B/(t,x) is a Carrollian vector field.

® The next step is to take the ¢ — O limit. One has to assume sensible
scaling behaviour for thermodynamic quantities in this limit.

e=ec+0(c?), P=p+0(?.
Also,
WO = % + O(c%), u' =B+ 0,
u=-cQ+0(3), u=Cc*b+hB)+0(?.
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® These lead to the EM tensor behaviour:
Th=—e4+0(?), T,=pd;+0(?),
TS = Sle+plbi+B)+O(S),  Tlo=—cOle+p)f +0().

® Finally, putting all this together leads to the equations of Carroll
hydrodynamics for a perfect fluid:

Q>

re=—0(e + p),
0ip = —gi(e + p) — (3t + 6)[(¢ + P)Bi]-

Here 6 is Carrollian expansion and ¢; is Carrollian acceleration, given via

1 1
6= aat I.Og \/5, Y = a(atb,‘f'a,ﬂ),

where a = det aj;.

® For a conformal Carroll fluid, one sets € = 3p.
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Duality Maps

Bjorken flow

® Suppose we now specialize to the following geometric data on the Carroll
manifold:

[ O=1 9 b,' = —,3,', a,-jdx"dxf = T2dp2 aF dX2 ol dyz. ]

® The equations of Carroll hydrodynamics then become:

0,6:—6+p, dip=0.
T

® The first equation is the equation for Bjorken flow, while the second implies
boost-invariance (using e.0.s. p = p(¢)).

® Thus the geometric data above pertains to a Carroll fluid which has the
same dynamics as Bjorken flow.
The key point is that the phenomenological assumptions put into Bjorken
flow are now captured by the geometry of the Carroll manifold!
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Gubser flow

® Specialize to the Carroll manifold with the geometric properties

Q = coshk,
b, = —B, + sinh k, =—B,, by =—Py,
a,-J-dXidxj = 12dp® + [ +2¢%(1% + r?) + ¢*(1? )2](dr2 + r?d¢?).

® The Carroll hydro equations now become

4e ( cosh2k —2  sinh2«k )
378 = ? f

T r

( cosh2k —1  sinh2« )
dre = — — ,
3 r T

apg = 0, 0¢e =0.

These are nothing but the equations for Gubser flow, along with the
symmetry assumptions!

® The Carroll manifold above thus geometrizes the assumptions that go into
Gubser’s model for the QGP, and provides a dual description in terms of
Carroll hydrodynamics.
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® The duality is not limited to the choice of Milne coordinates.

® For instance, for Gubser flow on the dS3 x R background, the dual Carroll
description is provided by a Carroll fluid on a Carrollian manifold with the
geometric properties:

O=1, b=-pB, azdxdxd = cosh®¢(dy?+sin’ ¢ d¢?) + dp?.

® [n this case, the Carroll fluid equations become

8
dce = —?g tanh¢g, d;e =0.

These are indeed the equations for Gubser flow on the dS3 x R
background, complete with the symmetry assumptions.
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Including Viscous Corrections

® We can now depart from the approximation of perfect fluids and include
hydrodynamic derivative corrections.

® At the first order in derivatives, the EM tensor is

TV = (e + P)u"u" + Pg"’'—na"" — (N"'V - u

Here g*¥ = AM9AVE 7%”8;%3”‘7 - %A‘“’V cu, A =gt 4+ ufu.
Also, n, { > 0 are the shear and bulk viscosities that lead to dissipative
effects.

® For Bjorken flow, the hydro equation including viscous effects is

de e+P 1 [2
= - §ﬂ+(

dr T 72

® For Gubser flow ({ = 0, n = no€3/*), the viscous hydro equations are
_Ae (cosh 2k —2  sinh 2K) 2n,€34 ( 1 tanhK)2

-3 3sech®x '

P 4¢ ( cosh2k —1  sinh2«k ) 2n,€3* sinh k ( 1 tanhk ) 2
€= — — )

d.€

T r T r

3

T r

r T 3sech®k
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Let us now incorporate viscous corrections on the Carroll side.
The EM tensor is T#" = (e + P) ”ZQ’ + Pg" — pa*V — (A"'V - u.
Taking the ¢ — 0 limit of ¥, T#¥ = 0 now gives the viscous Carroll
hydrodynamic equations
dee = —0(e + p— (0) + 15,
dip = —gi(e + )+ (V; + ¢) [, + (08
— (0:+ 0)[(e + p)B: — Bi(2 &, + (00)].
Here we have made use of the scaling assumptions
n=0+0(?), (={+0().

It is straight forward to check that the equations above reduce to the
equations of viscous Bjorken/Gubser flow, employing the duality maps
proposed earlier.

Thus the duality is not limited to perfect fluids only.

v
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Discussion and Outlook

® Main message: Duality between Carroll fluids on manifolds with specific
geometric data, and models of QGP evolution.

® Exploit the duality from the Carroll side - compute the subleading
corrections in the ¢ — O limit.
On the QGP side, they would imply how to systematically depart from the
phenomenological assumptions for Bjorken/Gubser flow.

Many more directions to explore. . .

® Connections with black hole membrane paradigm,’> where the equations
for the fluid are Carrollian.?

® Connections with flat holography?
. DR

T. Damour, Phys. Rev. D 18, 3598 (1976)
ZR. H. Price and K. S. Thorne, Phys. Rev. D 33, 915 (1986)
3. Donnay and C. Marteau, Class. Quant. Grav. 36, 165002 (2019)
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Thank you for your attention!
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