Logarithmic Celestial Conformal Field Theory

Romain Ruzziconi

Mathematical Institute University of Oxford

Based on 2305.08913 in collaboration with Adrien Fiorucci and Daniel Grumiller

Flat space holography

How to formulate flat space holography?

- Correspondence between gravity in asymptotically flat spacetimes and a lower-dimensional field theory without gravity.
- Bottom-up approaches to build candidates for holographic duals.
- Strong constraints implied by the Bondi-van der Burg-Metzner-Sachs (BMS) symmetries on the putative dual theories. [Bondi-van der Burg-Metzner '62] [Sachs '62]

Carroll vs Celestial

- Two proposals for flat space holography have emerged:
 - \implies Carrollian holography: the dual theory is a 3d Carrollian CFT living at null infinity $\mathscr{I}\simeq\mathbb{R}\times S^2$.

[Arcioni-Dappiaggi '03] [Dappiaggi-Moretti-Pinamonti '06] [Barnich-Compère '07] [Bagchi '10] [Barnich '12] [Bagchi-Detournay-Fareghbal-Simon '12]

[Barnich-Gomberoff-Gonzalez '12] [Bagchi-Basu-Grumiller-Riegler '15] [Ciambelli-Marteau-Petkou-Petropoulos-Siampos '18] [Donnay-Fiorucci-Herfray-Ruzziconi '22]

 \implies Celestial holography: the dual theory is a 2d CFT living on the celestial sphere S^2 .

[de Boer-Solodukhin '03] [He-Mitra-Strominger '15] [Kapec-Mitra-Raclariu-Strominger '16] [Cheung-de la Fuente-Sundrum '16] [Pasterski-Shao-Strominger '17] [Pasterski-Shao '17] [Donnay-Puhm-Strominger '18] [Stieberger-Taylor '18] [Pate-Raclariu-Strominger-Yuan '19] [Adamo-Mason-Sharma '21] ...

• These two proposals are related (massless scattering): [Donnay-Fiorucci-Herfray-Ruzziconi '22]

$$\underbrace{\langle \mathcal{O}_{\Delta_1}(z_1,\bar{z}_1)\dots\mathcal{O}_{\Delta_n}(z_n,\bar{z}_n)\rangle}_{\text{Celestial correlators on } S^2} = \prod_{i=1}^n \left(4\pi \ i^{\Delta_i+1}\Gamma[\Delta_i] \int_{-\infty}^{+\infty} du_i u_i^{-\Delta_i}\right) \underbrace{\langle \Phi(u_1,z_1,\bar{z}_1)\dots\Phi(u_n,z_n,\bar{z}_n)\rangle}_{\text{Carrollian correlators at } \mathscr{I}}$$

Conservation between \mathscr{I}^- and \mathscr{I}^+ / Soft Theorems / Ward identities in CCFT

(non-)Conservation along ${\mathscr I}$ / Flux-balance laws / Sourced Carrollian Ward identities

• Can use either of these approaches to formulate flat space holography.

Properties of CCFT

What is the nature of the dual field theory?

 \Longrightarrow Focus on the celestial approach to identify a relevant class of CFT.

List of (exotic) properties for the celestial CFT (CCFT):

- Complex spectrum including the principal series ($\Delta=1+i\lambda,\ \lambda\in\mathbb{R}$) [Pasterski-Shao '17] \Longrightarrow Non-unitary (non-reflection positive) Euclidean CFT.
- The central charge vanishes (c = 0), at least at tree level:
 - ⇒ Obtained from collinear and double-soft limit of amplitudes [Fotopoulos-Stieberger-Taylor-Zhu '19]
 - $\Longrightarrow Obtained\ independently\ from\ an\ asymptotic\ symmetry\ analysis\ {\tiny [Donnay-Ruzziconi\ '21]}$
- A non-unitary CFT might be non-trivial, even if c = 0, but there is still the c = 0 catastrophe [Gurarie '98]
- Two (2,0) operators in the celestial CFT (celestial stress tensor + symplectic partner)

 [Pasterski-Shao '17] [Donnay-Puhm-Strominger '18] [Ball-Himwich-Narayanan-Pasterski-Strominger '19]

Smoking gun for a logarithmic CFT!

Definition of a log CFT

- A log CFT is defined through its Jordan block structure. [Gurarie '93]
- Logarithmic pair $(\mathcal{O}_h(z), \mathcal{O}_h^{\log}(z))$:

$$\begin{split} &\delta_{\mathcal{Y}}\mathcal{O}_h = \mathcal{Y}\partial\mathcal{O}_h + h(\partial\mathcal{Y})\mathcal{O}_h\,,\\ &\delta_{\mathcal{Y}}\mathcal{O}_h^{\log} = \mathcal{Y}\partial\mathcal{O}_h^{\log} + h(\partial\mathcal{Y})\mathcal{O}_h^{\log} + (\partial\mathcal{Y})\mathcal{O}_h\,. \end{split}$$

• State-operator correspondence: $\mathcal{O}_h \leftrightarrow |\mathcal{O}_h\rangle$ and $\mathcal{O}_h^{\log} \leftrightarrow |\mathcal{O}_h^{\log}\rangle$

$$L_0 \begin{pmatrix} |\mathcal{O}_h^{\mathsf{log}}
angle \\ |\mathcal{O}_h
angle \end{pmatrix} = \begin{pmatrix} h & 1 \\ 0 & h \end{pmatrix} \begin{pmatrix} |\mathcal{O}_h^{\mathsf{log}}
angle \\ |\mathcal{O}_h
angle \end{pmatrix} \,.$$

• Ward identities imply logarithmic correlation functions ($b \in \mathbb{C}, \ \mu \in \mathbb{R}_0^+$):

$$\langle \mathcal{O}_h(z)\mathcal{O}_h(0)
angle = 0\,,\quad \langle \mathcal{O}_h^{\log}(z)\mathcal{O}_h(0)
angle = rac{b}{z^{2h}}\,,\quad \langle \mathcal{O}_h^{\log}(z)\mathcal{O}_h^{\log}(0)
angle = -rac{2b}{z^{2h}}\ln(\mu z)\,.$$

- μ is a physically irrelevant scale: $\mathcal{O}_h^{\log} \to \mathcal{O}_h^{\log} + \gamma \mathcal{O}_h$.
- If the stress tensor T(z) has a logarithmic partner t(z) (h=2), then the central charge vanishes!
- NB: the construction can be trivially extended to the other chirality.

c = 0 catastrophe

- ullet Log CFTs offer a possible resolution of the c=0 catastrophe. [Gurarie '98] [Cardy '13]
- In a generic CFT, the OPE of some (chiral) primary with itself is given by

$$\mathcal{O}_h(z)\,\mathcal{O}_h(0)=\frac{a}{z^{2h}}\left(1+\frac{2h}{c}\,z^2T(0)+\ldots\right).$$

- In the limit $c \to 0$, the theory is ill defined, unless one of the three conditions is fulfilled:
 - **1** The normalization a vanishes for $c \to 0$.
 - The conformal weight h vanishes for $c \to 0$.
 - **1** The . . . terms contain another pole in c such that both poles cancel and the $c \to 0$ limit can be taken.
- The CCFT OPEs and spectrum being non-trivial, we must be in the third scenario:

$$\mathcal{O}_h(z)\,\mathcal{O}_h(0)=\frac{a}{z^{2h}}\left[1+\frac{2h}{c}\,z^2\big(T(0)-M(0)\big)+\ldots\right]$$

such that $M(z) = T(z) + \mathcal{O}(c)$.

- Assume $c \sim \epsilon$ ($\epsilon \to 0$), and a family M_{ϵ} of $(2 + \epsilon, 0)$ primaries such that $\lim_{\epsilon \to 0} M_{\epsilon} = T$.
- Log partner: $t_{\epsilon}(z) = \frac{T(z) M_{\epsilon}(z)}{\epsilon}$, $t(z) = \lim_{\epsilon \to 0} t_{\epsilon}(z)$ [Cardy '13]

$$L_0|t_\epsilon\rangle = 2|t_\epsilon\rangle + |M_\epsilon\rangle \quad \Rightarrow \quad L_0|t\rangle = 2|t\rangle + |T\rangle.$$

Radiative phase space and symmetries

Is the CCFT a log CFT?

- Operators of the CCFT built out of the radiative phase space.
- \mathscr{I}^+ with coordinates $x^a = (u, z, \bar{z})$, conformal Carrollian structure in Bondi coordinates:

$$q_{ab}dx^adx^b = 0du^2 + 2dzd\bar{z}, \qquad n^a\partial_a = \partial_u,$$

defined up to rescalings: $q_{ab}\sim\omega^2q_{ab}$ and $n^a\sim\omega^{-1}n^a$. [Geroch '77] [Ashtekar '14] [Duval-Gibbons-Horvathy '14]

• BMS/Conformal Carroll symmetries: [Bondi-van der Burg-Metzner '62] [Sachs '62]

$$\xi = \left[\mathcal{T} + \frac{u}{2} (\partial \mathcal{Y} + \bar{\partial} \bar{\mathcal{Y}}) \right] \partial_u + \mathcal{Y} \partial + \bar{\mathcal{Y}} \bar{\partial} \qquad \text{where} \qquad \partial \equiv \partial_z, \bar{\partial} \equiv \partial_{\bar{z}} \,.$$

 $\mathcal{T}=\mathcal{T}(z,\bar{z})$: supertranslation parameter, $(\mathcal{Y}(z),\bar{\mathcal{Y}}(\bar{z}))$: superrotation parameters [Barnich-Troessaert '10]

- Radiative phase space at \mathscr{I}^+ : parametrized by the asymptotic shear $C_{zz}(u,z,\bar{z})$ ($C_{zz}^*=C_{\bar{z}\bar{z}}$) and the Bondi news tensor $N_{zz}=\partial_u C_{zz}$ (outgoing radiation).
- Transformation under BMS symmetries:

$$\delta_{(\mathcal{T},\mathcal{Y},\bar{\mathcal{Y}})} \mathsf{C}_{\mathsf{ZZ}} = \left(\mathcal{T} + \frac{\mathsf{u}}{2}(\partial\mathcal{Y} + \bar{\partial}\bar{\mathcal{Y}})\right) \mathsf{N}_{\mathsf{ZZ}} + \left(\mathcal{Y}\partial + \bar{\mathcal{Y}}\bar{\partial} + \frac{3}{2}\partial\mathcal{Y} - \frac{1}{2}\bar{\partial}\bar{\mathcal{Y}}\right) \mathsf{C}_{\mathsf{ZZ}} - 2\partial^2\mathcal{T} - \mathsf{u}\partial^3\mathcal{Y}.$$

Falloffs in u

• Falloffs at \mathscr{I}_{\pm}^+ ($u \to \pm \infty$), compatible with symmetries and contributions from loop diagrams: [Strominger '13] [Compère-Fiorucci-Ruzziconi '18] [Sahoo-Sen '18] [Campiglia-Peraza '20]

$$C_{zz}|_{\mathscr{I}_{\pm}^{+}} = (u + C_{\pm})N_{zz}^{vac} - 2\partial^{2}C_{\pm} + O(u^{-1}),$$

 $N_{zz}|_{\mathscr{I}_{\pm}^{+}} = N_{zz}^{vac} + O(u^{-2}).$

• $C_{\pm}(z,\bar{z})$ correspond to the values of the supertranslation field at \mathscr{I}_{\pm}^+ encoding the displacement memory effect: [Strominger-Zhiboedov '14]

$$\delta_{(\mathcal{T},\mathcal{Y},\bar{\mathcal{Y}})} C_{\pm} = \left(\mathcal{Y} \partial + \bar{\mathcal{Y}} \bar{\partial} - \frac{1}{2} \partial \mathcal{Y} - \frac{1}{2} \bar{\partial} \bar{\mathcal{Y}} \right) C_{\pm} + \mathcal{T} \,,$$

• $N_{zz}^{vac}(z) = \frac{1}{2}(\partial \varphi)^2 - \partial^2 \varphi$ is the Liouville stress tensor built out of the Liouville field $\varphi(z)$: [Compère-Long '16] [Compère-Fiorucci-Ruzziconi '18]

$$\begin{split} &\delta_{(\mathcal{T},\mathcal{Y},\bar{\mathcal{Y}})}\varphi = \mathcal{Y}\partial\varphi + \partial\mathcal{Y}, \\ &\delta_{(\mathcal{T},\mathcal{Y},\bar{\mathcal{Y}})}N_{zz}^{vac} = (\mathcal{Y}\partial + 2\partial\mathcal{Y})N_{zz}^{vac} - \partial^{3}\mathcal{Y}. \end{split} \tag{2,0}$$

Hard and soft

• Useful derivative operator: [Campiglia '20] [Barnich-Ruzziconi '21] [Donnay-Ruzziconi '21]

$$\mathscr{D}\phi_{h,\bar{h}} = [\partial - h\partial\varphi]\phi_{h,\bar{h}}\,,\quad \bar{\mathscr{D}}\phi_{h,\bar{h}} = [\bar{\partial} - \bar{h}\bar{\partial}\bar{\varphi}]\phi_{h,\bar{h}}\,.$$

• Radiative data can be split into hard and soft. We define $C_{zz}^{(0)}$, \tilde{C}_{zz} and \tilde{N}_{zz} through [Campiglia-Laddha '21] [Donnay-Nguyen-Ruzziconi '22]

$$\begin{array}{ll} C_{zz} = u \, N_{zz}^{vac} + C_{zz}^{(0)} + \tilde{C}_{zz} \,, & N_{zz} = N_{zz}^{vac} + \tilde{N}_{zz} \,, \\ C_{zz}^{(0)} = -2 \mathcal{D}^2 C^{(0)} \,, & C^{(0)} = \frac{1}{2} (C_+ + C_-) \,, & N^{(0)} = \frac{1}{2} (C_+ - C_-) \,. \end{array}$$

- \tilde{N}_{zz} is called the "physical news", the non-radiative spacetime condition $\tilde{N}_{zz}=0$ is BMS invariant. [Compère-Fiorucci-Ruzziconi '18]
- Leading soft graviton $\mathcal{N}_{zz}^{(0)}$ and subleading soft graviton $\mathcal{N}_{zz}^{(1)}$ are defined by [Strominger '13] [He-Lysov-Mitra-Strominger '14] [Kapec-Lysov-Pasterski-Strominger '14]

$$\mathcal{N}_{zz}^{(0)} \equiv \int_{-\infty}^{+\infty} du \, \tilde{N}_{zz} = -4 \mathscr{D}^2 N^{(0)} \,, \qquad \mathcal{N}_{zz}^{(1)} \equiv \int_{-\infty}^{+\infty} du \, u \, \tilde{N}_{zz} \,. \label{eq:Nzz}$$

• Remark: the integral defining $\mathcal{N}_{zz}^{(1)}$ is divergent \Longrightarrow Natural to introduce an IR cut-off. [Compère-Gralla-Wei '23]

Symplectic structure

 Ashtekar-Streubel symplectic structure [Ashtekar-Streubel '81] can be split into hard and soft pieces: [Campiglia-Laddha '21] [Donnay-Nguyen-Ruzziconi '22]

$$\Omega = rac{1}{32\pi G}\int_{\mathscr{I}^+} du\, d^2z \left[\delta \textit{N}_{zz} \wedge \delta \textit{C}_{ar{z}ar{z}} + c.c.
ight] = \Omega^{\textit{hard}} + \Omega^{\textit{soft}}$$

where

$$\Omega^{hard} = rac{1}{32\pi G} \int_{\mathscr{S}^+} du \, d^2z \left[\delta ilde{N}_{zz} \wedge \delta ilde{C}_{ar{z}ar{z}} + c.c.
ight] \, , \ \Omega^{soft} = rac{1}{32\pi G} \int_{\mathcal{S}} d^2z \left[\delta \mathcal{N}_{zz}^{(0)} \wedge \delta C_{ar{z}ar{z}}^{(0)} + 2\delta \mathcal{N}_{zz}^{(1)} \wedge \delta N_{ar{z}ar{z}}^{vac} + c.c.
ight] \, .$$

Where is the log pair in the radiative phase space?

Celestial stress tensor and its (2,0) symplectic partner

• Hard subsector contains finite-energy gravitons: [Pasterski-Puhm-Trevisani '21] [Donnay-Fiorucci-Herfray-Ruzziconi '22]

$$\mathcal{O}_{(\Delta,+2)}(z,\bar{z}) = \kappa_{\Delta}^{+} \int_{-\infty}^{+\infty} \frac{du}{(u+i\varepsilon)^{\Delta-1}} \, \widetilde{N}_{zz}(u,z,\bar{z}) \,, \quad \mathcal{O}_{(\Delta,-2)}^{\dagger}(z,\bar{z}) = \kappa_{\Delta}^{-} \int_{-\infty}^{+\infty} \frac{du}{(u-i\varepsilon)^{\Delta-1}} \, \widetilde{N}_{zz}(u,z,\bar{z}) \,.$$

• Soft subsector: Memory × Goldstone

$\phi_{h,ar{h}}$	$\mathcal{N}_{zz}^{(0)}$	$\mathcal{N}_{zz}^{(1)}$	$C_{zz}^{(0)}$	N _{zz}	2	dz
h	3 2	1	3/2	2	1	-1
$ar{h}$	$-\frac{1}{2}$	-1	$-\frac{1}{2}$	0	0	0

- There are two natural and independent (2,0) operators in the theory:
 - **1** The Liouville stress tensor: $N_{zz}^{vac}(z) = \frac{1}{2}(\partial \varphi)^2 \partial^2 \varphi$;
 - ② The celestial stress tensor: $T(z)=-rac{6i}{8\pi G}\intrac{d^2w}{(z-w)^4}\,\mathcal{N}_{ar{w}ar{w}}^{(1)}(w,ar{w})$. [Kapec-Mitra-Raclariu-Strominger '16]

$$\left\langle T(z) \prod_{i=1}^n \mathcal{O}_{(\Delta_i,J_i)}(z_i,\bar{z}_i) \right\rangle = \sum_{i=1}^n \left[\frac{\partial_j}{z-z_i} + \frac{h_j}{(z-z_j)^2} \right] \left\langle \prod_{i=1}^n \mathcal{O}_{(\Delta_i,J_i)}(z_i,\bar{z}_i) \right\rangle \qquad \text{[subleading soft graviton theorem]}$$

• Comment: shadow transform $\phi_{h,\bar{h}}(z,\bar{z}) \longrightarrow \phi_{1-h,1-\bar{h}}(z,\bar{z}) = \int \frac{d^2w}{(z-w)^{2-2\bar{h}}} \phi_{h,\bar{h}}(w,\bar{w})$.

Logarithmic partner

 \bullet At this stage, the two (2,0) operators are standard (quasi-)primaries:

$$\begin{split} & \delta_{(\mathcal{Y}, \bar{\mathcal{Y}})} T = (\mathcal{Y} \partial + 2 \partial \mathcal{Y}) T \,, \\ & \delta_{(\mathcal{Y}, \bar{\mathcal{Y}})} N_{zz}^{vac} = (\mathcal{Y} \partial + 2 \partial \mathcal{Y}) N_{zz}^{vac} - \partial^3 \mathcal{Y} \,. \end{split}$$

• However, one could consider the alternative combination: T(z) and $t(z) = : \varphi(z)T(z):$ [Fiorucci-Grumiller-Ruzziconi '23]

$$\delta_{(\mathcal{Y},\bar{\mathcal{Y}})}t = (\mathcal{Y}\partial + 2\partial\mathcal{Y})t + (\partial\mathcal{Y})T.$$

⇒ There is a log partner to the celestial stress tensor identified in the radiative phase space!

• Key ingredient: the anomalous transfomation of the Liouville field [Compère-Long '16] [Compère-Fiorucci-Ruzziconi '18]

$$\delta_{(\mathcal{Y},\bar{\mathcal{Y}})}\varphi = \mathcal{Y}\partial\varphi + \partial\mathcal{Y}.$$

Log CCFT as a limit

- In asymptotically flat spacetime, natural to introduce an IR cut-off to regularize the integrals $\Lambda_{IR}\sim \sqrt{G}e^{\frac{1}{\epsilon}}$.
- At finite IR cut-off, the central charge might receive $\mathcal{O}(\epsilon)$ corrections. Simplest case:

$$\langle T(z)T(0)\rangle = -\frac{b\epsilon}{z^4}.$$

• Correlation function of the supertranslation Goldstone mode: [Himwich-Narayanan-Pate-Paul-Strominger '20]

$$\langle C(z,\bar{z})C(0,0)\rangle = \frac{1}{\epsilon}\frac{2G}{\pi}|z|^2 \ln|z|^2,$$

(cusp anomalous dimension introduced to regularize IR divergences coming from loop diagrams in scattering amplitudes)

• By analogy, since the Liouville field is a Goldstone mode for conformal transformations:

$$\langle \varphi(z)\varphi(0)
angle = -rac{2}{\epsilon}\ln z$$
 .

Uplifted AdS_3/CFT_2 and IR divergence

Justification for the $\langle \varphi(z)\varphi(0)\rangle$ correlation function:

- $\langle \varphi(z)\varphi(0)\rangle \propto \ln z$, usual behaviour for a Liouville scalar field.
- \bullet Assuming $\langle \varphi(z)\varphi(0)\rangle=-\frac{2}{\epsilon}\ln z,$ and using Wick's contractions:

$$\langle N_{zz}^{\mathsf{vac}}(z) N_{zz}^{\mathsf{vac}}(0)
angle = rac{2}{\epsilon^2} rac{1 - 6\epsilon}{z^4} \, .$$

 \implies Divergence ϵ^{-2} consistent with the uplifted AdS₃/CFT₂ dictionary.

[Cheung-de la Fuente-Sundrum '16] [Ball-Himwich-Narayanan-Pasterski-Strominger '19] [Pasterski-Verlinde '22] [Nguyen '22]

• The vertex operator $\mathcal{V}_{\epsilon}(z) \equiv : e^{\epsilon \varphi(z)} :$ has conformal weights $(\epsilon, 0)$:

$$\langle \mathcal{V}_{\epsilon}(z)\mathcal{V}_{\epsilon}(0)\rangle = -\frac{1}{z^{2\epsilon}}$$
.

 \implies The precise factor $-\frac{2}{\epsilon}$ ensures the right exponent in the 2-point function.

ullet Define $M_{\epsilon}(z)$ the conformal primary of weight $(2+\epsilon,0)$

$$M_{\epsilon}(z) \equiv : T(z)\mathcal{V}_{\epsilon}(z) :$$

which collides with the stress tensor in the limit: $\lim_{\epsilon \to 0} M_{\epsilon}(z) = T(z)$.

Define

$$t_{\epsilon}(z) = \frac{M_{\epsilon}(z) - T(z)}{\epsilon} = : T(z)\varphi(z) : + \mathcal{O}(\epsilon).$$

the logarithmic partner in the limit $\epsilon \to 0$.

• Owing to $\langle M_{\epsilon}(z)T(0)\rangle = 0$, we have

$$\langle T(z)t_{\epsilon}(0)\rangle = rac{b}{z^4} \quad \Rightarrow \quad \lim_{\epsilon o 0} \langle T(z)t_{\epsilon}(0)\rangle = rac{b}{z^4} \,,$$

ullet Moreover, using $\langle M_\epsilon(z) M_\epsilon(0)
angle = rac{b\epsilon - \epsilon^2}{z^{4+2\epsilon}} + \mathcal{O}(\epsilon^3)$,

$$\langle t_\epsilon(z) t_\epsilon(0)
angle = rac{\langle M_\epsilon(z) M_\epsilon(0)
angle}{\epsilon^2} + rac{\langle T(z) T(0)
angle}{\epsilon^2} = rac{1}{\epsilon^2} rac{b\epsilon - \epsilon^2}{z^{4+2\epsilon}} - rac{1}{\epsilon^2} rac{b\epsilon}{z^4} + \mathcal{O}(\epsilon) \,.$$

so that in the limit $\epsilon \to 0$,

$$\lim_{\epsilon \to 0} \langle t_{\epsilon}(z) t_{\epsilon}(0) \rangle = - \frac{2b}{z^4} \ln(\mu z) \,, \qquad ext{with } \mu = e^{\frac{1}{2b}} \,.$$

Discussion

- Patterns of Log CFT identified in the CCFT.
 - ⇒ Naturally emerges in the IR limit.
 - \implies Solves the c=0 catastrophe.
 - ⇒ Sheds some light on the intrinsic properties of the CCFT.
- How does the Log CFT structure survive with loop-corrected amplitudes?
- Maybe other Jordan blocks to be found. [Bhardwaj-Lippstreu-Ren-Spradlin-Yelleshpur-Volovich '22]
- ullet What is the role of φ in the amplitudes? Dressing field for superrotations at finite cut-off?
- Is there an interplay between Carrollian CFT and Log CCFT?

Thank you!

