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• In this talk, I would like to present a duality between certain analyticmodels of heavy-ion collisions and Carroll hydrodynamics, which arises inthe c → 0 limit of relativistic hydrodynamics.
• Ultrarelativistic heavy-ion collisions, such as between Pb-Pb or Au-Auions, are used to create extreme energy densities and temperatures, thatcan “melt” the colliding nucleons into free quarks and gluons ≡ QGP.
• Remarkably, the QGP behaves like an almost perfect fluid!Specific viscosity ∼ 0.1 − 0.21 : very close to the KSS bound η/s = 1/4π ≈ 0.08.2The state of our universe for the first few microseconds after its big bang birth.
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• The spacetime evolution of the QGP has some symmetries:a. Approximate boost invarianceb. Approximate rotation invariance along the beam axis
• Using these symmetries (and some more), one can construct analytic modelsfor the hydrodynamics of the QGP.
• Bjorken flow: boost invariance + translation invariance in the transverseplane.1
• Gubser flow: boost invariance + rotation invariance + conformal invariancein the transverse plane.2,3
• These phenomenological assumptions fix the four-velocity profile of thefluid, which can then be used in the hydrodynamic equations for the flow.
• Duality with Carroll hydrodynamics maps these assumptions into geometricproperties of the manifold on which the Carroll fluid lives, yielding thesame hydrodynamics equations!
• Dynamics of QGP: a new entry into the Carrollian kaleidoscope.

1J. D. Bjorken, Phys. Rev. D 27, 140 (1983)2S. S. Gubser, Phys. Rev. D 82, 085027 (2010)3S. S. Gubser and A. Yarom, Nucl. Phys. B 846, 469 (2011)
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Bjorken Flow
• The setup: choose z to be the beam axis, and x , y as the transverse plane.
• Simplify: assume the collision happens at t = 0 and z = 0.
• Work in Milne coordinates:

τ = √
t2 − z2 , ρ = 1

2
log ( t + z

t − z

)
, x , y

• Minkowski metric: ds2 = −dτ2 + τ2dρ2 + dx2 + dy2

t

z

: Milne Patch

: Milne Horizon

lines of constant ρsurfaces of constant τ

ultrarelativistic
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• Demanding invariance of the fluid flow uµ under a spacetime transformationgenerated by ξ ≡ ξµ∂µ means £ξuµ = 0.
• Bjorken flow: uµ boost inv. + translation & rotation inv. in transverse plane

⇒ uµ = (1, 0, 0, 0)
• Perfect fluid energy-momentum tensor: T µν = (ε + P)uµuν + Pg µν .
• Hydrodynamic equations: ∇µT

µν = 0.
• With the Bjorken flow profile, hydro equation becomes:

dε
dτ = - ε+P

τ

• Given an equation of state P = P(ε), one can compute the evolution of theenergy density of the QGP.
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Gubser Flow
• At the extreme energies of the QGP, the dynamics is approximatelyconformal.
• Symmetries: boost inv. + rotation inv. about beam axis + conf. inv. under

ξ1 = ∂x + q2 (
2xxµ∂µ − xµxµ∂x

)
,

ξ2 = ∂y + q2 (
2yxµ∂µ − xµxµ∂y

)
.Here q is a tunable parameter with dim = L−1.

• Along with the generator of rotations ξrot = x∂y − y∂x , ξ1, ξ2 form an
SO(3)q subgroup of the full conformal group SO(4, 2).[ξ1, ξ2] = −4q2ξrot,[ξ1, ξrot] = ξ2,[ξ2, ξrot] = −ξ1.The SO(3)q group above commutes with the SO(1, 1) subgroup of SO(4, 2)corresponding to boosts along the z-axis, generated by ξboost = z∂t + t∂z .
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• Conf. inv. of the flow:
£ξ1uµ = −1

4
(∇νξν1 ) uµ, £ξ2uµ = −1

4
(∇νξν2 ) uµ.

• Note that the generators ξa, a = 1, 2 are conformal isometries for thebackground metric, justifying the requirement above
£ξagµν = 1

2
(∇αξαa ) gµν .

• With these symmetry assumptions the fluid velocity becomes
uµ = (cosh κ(τ, r ), 0, sinh κ(τ, r ), 0)
κ(τ, r ) = tanh−1

[
2q2τr

1 + q2(τ2 + r2)
]
.

Interestingly, the flow now has a nontrivial radial dependence!
• Use the conformal eqn. of state: P = ε/3.
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• The hydro equations ∇µT
µν = 0 are now given by

∂ε
∂τ = 4ε

3

(cosh 2κ - 2
τ - sinh 2κ

r

)
∂ε
∂r = 4ε

3

(cosh 2κ - 1
r

- sinh 2κ
τ

)
• They admit the solution

ε(τ, r ) = ε0
τ4/3

(2q)8/3[1 + 2q2(τ2 + r2) + q4(τ2 − r2)2]4/3 .As with the velocity profile, we now have an interesting dependence on theradial coordinate r in the energy density as well.
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Gubser flow on dS3 × R background

• One can recast Gubser flow on a dS3 × R background as well.
• Perform a Weyl rescaling ds2 → ds2/τ2 on the flat metric in Milnecoordinates, followed by the transformation (τ, r ) → (ς, ψ), where

sinh ς = −1 − q2(τ2 − r2)
2qτ , tanψ = 2qr

1 + q2(τ2 − r2) .
• The metric becomes ds2 = −dς2 + cosh2 ς

(
dψ2 + sin2 ψ dφ2

) + dρ2.
• This is the metric on dS3 × R, where (ς, ψ, φ) are coordinates on thethree-dimensional global de Sitter spacetime.
• The SO(3)q conformal symmetry of Milne is now an exact isometry,associated with the spherical symmetry of the S2 parametrized by ψ, φ.
• Demanding invariance under boosts and rotation gives uµ = (1, 0, 0, 0).
• The hydro equation for Gubser flow now becomes

∂ςε = − 8ε
3 tanh ς

This has the solution: ε(ς) = ε0/(cosh ς)8/3.
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Carroll Hydrodynamics
• Definition: the c → 0 limit of relativistic hydrodynamics.
• The Papapetrou-Randers parametrization makes the c → 0 limit quitetransparent.1,2

ds2 = gµνdx
µdxν = −c2(Ωdt − bidx

i )2 + aijdx
idx j ,

g00 = −1 + c2b2Ω2 , g0i = g i0 = cΩ bi , g ij = aij .

Ω, bi , aij are functions of (t, x).
b2 ≡ bibi , where the index on bi can be raised using aij .

• The c → 0 limit gives a Carroll manifold with a degenerate metric:
dℓ2 = hµνdx

µdxν = aij (t, x)dx idx j , v = 1Ω(t, x) ∂t , hµνv
ν = 0.

• Define Carroll covariant temporal and spatial derivatives:
∂̂t ≡ 1Ω ∂t , ∂̂i ≡ ∂i + biΩ ∂t .

1L. Ciambelli et al, JHEP 1807 (2018) 165 and Class. Quantum Grav. 35 (2018) 1650012A. C. Petkou et al, JHEP 2209 (2022) 162
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• Consider now a perfect fluid on this background, with EM tensor
T µν = (ε + P)uµuν

c2 + Pg µν .

• A convenient parametrization for the fluid velocity is u = γ∂t + γv i∂i ,where
γ = 1 + c2b⃗ · β⃗Ω√

1 − c2β2
, v i = c2Ωβ i

1 + c2b⃗ · β⃗
.

Here β i (t, x) is a Carrollian vector field.
• The next step is to take the c → 0 limit. One has to assume sensiblescaling behaviour for thermodynamic quantities in this limit.

ε = ε + O(c2) , P = p + O(c2).Also,
u0 = cΩ + O(c3) , ui = c2β i + O(c4) ,
u0 = −c Ω + O(c3) , ui = c2(bi + βi ) + O(c4) .
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• These lead to the EM tensor behaviour:
T 0

0 = −ε + O(c2) , T i
j = p δ ij + O(c2) ,

T 0
i = cΩ(ε + p)(bi + βi ) + O(c3) , T i

0 = −c Ω(ε + p)β i + O(c3) .
• Finally, putting all this together leads to the equations of Carrollhydrodynamics for a perfect fluid:

∂̂tε = −θ(ε + p),
∂̂ip = −φi (ε + p) −

(
∂̂t + θ

)[(ε + p)βi ].
Here θ is Carrollian expansion and φi is Carrollian acceleration, given via

θ ≡ 1Ω∂t log √
a, φi ≡ 1Ω(∂tbi + ∂iΩ),

where a = det aij .
• For a conformal Carroll fluid, one sets ε = 3p.
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Duality Maps
Bjorken flow

• Suppose we now specialize to the following geometric data on the Carrollmanifold:
Ω = 1 , bi = −βi , aijdx

idx j = τ2dρ2 + dx2 + dy2.

• The equations of Carroll hydrodynamics then become:
∂τε = - ε + p

τ , ∂ip = 0.

• The first equation is the equation for Bjorken flow, while the second impliesboost-invariance (using e.o.s. p = p(ε)).
• Thus the geometric data above pertains to a Carroll fluid which has thesame dynamics as Bjorken flow.The key point is that the phenomenological assumptions put into Bjorkenflow are now captured by the geometry of the Carroll manifold!
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Gubser flow

• Specialize to the Carroll manifold with the geometric properties
Ω = cosh κ,
br = −βr + sinh κ, bρ = −βρ, bφ = −βφ,
aijdx

idx j = τ2dρ2 + [
1 + 2q2(τ2 + r2) + q4(τ2 − r2)2](dr2 + r2dφ2).

• The Carroll hydro equations now become
∂τε = 4ε

3

(cosh 2κ − 2
τ − sinh 2κ

r

)
,

∂rε = 4ε
3

(cosh 2κ − 1
r

− sinh 2κ
τ

)
,

∂ρε = 0, ∂φε = 0.These are nothing but the equations for Gubser flow, along with thesymmetry assumptions!
• The Carroll manifold above thus geometrizes the assumptions that go intoGubser’s model for the QGP, and provides a dual description in terms ofCarroll hydrodynamics.
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• The duality is not limited to the choice of Milne coordinates.
• For instance, for Gubser flow on the dS3 × R background, the dual Carrolldescription is provided by a Carroll fluid on a Carrollian manifold with thegeometric properties:
Ω = 1, bi = −βi , aijdx

idx j = cosh2 ς
(
dψ2 + sin2 ψ dφ2

) + dρ2.

• In this case, the Carroll fluid equations become
∂ςε = −8ε

3
tanh ς, ∂iε = 0.

These are indeed the equations for Gubser flow on the dS3 × Rbackground, complete with the symmetry assumptions.
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Including Viscous Corrections
• We can now depart from the approximation of perfect fluids and includehydrodynamic derivative corrections.
• At the first order in derivatives, the EM tensor is

T µν = (ε + P)uµuν + Pg µν−ησ µν − ζ∆µν∇ · u

Here σ µν = ∆µα∆νβ
(

∇αuβ+∇βuα
2

)
− 1

3∆µν∇ · u, ∆µν = g µν + uµuν .Also, η, ζ ≥ 0 are the shear and bulk viscosities that lead to dissipativeeffects.
• For Bjorken flow, the hydro equation including viscous effects is

dε
dτ = - ε + P

τ + 1
τ2

(
2
3
η + ζ

)
• For Gubser flow (ζ = 0, η = ηoε3/4), the viscous hydro equations are

∂τε = 4ε
3

(cosh 2κ − 2
τ − sinh 2κ

r

) + 2ηoε3/4

3 sech3κ

(
1
τ − tanh κ

r

)2

,

∂r ε = 4ε
3

(cosh 2κ − 1
r

− sinh 2κ
τ

)
−2ηoε3/4 sinh κ

3 sech2κ

(
1
τ − tanh κ

r

)2

.
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• Let us now incorporate viscous corrections on the Carroll side.
• The EM tensor is T µν = (ε + P) uµuνc2 + Pg µν − ησ µν − ζ∆µν∇ · u.
• Taking the c → 0 limit of ∇µT

µν = 0 now gives the viscous Carrollhydrodynamic equations
∂̂tε = −θ(ε + p − ζ̃θ) + η̃ξ ijξij ,
∂̂ip = −φi (ε + p) + (

∇̂j + φj
)[
η̃ξ ji + ζ̃θδ ji

]
−

(
∂̂t + θ

)[(ε + p)βi − βj (η̃ξ ji + ζ̃θδ ji )].Here we have made use of the scaling assumptions
η = η̃ + O(c2), ζ = ζ̃ + O(c2).

• It is straight forward to check that the equations above reduce to theequations of viscous Bjorken/Gubser flow, employing the duality mapsproposed earlier.
• Thus the duality is not limited to perfect fluids only.
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Discussion and Outlook
• Main message: Duality between Carroll fluids on manifolds with specificgeometric data, and models of QGP evolution.
• Exploit the duality from the Carroll side - compute the subleadingcorrections in the c → 0 limit.On the QGP side, they would imply how to systematically depart from thephenomenological assumptions for Bjorken/Gubser flow.

Many more directions to explore. . .
• Connections with black hole membrane paradigm,1,2 where the equationsfor the fluid are Carrollian.3
• Connections with flat holography?
• . . .
• . . .

1T. Damour, Phys. Rev. D 18, 3598 (1978)2R. H. Price and K. S. Thorne, Phys. Rev. D 33, 915 (1986)3L. Donnay and C. Marteau, Class. Quant. Grav. 36, 165002 (2019)
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Thank you for your attention!
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